MXene Sediment-Based Poly(vinyl alcohol)/Sodium Alginate Aerogel Evaporator with Vertically Aligned Channels for Highly Efficient Solar Steam Generation
Corresponding Author: Xiansheng Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 220
Abstract
Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics. However, developing an evaporator with high efficiency, stability, and salt resistance remains a key challenge. MXene, with an internal photothermal conversion efficiency of 100%, has received tremendous research interest as a photothermal material. However, the process to prepare the MXene with monolayer is inefficient and generates a large amount of “waste” MXene sediments (MS). Here, MXene sediments is selected as the photothermal material, and a three-dimensional MXene sediments/poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned pores by directional freezing method is innovatively designed. The vertical porous structure enables the evaporator to improve water transport, light capture, and high evaporation rate. Cotton swabs and polypropylene are used as the water channel and support, respectively, thus fabricating a self-floating evaporator. The evaporator exhibits an evaporation rate of 3.6 kg m−2 h−1 under one-sun illumination, and 18.37 kg m−2 of freshwater is collected in the condensation collection device after 7 h of outdoor sun irradiation. The evaporator also displays excellent oil and salt resistance. This research fully utilizes “waste” MS, enabling a self-floating evaporation device for freshwater collection.
Highlights:
1 MXene sediments is innovatively used as photothermal material for seawater desalination.
2 Inspired by the natural wood transpiration process, a 3D MXene sediment-based aerogel with vertically aligned channels is innovatively prepared as solar evaporator.
3 With unique structure and composition, excellent photothermal conversion efficiency, evaporation rate, salt resistance, and resistance to biological/oil/special environments are achieved in practical desalination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ruhi, M.L. Messager, J.D. Olden, Tracking the pulse of the earth’s fresh waters. Nat. Sustain. 1(4), 198–203 (2018). https://doi.org/10.1038/s41893-018-0047-7
- J. Liu, H. Yang, S.N. Gosling, M. Kummu, M. Florke et al., Water scarcity assessments in the past, present and future. Earths Future 5(6), 545–559 (2017). https://doi.org/10.1002/2016EF000518
- F.E. Ahmed, A. Khalil, N. Hilal, Emerging desalination technologies: current status, challenges and future trends. Desalination 517, 115183 (2021). https://doi.org/10.1016/j.desal.2021.115183
- J. Wang, S.Y. Lai, Y. He, Research on reverse osmosis membrane materials for seawater desalination. Adv. Mater. Res. 600, 100–103 (2012). https://doi.org/10.4028/www.scientific.net/AMR.600.100
- X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2(7), 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
- Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2(6), 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
- L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 8(16), 1171–1186 (2018). https://doi.org/10.1002/aenm.201702149
- L. Zhou, X. Li, G.W. Ni, S. Zhu, J. Zhu, The revival of thermal utilization from the sun: interfacial solar vapor generation. Natl. Sci. Rev. 6(3), 562–578 (2019). https://doi.org/10.1093/nsr/nwz030
- L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
- Z. Lei, S. Zhu, X. Sun, S. Yu, X. Liu et al., A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32(40), 2205790 (2022). https://doi.org/10.1002/adfm.202205790
- M. Khatri, L. Francis, N. Hilal, Modified electrospun membranes using different nanomaterials for membrane distillation. Membranes (Basel) 13(3), 338 (2023). https://doi.org/10.3390/membranes13030338
- D. Hao, Y. Yang, B. Xu, Z. Cai, Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization. Appl. Therm. Eng. 141, 406–412 (2018). https://doi.org/10.1016/j.applthermaleng.2018.05.117
- C. Wang, S.L. Zhou, C. Wu, Z.H. Yang, X.H. Zhang, Janus carbon nanotube sponges for highly efficient solar-driven vapor generation. Chem. Eng. J. 454, 140501 (2023). https://doi.org/10.1016/j.cej.2022.140501
- Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32(11), e1907061, (2020). https://doi.org/10.1002/adma.201907061
- W.J. Ma, T. Lu, W.X. Cao, R.H. Xiong, C.B. Huang, Bioinspired nanofibrous aerogel with vertically aligned channels for efficient water purification and salt-rejecting solar desalination. Adv. Funct. Mater. 33(23), 2214157 (2023). https://doi.org/10.1002/adfm.202214157
- F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
- A. Lamy-Mendes, R.F. Silva, L. Durães, Advances in carbon nanostructure–silica aerogel composites: a review. J. Mater. Chem. A 6(4), 1340–1369 (2018). https://doi.org/10.1039/c7ta08959g
- M. Rastgar, L. Jiang, C. Wang, M. Sadrzadeh, Aerogels in passive solar thermal desalination: a review. J. Mater. Chem. A 10(35), 17857–17877 (2022). https://doi.org/10.1039/d2ta05216d
- X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 113(49), 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
- Y. Li, T. Gao, Z. Yang, C. Chen, Y. Kuang et al., Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 41, 201–209 (2017). https://doi.org/10.1016/j.nanoen.2017.09.034
- M. Morciano, M. Fasano, U. Salomov, L. Ventola, E. Chiavazzo et al., Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Sci. Rep. 7(1), 11970 (2017). https://doi.org/10.1038/s41598-017-12152-6
- K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
- X. Wang, G. Ou, N. Wang, H. Wu, Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 8(14), 9194–9199 (2016). https://doi.org/10.1021/acsami.6b02071
- Q. Jiang, H. Gholami Derami, D. Ghim, S. Cao, Y.-S. Jun et al., Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5(35), 18397–18402 (2017). https://doi.org/10.1039/c7ta04834c
- J.R. Vélez-Cordero, J. Hernández-Cordero, Heat generation and conduction in pdms-carbon nanop membranes irradiated with optical fibers. Int. J. Therm. Sci. 96, 12–22 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.04.009
- I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. (2020). https://doi.org/10.1007/s40820-020-0411-9
- J.H. Kim, G.S. Park, Y.J. Kim, E. Choi, J. Kang et al., Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano 15(5), 8860–8869 (2021). https://doi.org/10.1021/acsnano.1c01448
- D.-D. Shao, Q. Zhang, L. Wang, Z.-Y. Wang, Y.-X. Jing et al., Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving. J. Membr. Sci. 623, 119033 (2021). https://doi.org/10.1016/j.memsci.2020.119033
- M.C. Krecker, D. Bukharina, C.B. Hatter, Y. Gogotsi, V.V. Tsukruk, Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30(43), 2004554 (2020). https://doi.org/10.1002/adfm.202004554
- Z. Li, C. Wang, Novel advances in metal-based solar absorber for photothermal vapor generation. Chin. Chem. Lett. 31(9), 2159–2166 (2020). https://doi.org/10.1016/j.cclet.2019.09.030
- G. He, F. Ning, X. Liu, Y. Meng, Z. Lei et al., High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications. Adv. Fiber Mater. 6, 367–386 (2024). https://doi.org/10.1007/s42765-023-00348-7
- M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
- Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
- M. Yuan, L. Wang, X. Liu, X. Du, G. Zhang et al., 3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment. Chem. Eng. J. 451, 138686 (2023). https://doi.org/10.1016/j.cej.2022.138686
- J. Ma, K. Yang, Y. Jiang, L. Shen, H. Ma et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep. Phys. Sci. 3(6), 100908 (2022). https://doi.org/10.1016/j.xcrp.2022.100908
- Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3d skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), e1704044 (2018). https://doi.org/10.1002/smll.201704044
- J. Chang, B. Pang, H. Zhang, K. Pang, M. Zhang et al., MXene/cellulose composite cloth for integrated functions (if-cloth) in personal heating and steam generation. Adv. Fiber Mater. 6(1), 252–263 (2023). https://doi.org/10.1007/s42765-023-00345-w
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene -decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- X.Y. Zhou, F. Zhao, Y.H. Guo, B. Rosenberger, G.H. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), 5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
- M. Sun, H. Yang, X. Wang, X. Gao, C. Wang et al., Wood-inspired anisotropic PU/chitosan/ MXene aerogel used as an enhanced solar evaporator with superior salt-resistance. Desalination 555, 116462 (2023). https://doi.org/10.1016/j.desal.2023.116462
- M.N.A.S. Ivan, S. Saha, A.M. Saleque, S. Ahmed, A.K. Thakur et al., Progress in interfacial solar steam generation using low-dimensional and biomass-derived materials. Nano Energy 120, 109176 (2024). https://doi.org/10.1016/j.nanoen.2023.109176
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
- W. Bao, X. Tang, X. Guo, S. Choi, C. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4), 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
- M.N.A.S. Ivan, A.M. Saleque, S. Ahmed, P.K. Cheng, J. Qiao et al., Waste egg tray and toner-derived highly efficient 3D solar evaporator for freshwater generation. ACS Appl. Mater. Interfaces 14(6), 7936–7948 (2022). https://doi.org/10.1021/acsami.1c22215
- C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5(3), 791–818 (2022). https://doi.org/10.1007/s42765-022-00228-6
- M. Zhang, M.N.A.S. Ivan, Y. Sun, Z. Li, S. Saha et al., A platinum-based photothermal polymer with intermolecular/ligand-to-ligand charge transfer for efficient and sustainable solar-powered desalination. J. Mater. Chem. A 12, 9055–9065 (2024). https://doi.org/10.1039/d3ta07980e
- M.N.A.S. Ivan, A.M. Saleque, S. Ahmed, Z.L. Guo, D. Zu et al., Jute stick derived self-regenerating sustainable solar evaporators with different salt mitigation mechanisms for highly efficient solar desalination. J. Mater. Chem. A 11(8), 3961–3974 (2023). https://doi.org/10.1039/d2ta08237c
- X. Han, S. Ding, L. Fan, Y. Zhou, S. Wang, Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 9(34), 18614–18622 (2021). https://doi.org/10.1039/d1ta04991g
- B. Liu, L. Yu, F. Yu, J. Ma, In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability. Desalination 500, 114897 (2021). https://doi.org/10.1016/j.desal.2020.114897
- R. Malik, Maxing out water desalination with MXenes. Joule 2(4), 591–593 (2018). https://doi.org/10.1016/j.joule.2018.04.001
- X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
- Y. Wang, Y. Wan, X. Meng, L. Jiang, H. Wei et al., Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J. Mate. Sci. 57(29), 13962–13973 (2022). https://doi.org/10.1007/s10853-022-07494-0
- Y. Yang, W. Fan, S. Yuan, J. Tian, G. Chao et al., A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. J. Mater. Chem. A. 9(42), 23968–23976 (2021). https://doi.org/10.1039/d1ta07225k
- Z. Yu, P. Wu, Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation. Adv. Mater. Technol. 5(6), 2000065 (2020). https://doi.org/10.1002/admt.202000065
- Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned janus MXene -based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13(11), 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
- X.P. Li, X.F. Li, H.G. Li, Y. Zhao, W. Li et al., 2D ferrous ion-crosslinked Ti3C2Tx MXene aerogel evaporators for efficient solar steam generation. Adv. Sustain. Syst. 5(12), 2100263 (2021). https://doi.org/10.1002/adsu.202100263
- H. Gao, N.C. Bing, Z.J. Bao, H.Q. Xie, W. Yu, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem. Eng. J. 454, 140362 (2023). https://doi.org/10.1016/j.cej.2022.140362
- C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023). https://doi.org/10.1007/s40820-023-01034-4
References
A. Ruhi, M.L. Messager, J.D. Olden, Tracking the pulse of the earth’s fresh waters. Nat. Sustain. 1(4), 198–203 (2018). https://doi.org/10.1038/s41893-018-0047-7
J. Liu, H. Yang, S.N. Gosling, M. Kummu, M. Florke et al., Water scarcity assessments in the past, present and future. Earths Future 5(6), 545–559 (2017). https://doi.org/10.1002/2016EF000518
F.E. Ahmed, A. Khalil, N. Hilal, Emerging desalination technologies: current status, challenges and future trends. Desalination 517, 115183 (2021). https://doi.org/10.1016/j.desal.2021.115183
J. Wang, S.Y. Lai, Y. He, Research on reverse osmosis membrane materials for seawater desalination. Adv. Mater. Res. 600, 100–103 (2012). https://doi.org/10.4028/www.scientific.net/AMR.600.100
X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2(7), 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2(6), 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 8(16), 1171–1186 (2018). https://doi.org/10.1002/aenm.201702149
L. Zhou, X. Li, G.W. Ni, S. Zhu, J. Zhu, The revival of thermal utilization from the sun: interfacial solar vapor generation. Natl. Sci. Rev. 6(3), 562–578 (2019). https://doi.org/10.1093/nsr/nwz030
L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
Z. Lei, S. Zhu, X. Sun, S. Yu, X. Liu et al., A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32(40), 2205790 (2022). https://doi.org/10.1002/adfm.202205790
M. Khatri, L. Francis, N. Hilal, Modified electrospun membranes using different nanomaterials for membrane distillation. Membranes (Basel) 13(3), 338 (2023). https://doi.org/10.3390/membranes13030338
D. Hao, Y. Yang, B. Xu, Z. Cai, Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization. Appl. Therm. Eng. 141, 406–412 (2018). https://doi.org/10.1016/j.applthermaleng.2018.05.117
C. Wang, S.L. Zhou, C. Wu, Z.H. Yang, X.H. Zhang, Janus carbon nanotube sponges for highly efficient solar-driven vapor generation. Chem. Eng. J. 454, 140501 (2023). https://doi.org/10.1016/j.cej.2022.140501
Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32(11), e1907061, (2020). https://doi.org/10.1002/adma.201907061
W.J. Ma, T. Lu, W.X. Cao, R.H. Xiong, C.B. Huang, Bioinspired nanofibrous aerogel with vertically aligned channels for efficient water purification and salt-rejecting solar desalination. Adv. Funct. Mater. 33(23), 2214157 (2023). https://doi.org/10.1002/adfm.202214157
F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
A. Lamy-Mendes, R.F. Silva, L. Durães, Advances in carbon nanostructure–silica aerogel composites: a review. J. Mater. Chem. A 6(4), 1340–1369 (2018). https://doi.org/10.1039/c7ta08959g
M. Rastgar, L. Jiang, C. Wang, M. Sadrzadeh, Aerogels in passive solar thermal desalination: a review. J. Mater. Chem. A 10(35), 17857–17877 (2022). https://doi.org/10.1039/d2ta05216d
X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 113(49), 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
Y. Li, T. Gao, Z. Yang, C. Chen, Y. Kuang et al., Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 41, 201–209 (2017). https://doi.org/10.1016/j.nanoen.2017.09.034
M. Morciano, M. Fasano, U. Salomov, L. Ventola, E. Chiavazzo et al., Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Sci. Rep. 7(1), 11970 (2017). https://doi.org/10.1038/s41598-017-12152-6
K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
X. Wang, G. Ou, N. Wang, H. Wu, Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 8(14), 9194–9199 (2016). https://doi.org/10.1021/acsami.6b02071
Q. Jiang, H. Gholami Derami, D. Ghim, S. Cao, Y.-S. Jun et al., Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5(35), 18397–18402 (2017). https://doi.org/10.1039/c7ta04834c
J.R. Vélez-Cordero, J. Hernández-Cordero, Heat generation and conduction in pdms-carbon nanop membranes irradiated with optical fibers. Int. J. Therm. Sci. 96, 12–22 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.04.009
I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. (2020). https://doi.org/10.1007/s40820-020-0411-9
J.H. Kim, G.S. Park, Y.J. Kim, E. Choi, J. Kang et al., Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano 15(5), 8860–8869 (2021). https://doi.org/10.1021/acsnano.1c01448
D.-D. Shao, Q. Zhang, L. Wang, Z.-Y. Wang, Y.-X. Jing et al., Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving. J. Membr. Sci. 623, 119033 (2021). https://doi.org/10.1016/j.memsci.2020.119033
M.C. Krecker, D. Bukharina, C.B. Hatter, Y. Gogotsi, V.V. Tsukruk, Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30(43), 2004554 (2020). https://doi.org/10.1002/adfm.202004554
Z. Li, C. Wang, Novel advances in metal-based solar absorber for photothermal vapor generation. Chin. Chem. Lett. 31(9), 2159–2166 (2020). https://doi.org/10.1016/j.cclet.2019.09.030
G. He, F. Ning, X. Liu, Y. Meng, Z. Lei et al., High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications. Adv. Fiber Mater. 6, 367–386 (2024). https://doi.org/10.1007/s42765-023-00348-7
M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
M. Yuan, L. Wang, X. Liu, X. Du, G. Zhang et al., 3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment. Chem. Eng. J. 451, 138686 (2023). https://doi.org/10.1016/j.cej.2022.138686
J. Ma, K. Yang, Y. Jiang, L. Shen, H. Ma et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep. Phys. Sci. 3(6), 100908 (2022). https://doi.org/10.1016/j.xcrp.2022.100908
Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3d skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), e1704044 (2018). https://doi.org/10.1002/smll.201704044
J. Chang, B. Pang, H. Zhang, K. Pang, M. Zhang et al., MXene/cellulose composite cloth for integrated functions (if-cloth) in personal heating and steam generation. Adv. Fiber Mater. 6(1), 252–263 (2023). https://doi.org/10.1007/s42765-023-00345-w
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene -decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
X.Y. Zhou, F. Zhao, Y.H. Guo, B. Rosenberger, G.H. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), 5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
M. Sun, H. Yang, X. Wang, X. Gao, C. Wang et al., Wood-inspired anisotropic PU/chitosan/ MXene aerogel used as an enhanced solar evaporator with superior salt-resistance. Desalination 555, 116462 (2023). https://doi.org/10.1016/j.desal.2023.116462
M.N.A.S. Ivan, S. Saha, A.M. Saleque, S. Ahmed, A.K. Thakur et al., Progress in interfacial solar steam generation using low-dimensional and biomass-derived materials. Nano Energy 120, 109176 (2024). https://doi.org/10.1016/j.nanoen.2023.109176
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
W. Bao, X. Tang, X. Guo, S. Choi, C. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4), 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
M.N.A.S. Ivan, A.M. Saleque, S. Ahmed, P.K. Cheng, J. Qiao et al., Waste egg tray and toner-derived highly efficient 3D solar evaporator for freshwater generation. ACS Appl. Mater. Interfaces 14(6), 7936–7948 (2022). https://doi.org/10.1021/acsami.1c22215
C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5(3), 791–818 (2022). https://doi.org/10.1007/s42765-022-00228-6
M. Zhang, M.N.A.S. Ivan, Y. Sun, Z. Li, S. Saha et al., A platinum-based photothermal polymer with intermolecular/ligand-to-ligand charge transfer for efficient and sustainable solar-powered desalination. J. Mater. Chem. A 12, 9055–9065 (2024). https://doi.org/10.1039/d3ta07980e
M.N.A.S. Ivan, A.M. Saleque, S. Ahmed, Z.L. Guo, D. Zu et al., Jute stick derived self-regenerating sustainable solar evaporators with different salt mitigation mechanisms for highly efficient solar desalination. J. Mater. Chem. A 11(8), 3961–3974 (2023). https://doi.org/10.1039/d2ta08237c
X. Han, S. Ding, L. Fan, Y. Zhou, S. Wang, Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 9(34), 18614–18622 (2021). https://doi.org/10.1039/d1ta04991g
B. Liu, L. Yu, F. Yu, J. Ma, In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability. Desalination 500, 114897 (2021). https://doi.org/10.1016/j.desal.2020.114897
R. Malik, Maxing out water desalination with MXenes. Joule 2(4), 591–593 (2018). https://doi.org/10.1016/j.joule.2018.04.001
X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
Y. Wang, Y. Wan, X. Meng, L. Jiang, H. Wei et al., Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J. Mate. Sci. 57(29), 13962–13973 (2022). https://doi.org/10.1007/s10853-022-07494-0
Y. Yang, W. Fan, S. Yuan, J. Tian, G. Chao et al., A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. J. Mater. Chem. A. 9(42), 23968–23976 (2021). https://doi.org/10.1039/d1ta07225k
Z. Yu, P. Wu, Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation. Adv. Mater. Technol. 5(6), 2000065 (2020). https://doi.org/10.1002/admt.202000065
Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned janus MXene -based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13(11), 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
X.P. Li, X.F. Li, H.G. Li, Y. Zhao, W. Li et al., 2D ferrous ion-crosslinked Ti3C2Tx MXene aerogel evaporators for efficient solar steam generation. Adv. Sustain. Syst. 5(12), 2100263 (2021). https://doi.org/10.1002/adsu.202100263
H. Gao, N.C. Bing, Z.J. Bao, H.Q. Xie, W. Yu, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem. Eng. J. 454, 140362 (2023). https://doi.org/10.1016/j.cej.2022.140362
C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023). https://doi.org/10.1007/s40820-023-01034-4