Lightweight Dual-Functional Segregated Nanocomposite Foams for Integrated Infrared Stealth and Absorption-Dominant Electromagnetic Interference Shielding
Corresponding Author: Guangcheng Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 223
Abstract
Lightweight infrared stealth and absorption-dominant electromagnetic interference (EMI) shielding materials are highly desirable in areas of aerospace, weapons, military and wearable electronics. Herein, lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO2 (SC-CO2) foaming combined with hydrogen bonding assembly and compression molding strategy. The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity, and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures. Particularly, the segregated nanocomposite foams present a large radiation temperature reduction of 70.2 °C at the object temperature of 100 °C, and a significantly improved EM wave absorptivity/reflectivity (A/R) ratio of 2.15 at an ultralow Ti3C2Tx content of 1.7 vol%. Moreover, the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles. The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace, weapons, military and wearable electronics.
Highlights:
1 Lightweight dual-functional segregated nanocomposite foams are developed via the supercritical CO2 (SC-CO2) foaming combined with hydrogen bonding assembly and compression molding strategy
2 The segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity.
3 Excellent absorption-dominant electromagnetic interference shielding performances are achieved owing to the synchronous construction of microcellular structures and segregated structures
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou et al., Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 135, 101088 (2023). https://doi.org/10.1016/j.pmatsci.2023.101088
- M. Wu, Z. Shao, N. Zhao, R. Zhang, G. Yuan et al., Knittable aerogel fiber for thermal insulation textile. Science 382, 1379–1383 (2023). https://doi.org/10.1126/science.adj8013
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
- Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
- X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
- B.-F. Guo, Y.-J. Wang, C.-F. Cao, Z.-H. Qu, J. Song et al., Large-scale, mechanically robust, solvent-resistant, and antioxidant MXene-based composites for reliable long-term infrared stealth. Adv. Sci. 11, e2309392 (2024). https://doi.org/10.1002/advs.202309392
- Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16, 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
- Z. Zhuang, H. Chen, C. Li, Robust pristine MXene films with superhigh electromagnetic interference shielding effectiveness via spatially confined evaporation. ACS Nano 17, 10628–10636 (2023). https://doi.org/10.1021/acsnano.3c01697
- B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
- Y.-Y. Wang, F. Zhang, N. Li, J.-F. Shi, L.-C. Jia et al., Carbon-based aerogels and foams for electromagnetic interference shielding: a review. Carbon 205, 10–26 (2023). https://doi.org/10.1016/j.carbon.2023.01.007
- Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
- M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao et al., Magnetic interacted interaction effect in MXene skeleton: enhanced thermal-generation for electromagnetic interference shielding. Small 18, e2201587 (2022). https://doi.org/10.1002/smll.202201587
- P. Yi, H. Zou, Y. Yu, X. Li, Z. Li et al., MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano 16, 14490–14502 (2022). https://doi.org/10.1021/acsnano.2c04863
- Y. Bai, B. Zhang, G. Fei, Z. Ma, Composite polymeric film for stretchable, self-healing, recyclable EMI shielding and Joule heating. Chem. Eng. J. 478, 147382 (2023). https://doi.org/10.1016/j.cej.2023.147382
- J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34, e2109904 (2022). https://doi.org/10.1002/adma.202109904
- J. Xie, G. Zhou, Y. Sun, F. Zhang, F. Kang et al., Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small 20, e2305163 (2024). https://doi.org/10.1002/smll.202305163
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei et al., High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 13, 7578–7590 (2019). https://doi.org/10.1021/acsnano.9b00434
- B. Zhou, Z. Li, Y. Li, X. Liu, J. Ma et al., Flexible hydrophobic 2D Ti3C2Tx-based transparent conductive film with multifunctional self-cleaning, electromagnetic interference shielding and Joule heating capacities. Compos. Sci. Technol. 201, 108531 (2021). https://doi.org/10.1016/j.compscitech.2020.108531
- Z. Ma, Y. Zhang, R. Jiang, L. Shao, J. Cao et al., Highly stretchable and room-temperature self-healing sheath-core structured composite fibers for ultrasensitive strain sensing and visual thermal management. Compos. Sci. Technol. 248, 110460 (2024). https://doi.org/10.1016/j.compscitech.2024.110460
- X. Shen, J.-K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
- M. Zhang, M.-S. Cao, J.-C. Shu, W.-Q. Cao, L. Li et al., Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R. Rep. 145, 100627 (2021). https://doi.org/10.1016/j.mser.2021.100627
- Z. Wei, Y. Cai, Y. Zhan, Y. Meng, N. Pan et al., Ultra-low loading of ultra-small Fe3O4 nanops on nonmodified CNTs to improve green EMI shielding capability of rubber composites. Small 20, e2307148 (2024). https://doi.org/10.1002/smll.202307148
- E. Zhu, K. Pang, Y. Chen, S. Liu, X. Liu et al., Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 66, 1106–1113 (2023). https://doi.org/10.1007/s40843-022-2208-x
- Q. Wu, Z. Zeng, L. Xiao, From 2D graphene and MXene nanolayers to 3D biomimetic porous composite aerogels for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 177, 107939 (2024). https://doi.org/10.1016/j.compositesa.2023.107939
- X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
- W. Chu, J. Li, J. Lin, W. Li, J. Xin et al., Honeycomb-like polyimide/Fe3O4@PPy foam for electromagnetic wave shielding with excellent absorption characteristics. Compos. Sci. Technol. 249, 110489 (2024). https://doi.org/10.1016/j.compscitech.2024.110489
- R. Zhao, S. Kang, C. Wu, Z. Cheng, Z. Xie et al., Designable electrical/thermal coordinated dual-regulation based on liquid metal shape memory polymer foam for smart switch. Adv. Sci. 10, e2205428 (2023). https://doi.org/10.1002/advs.202205428
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17, 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- D. Yu, Y. Liao, Y. Song, S. Wang, H. Wan et al., A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 7, 2000177 (2020). https://doi.org/10.1002/advs.202000177
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- Y. Chang, Y. Wang, W. Wang, D. Yu, Highly efficient infrared stealth asymmetric-structure waterborne polyurethane composites prepared via one-step density-driven filler separation method. Colloids Surf. A Physicochem. Eng. Aspects 614, 126177 (2021). https://doi.org/10.1016/j.colsurfa.2021.126177
- W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, e2204165 (2022). https://doi.org/10.1002/advs.202204165
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
- Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- Q. Peng, M. Ma, Q. Chu, H. Lin, W. Tao et al., Absorption-dominated electromagnetic interference shielding composite foam based on porous and bi-conductive network structures. J. Mater. Chem. A 11, 10857–10866 (2023). https://doi.org/10.1039/d3ta01369c
- X. Pei, G. Liu, H. Shi, R. Yu, S. Wang et al., Directional electromagnetic interference shielding of asymmetric structure based on dual-needle 3D printing. Compos. Sci. Technol. 233, 109909 (2023). https://doi.org/10.1016/j.compscitech.2023.109909
- L. Yao, Y. Wang, J. Zhao, Y. Zhu, M. Cao, Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19, e2208101 (2023). https://doi.org/10.1002/smll.202208101
- Y. Luo, Y. Guo, C. Wei, J. Chen, G. Zhao et al., Lightweight, compressible, and stretchable composite foams for ultra-efficient and high-stable electromagnetic interference shielding materials. Carbon 215, 118480 (2023). https://doi.org/10.1016/j.carbon.2023.118480
- X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
- Y. Dai, X. Wu, L. Li, Y. Zhang, Z. Deng et al., 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding. J. Mater. Chem. A 10, 11375–11385 (2022). https://doi.org/10.1039/d2ta01388f
- M. Salari, S. Habibpour, M. Hamidinejad, S. Mohseni Taromsari, H.E. Naguib et al., Enhanced electrical properties of microcellular polymer nanocomposites via nanocarbon geometrical alteration: a comparison of graphene nanoribbons and their parent multiwalled carbon nanotubes. Mater. Horiz. 10, 1392–1405 (2023). https://doi.org/10.1039/d2mh01303g
- D. Dong, J. Ma, Z. Ma, Y. Chen, H. Zhang et al., Flexible and lightweight microcellular RGO@Pebax composites with synergistic 3D conductive channels and microcracks for piezoresistive sensors. Compos. Part A Appl. Sci. Manuf. 123, 222–231 (2019). https://doi.org/10.1016/j.compositesa.2019.05.019
- Z. Ma, G. Zhang, Q. Yang, X. Shi, J. Li et al., Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether ether ketone) (PPS/PEEK) blends. J. Supercrit. Fluids 140, 116–128 (2018). https://doi.org/10.1016/j.supflu.2018.06.010
- L. Ma, M. Hamidinejad, L. Wei, B. Zhao, C.B. Park, Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Mater. Today Phys. 30, 100940 (2023). https://doi.org/10.1016/j.mtphys.2022.100940
- H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
- H. Pang, L. Xu, D.-X. Yan, Z.-M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39, 1908–1933 (2014). https://doi.org/10.1016/j.progpolymsci.2014.07.007
- Q. Huang, Z. Tang, D. Wang, S. Wu, B. Guo, Engineering segregated structures in a cross-linked elastomeric network enabled by dynamic cross-link reshuffling. ACS Macro Lett. 10, 231–236 (2021). https://doi.org/10.1021/acsmacrolett.0c00852
- T. Wang, W.-W. Kong, W.-C. Yu, J.-F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
- D. Feng, D. Xu, Q. Wang, P. Liu, Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. J. Mater. Chem. C 7, 7938–7946 (2019). https://doi.org/10.1039/c9tc02311a
- H. Fang, W. Ye, K. Yang, K. Song, H. Wei et al., Vitrimer chemistry enables epoxy nanocomposites with mechanical robustness and integrated conductive segregated structure for high performance electromagnetic interference shielding. Compos. Part B Eng. 215, 108782 (2021). https://doi.org/10.1016/j.compositesb.2021.108782
- J. Xu, T. Liu, Y. Zhang, Y. Zhang, K. Wu et al., Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter 4, 2474–2489 (2021). https://doi.org/10.1016/j.matt.2021.05.001
- D. Feng, P. Liu, Q. Wang, Selective microwave sintering to prepare multifunctional poly(ether imide) bead foams based on segregated carbon nanotube conductive network. Ind. Eng. Chem. Res. 59, 5838–5847 (2020). https://doi.org/10.1021/acs.iecr.0c00090
- R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chem. Eng. J. 425, 131699 (2021). https://doi.org/10.1016/j.cej.2021.131699
- R.-Y. Ma, S.-Q. Yi, J. Li, J.-L. Zhang, W.-J. Sun et al., Highly efficient electromagnetic interference shielding and superior mechanical performance of carbon nanotube/polydimethylsiloxane composite with interface-reinforced segregated structure. Compos. Sci. Technol. 232, 109874 (2023). https://doi.org/10.1016/j.compscitech.2022.109874
- G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang et al., Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 10, 1195–1203 (2018). https://doi.org/10.1021/acsami.7b14111
- Z. Ma, A. Wei, Y. Li, L. Shao, H. Zhang et al., Lightweight, flexible and highly sensitive segregated microcellular nanocomposite piezoresistive sensors for human motion detection. Compos. Sci. Technol. 203, 108571 (2021). https://doi.org/10.1016/j.compscitech.2020.108571
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- L. Li, M. Shi, X. Liu, X. Jin, Y. Cao et al., Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31, 2101381 (2021). https://doi.org/10.1002/adfm.202101381
- Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19, e2304278 (2023). https://doi.org/10.1002/smll.202304278
- W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 426, 130729 (2021). https://doi.org/10.1016/j.cej.2021.130729
- F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, e2311135 (2024). https://doi.org/10.1002/adma.202311135
- Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 (2022). https://doi.org/10.1007/s40820-022-00904-7
References
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou et al., Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 135, 101088 (2023). https://doi.org/10.1016/j.pmatsci.2023.101088
M. Wu, Z. Shao, N. Zhao, R. Zhang, G. Yuan et al., Knittable aerogel fiber for thermal insulation textile. Science 382, 1379–1383 (2023). https://doi.org/10.1126/science.adj8013
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
B.-F. Guo, Y.-J. Wang, C.-F. Cao, Z.-H. Qu, J. Song et al., Large-scale, mechanically robust, solvent-resistant, and antioxidant MXene-based composites for reliable long-term infrared stealth. Adv. Sci. 11, e2309392 (2024). https://doi.org/10.1002/advs.202309392
Y.-Y. Shi, S.-Y. Liao, Q.-F. Wang, X.-Y. Xu, X.-Y. Wang et al., Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance. Nano-Micro Lett. 16, 134 (2024). https://doi.org/10.1007/s40820-024-01344-1
Z. Zhuang, H. Chen, C. Li, Robust pristine MXene films with superhigh electromagnetic interference shielding effectiveness via spatially confined evaporation. ACS Nano 17, 10628–10636 (2023). https://doi.org/10.1021/acsnano.3c01697
B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
Y.-Y. Wang, F. Zhang, N. Li, J.-F. Shi, L.-C. Jia et al., Carbon-based aerogels and foams for electromagnetic interference shielding: a review. Carbon 205, 10–26 (2023). https://doi.org/10.1016/j.carbon.2023.01.007
Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
M. Huang, L. Wang, X. Li, Z. Wu, B. Zhao et al., Magnetic interacted interaction effect in MXene skeleton: enhanced thermal-generation for electromagnetic interference shielding. Small 18, e2201587 (2022). https://doi.org/10.1002/smll.202201587
P. Yi, H. Zou, Y. Yu, X. Li, Z. Li et al., MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano 16, 14490–14502 (2022). https://doi.org/10.1021/acsnano.2c04863
Y. Bai, B. Zhang, G. Fei, Z. Ma, Composite polymeric film for stretchable, self-healing, recyclable EMI shielding and Joule heating. Chem. Eng. J. 478, 147382 (2023). https://doi.org/10.1016/j.cej.2023.147382
J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34, e2109904 (2022). https://doi.org/10.1002/adma.202109904
J. Xie, G. Zhou, Y. Sun, F. Zhang, F. Kang et al., Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small 20, e2305163 (2024). https://doi.org/10.1002/smll.202305163
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei et al., High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 13, 7578–7590 (2019). https://doi.org/10.1021/acsnano.9b00434
B. Zhou, Z. Li, Y. Li, X. Liu, J. Ma et al., Flexible hydrophobic 2D Ti3C2Tx-based transparent conductive film with multifunctional self-cleaning, electromagnetic interference shielding and Joule heating capacities. Compos. Sci. Technol. 201, 108531 (2021). https://doi.org/10.1016/j.compscitech.2020.108531
Z. Ma, Y. Zhang, R. Jiang, L. Shao, J. Cao et al., Highly stretchable and room-temperature self-healing sheath-core structured composite fibers for ultrasensitive strain sensing and visual thermal management. Compos. Sci. Technol. 248, 110460 (2024). https://doi.org/10.1016/j.compscitech.2024.110460
X. Shen, J.-K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
M. Zhang, M.-S. Cao, J.-C. Shu, W.-Q. Cao, L. Li et al., Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R. Rep. 145, 100627 (2021). https://doi.org/10.1016/j.mser.2021.100627
Z. Wei, Y. Cai, Y. Zhan, Y. Meng, N. Pan et al., Ultra-low loading of ultra-small Fe3O4 nanops on nonmodified CNTs to improve green EMI shielding capability of rubber composites. Small 20, e2307148 (2024). https://doi.org/10.1002/smll.202307148
E. Zhu, K. Pang, Y. Chen, S. Liu, X. Liu et al., Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 66, 1106–1113 (2023). https://doi.org/10.1007/s40843-022-2208-x
Q. Wu, Z. Zeng, L. Xiao, From 2D graphene and MXene nanolayers to 3D biomimetic porous composite aerogels for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 177, 107939 (2024). https://doi.org/10.1016/j.compositesa.2023.107939
X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
W. Chu, J. Li, J. Lin, W. Li, J. Xin et al., Honeycomb-like polyimide/Fe3O4@PPy foam for electromagnetic wave shielding with excellent absorption characteristics. Compos. Sci. Technol. 249, 110489 (2024). https://doi.org/10.1016/j.compscitech.2024.110489
R. Zhao, S. Kang, C. Wu, Z. Cheng, Z. Xie et al., Designable electrical/thermal coordinated dual-regulation based on liquid metal shape memory polymer foam for smart switch. Adv. Sci. 10, e2205428 (2023). https://doi.org/10.1002/advs.202205428
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17, 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
D. Yu, Y. Liao, Y. Song, S. Wang, H. Wan et al., A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 7, 2000177 (2020). https://doi.org/10.1002/advs.202000177
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
Y. Chang, Y. Wang, W. Wang, D. Yu, Highly efficient infrared stealth asymmetric-structure waterborne polyurethane composites prepared via one-step density-driven filler separation method. Colloids Surf. A Physicochem. Eng. Aspects 614, 126177 (2021). https://doi.org/10.1016/j.colsurfa.2021.126177
W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, e2204165 (2022). https://doi.org/10.1002/advs.202204165
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
Q. Peng, M. Ma, Q. Chu, H. Lin, W. Tao et al., Absorption-dominated electromagnetic interference shielding composite foam based on porous and bi-conductive network structures. J. Mater. Chem. A 11, 10857–10866 (2023). https://doi.org/10.1039/d3ta01369c
X. Pei, G. Liu, H. Shi, R. Yu, S. Wang et al., Directional electromagnetic interference shielding of asymmetric structure based on dual-needle 3D printing. Compos. Sci. Technol. 233, 109909 (2023). https://doi.org/10.1016/j.compscitech.2023.109909
L. Yao, Y. Wang, J. Zhao, Y. Zhu, M. Cao, Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19, e2208101 (2023). https://doi.org/10.1002/smll.202208101
Y. Luo, Y. Guo, C. Wei, J. Chen, G. Zhao et al., Lightweight, compressible, and stretchable composite foams for ultra-efficient and high-stable electromagnetic interference shielding materials. Carbon 215, 118480 (2023). https://doi.org/10.1016/j.carbon.2023.118480
X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
Y. Dai, X. Wu, L. Li, Y. Zhang, Z. Deng et al., 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding. J. Mater. Chem. A 10, 11375–11385 (2022). https://doi.org/10.1039/d2ta01388f
M. Salari, S. Habibpour, M. Hamidinejad, S. Mohseni Taromsari, H.E. Naguib et al., Enhanced electrical properties of microcellular polymer nanocomposites via nanocarbon geometrical alteration: a comparison of graphene nanoribbons and their parent multiwalled carbon nanotubes. Mater. Horiz. 10, 1392–1405 (2023). https://doi.org/10.1039/d2mh01303g
D. Dong, J. Ma, Z. Ma, Y. Chen, H. Zhang et al., Flexible and lightweight microcellular RGO@Pebax composites with synergistic 3D conductive channels and microcracks for piezoresistive sensors. Compos. Part A Appl. Sci. Manuf. 123, 222–231 (2019). https://doi.org/10.1016/j.compositesa.2019.05.019
Z. Ma, G. Zhang, Q. Yang, X. Shi, J. Li et al., Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether ether ketone) (PPS/PEEK) blends. J. Supercrit. Fluids 140, 116–128 (2018). https://doi.org/10.1016/j.supflu.2018.06.010
L. Ma, M. Hamidinejad, L. Wei, B. Zhao, C.B. Park, Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Mater. Today Phys. 30, 100940 (2023). https://doi.org/10.1016/j.mtphys.2022.100940
H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
H. Pang, L. Xu, D.-X. Yan, Z.-M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39, 1908–1933 (2014). https://doi.org/10.1016/j.progpolymsci.2014.07.007
Q. Huang, Z. Tang, D. Wang, S. Wu, B. Guo, Engineering segregated structures in a cross-linked elastomeric network enabled by dynamic cross-link reshuffling. ACS Macro Lett. 10, 231–236 (2021). https://doi.org/10.1021/acsmacrolett.0c00852
T. Wang, W.-W. Kong, W.-C. Yu, J.-F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
D. Feng, D. Xu, Q. Wang, P. Liu, Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. J. Mater. Chem. C 7, 7938–7946 (2019). https://doi.org/10.1039/c9tc02311a
H. Fang, W. Ye, K. Yang, K. Song, H. Wei et al., Vitrimer chemistry enables epoxy nanocomposites with mechanical robustness and integrated conductive segregated structure for high performance electromagnetic interference shielding. Compos. Part B Eng. 215, 108782 (2021). https://doi.org/10.1016/j.compositesb.2021.108782
J. Xu, T. Liu, Y. Zhang, Y. Zhang, K. Wu et al., Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter 4, 2474–2489 (2021). https://doi.org/10.1016/j.matt.2021.05.001
D. Feng, P. Liu, Q. Wang, Selective microwave sintering to prepare multifunctional poly(ether imide) bead foams based on segregated carbon nanotube conductive network. Ind. Eng. Chem. Res. 59, 5838–5847 (2020). https://doi.org/10.1021/acs.iecr.0c00090
R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chem. Eng. J. 425, 131699 (2021). https://doi.org/10.1016/j.cej.2021.131699
R.-Y. Ma, S.-Q. Yi, J. Li, J.-L. Zhang, W.-J. Sun et al., Highly efficient electromagnetic interference shielding and superior mechanical performance of carbon nanotube/polydimethylsiloxane composite with interface-reinforced segregated structure. Compos. Sci. Technol. 232, 109874 (2023). https://doi.org/10.1016/j.compscitech.2022.109874
G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang et al., Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 10, 1195–1203 (2018). https://doi.org/10.1021/acsami.7b14111
Z. Ma, A. Wei, Y. Li, L. Shao, H. Zhang et al., Lightweight, flexible and highly sensitive segregated microcellular nanocomposite piezoresistive sensors for human motion detection. Compos. Sci. Technol. 203, 108571 (2021). https://doi.org/10.1016/j.compscitech.2020.108571
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
L. Li, M. Shi, X. Liu, X. Jin, Y. Cao et al., Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31, 2101381 (2021). https://doi.org/10.1002/adfm.202101381
Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19, e2304278 (2023). https://doi.org/10.1002/smll.202304278
W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 426, 130729 (2021). https://doi.org/10.1016/j.cej.2021.130729
F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36, e2311135 (2024). https://doi.org/10.1002/adma.202311135
Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 (2022). https://doi.org/10.1007/s40820-022-00904-7