Surface Patterning of Metal Zinc Electrode with an In-Region Zincophilic Interface for High-Rate and Long-Cycle-Life Zinc Metal Anode
Corresponding Author: Jae Su Yu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 112
Abstract
The undesirable dendrite growth induced by non-planar zinc (Zn) deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries (ZMBs). Herein, we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium (Zn-In) interface in the microchannels. The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities. Meanwhile, electron aggregation accelerates the dissolution of non-(002) plane Zn atoms on the array surface, thereby directing the subsequent homoepitaxial Zn deposition on the array surface. Consequently, the planar dendrite-free Zn deposition and long-term cycling stability are achieved (5,050 h at 10.0 mA cm−2 and 27,000 cycles at 20.0 mA cm−2). Furthermore, a Zn/I2 full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C, demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.
Highlights:
1 A stable Zn anode was obtained by patterning Zn foil surfaces and endowing a zincphilic interface in microchannels.
2 The accumulation of electrons in the microchannel and the zincphilic interface promoted preferential heteroepitaxial Zn deposition in the microchannel region and subsequent homoepitaxial Zn deposition on the array surface.
3 The Zn symmetrical cells could undergo repeated plating/stripping for more than 25,000 cycles at the current densities of 10 and 20 mA cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15, 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
- S. Liu, L. Kang, S.C. Jun, Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv. Mater. 33, e2004689 (2021). https://doi.org/10.1002/adma.202004689
- Q. Li, R. Deng, Y. Chen, J. Gong, P. Wang et al., Homologous heterostructured NiS/NiS2 @C hollow ultrathin microspheres with interfacial electron redistribution for high-performance sodium storage. Small 19, e2303642 (2023). https://doi.org/10.1002/smll.202303642
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang et al., Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 35, e2208237 (2023). https://doi.org/10.1002/adma.202208237
- J. Zhi, S. Zhao, M. Zhou, R. Wang, F. Huang, A zinc-conducting chalcogenide electrolyte. Sci. Adv. (2023). https://doi.org/10.1126/sciadv.ade2217
- S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7, 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
- D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
- W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13, 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
- X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15, 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
- P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger et al., Ultrahigh-rate and long-life zinc–metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater. 11, 2100982 (2021). https://doi.org/10.1002/aenm.202100982
- J. Zheng, J. Yin, D. Zhang, G. Li, D.C. Bock et al., Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv. 6, 1122 (2020). https://doi.org/10.1126/sciadv.abb1122
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/D2EE02931F
- J. Zheng, Z. Cao, F. Ming, H. Liang, Z. Qi et al., Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 7, 197–203 (2022). https://doi.org/10.1021/acsenergylett.1c02299
- P. Wang, S. Liang, C. Chen, X. Xie, J. Chen et al., Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv. Mater. 34, e2202733 (2022). https://doi.org/10.1002/adma.202202733
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33, e2100187 (2021). https://doi.org/10.1002/adma.202100187
- J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35, 2300073 (2023). https://doi.org/10.1002/adma.202300073
- H. Fu, L. Xiong, W. Han, M. Wang, Y.J. Kim et al., Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Mater. 51, 550–558 (2022). https://doi.org/10.1016/j.ensm.2022.06.057
- Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 15, 5017–5038 (2022). https://doi.org/10.1039/D2EE02416K
- T. Wang, J. Sun, Y. Hua, B.N.V. Krishna, Q. Xi et al., Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 53, 273–304 (2022). https://doi.org/10.1016/j.ensm.2022.08.046
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15, 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34, e2202552 (2022). https://doi.org/10.1002/adma.202202552
- P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6, 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
- Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34, e2203835 (2022). https://doi.org/10.1002/adma.202203835
- P. Xue, C. Guo, L. Li, H. Li, D. Luo et al., A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater. 34, e2110047 (2022). https://doi.org/10.1002/adma.202110047
- P. Bai, J. Guo, M. Wang, A. Kushima, L. Su et al., Interactions between lithium growths and nanoporous ceramic separators. Joule 2, 2434–2449 (2018). https://doi.org/10.1016/j.joule.2018.08.018
- S. Jin, J. Yin, X. Gao, A. Sharma, P. Chen et al., Production of fast-charge Zn-based aqueous batteries via interfacial orption of ion-oligomer complexes. Nat. Commun. 13, 2283 (2022). https://doi.org/10.1038/s41467-022-29954-6
- P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). https://doi.org/10.1039/C6EE01674J
- W. Liu, D. Lin, A. Pei, Y. Cui, Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138, 15443–15450 (2016). https://doi.org/10.1021/jacs.6b08730
- G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
- P. Zou, Y. Wang, S.-W. Chiang, X. Wang, F. Kang et al., Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 9, 464 (2018). https://doi.org/10.1038/s41467-018-02888-8
- Q. Cao, Y. Gao, J. Pu, X. Zhao, Y. Wang et al., Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14, 641 (2023). https://doi.org/10.1038/s41467-023-36386-3
- E.V. Dydek, B. Zaltzman, I. Rubinstein, D.S. Deng, A. Mani et al., Overlimiting Current in a microchannel. Phys. Rev. Lett. 107, 118301 (2011). https://doi.org/10.1103/PhysRevLett.107.118301
- J. Zhi, S. Li, M. Han, P. Chen, Biomolecule-guided cation regulation for dendrite-free metal anodes. Sci. Adv. 6, eabb342 (2020). https://doi.org/10.1126/sciadv.abb1342
- S. Nam, I. Cho, J. Heo, G. Lim, M.Z. Bazant et al., Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels. Phys. Rev. Lett. 114, 114501 (2015). https://doi.org/10.1103/PhysRevLett.114.114501
- N. Dong, X. Zhao, M. Yan, H. Li, H. Pan, Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity. Nano Energy 104, 107903 (2022). https://doi.org/10.1016/j.nanoen.2022.107903
- Y. Zhong, M. Liu, Y. Lu, B. Qiu, J. Yu et al., An in-depth study of heterometallic interface chemistry: Bi-component layer enables highly reversible and stable Zn metal anodes. Energy Storage Mater. 55, 575–586 (2023). https://doi.org/10.1016/j.ensm.2022.12.024
- M. Fayette, H.J. Chang, X. Li, D. Reed, High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 7, 1888–1895 (2022). https://doi.org/10.1021/acsenergylett.2c00843
- P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao et al., An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 15, 1638–1646 (2022). https://doi.org/10.1039/D1EE03882F
- Z. Cai, Y. Ou, B. Zhang, J. Wang, L. Fu et al., A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm−2 and 20 mAh cm−2. J. Am. Chem. Soc. 143, 3143–3152 (2021). https://doi.org/10.1021/jacs.0c11753
- K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32, 2109749 (2022). https://doi.org/10.1002/adfm.202109749
- J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez et al., Textured electrodes: manipulating built-In crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 34, e2106867 (2022). https://doi.org/10.1002/adma.202106867
- Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
- X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
- X. Tian, X. Zhao, Y.Q. Su, L. Wang, H. Wang et al., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019). https://doi.org/10.1126/science.aaw7493
- A.J. Nelson, H. Aharoni, X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition. J. Vac. Sci. Technol. A Vac. Surf. Films. 5(2), 231–233 (1987). https://doi.org/10.1116/1.574109
- L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119, e2121138119 (2022). https://doi.org/10.1073/pnas.2121138119
- T. Wang, P. Wang, L. Pan, Z. He, L. Dai, L. Wang, S. Liu, S.C. Jun, B. Lu, S. Liang, J. Zhou, Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 13(5), 2203523 (2023). https://doi.org/10.1002/aenm.202203523
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35, e2209288 (2023). https://doi.org/10.1002/adma.202209288
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
- J. Zhu, Z. Bie, X. Cai, Z. Jiao, Z. Wang et al., A molecular-sieve electrolyte membrane enables separator-free zinc batteries with ultralong cycle life. Adv. Mater. 34, e2207209 (2022). https://doi.org/10.1002/adma.202207209
- H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12, 2200665 (2022). https://doi.org/10.1002/aenm.202200665
- S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16, 1013–1024 (2022). https://doi.org/10.1021/acsnano.1c08638
- D. Deng, K. Fu, R. Yu, J. Zhu, H. Cai et al., Ion tunnel matrix initiated oriented attachment for highly utilized Zn anodes. Adv. Mater. 35, e2302353 (2023). https://doi.org/10.1002/adma.202302353
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- H. Gan, J. Wu, F. Zhang, R. Li, H. Liu, Uniform Zn2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Mater. 55, 264–271 (2023). https://doi.org/10.1016/j.ensm.2022.11.044
- Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
- S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Regulation of ionic distribution and desolvation activation energy enabled by in situ zinc phosphate protective layer toward highly reversible zinc metal anodes. Adv. Funct. Mater. 33, 2208230 (2023). https://doi.org/10.1002/adfm.202208230
- L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian et al., Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 13, 2370050 (2023). https://doi.org/10.1002/aenm.202370050
- J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim et al., Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 11, 2100676 (2021). https://doi.org/10.1002/aenm.202100676
- Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35, e2300019 (2023). https://doi.org/10.1002/adma.202300019
- Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, e202215324 (2023). https://doi.org/10.1002/anie.202215324
- X. Luan, L. Qi, Z. Zheng, Y. Gao, Y. Xue et al., Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202215968 (2023). https://doi.org/10.1002/anie.202215968
- H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun et al., Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ. Sci. 15, 1872–1881 (2022). https://doi.org/10.1039/D2EE00209D
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13, 3699 (2022). https://doi.org/10.1038/s41467-022-31461-7
- H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13, 2300550 (2023). https://doi.org/10.1002/aenm.202300550
- Q. Hu, J. Hou, Y. Liu, L. Li, Q. Ran et al., Modulating zinc metal reversibility by confined antifluctuator film for durable and dendrite-free zinc ion batteries. Adv. Mater. 35, e2303336 (2023). https://doi.org/10.1002/adma.202303336
- Y. Lyu, J.A. Yuwono, P. Wang, Y. Wang, F. Yang et al., Organic pH buffer for dendrite-free and shuttle-free Zn-I2 batteries. Angew. Chem. Int. Ed. 62, e202303011 (2023). https://doi.org/10.1002/anie.202303011
- X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15, 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
- S. Liu, Y. Yin, D. Ni, K.S. Hui, M. Ma et al., New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Mater. 22, 384–396 (2019). https://doi.org/10.1016/j.ensm.2019.02.014
- S. Liu, L. Kang, J. Zhang, S.C. Jun, Y. Yamauchi, Sodium preintercalation-induced oxygen-deficient hydrated potassium manganese oxide for high-energy flexible Mg-ion supercapacitors. NPG Asia Mater. 15, 9 (2023). https://doi.org/10.1038/s41427-022-00450-z
References
Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15, 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
S. Liu, L. Kang, S.C. Jun, Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv. Mater. 33, e2004689 (2021). https://doi.org/10.1002/adma.202004689
Q. Li, R. Deng, Y. Chen, J. Gong, P. Wang et al., Homologous heterostructured NiS/NiS2 @C hollow ultrathin microspheres with interfacial electron redistribution for high-performance sodium storage. Small 19, e2303642 (2023). https://doi.org/10.1002/smll.202303642
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang et al., Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 35, e2208237 (2023). https://doi.org/10.1002/adma.202208237
J. Zhi, S. Zhao, M. Zhou, R. Wang, F. Huang, A zinc-conducting chalcogenide electrolyte. Sci. Adv. (2023). https://doi.org/10.1126/sciadv.ade2217
S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7, 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13, 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15, 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger et al., Ultrahigh-rate and long-life zinc–metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater. 11, 2100982 (2021). https://doi.org/10.1002/aenm.202100982
J. Zheng, J. Yin, D. Zhang, G. Li, D.C. Bock et al., Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv. 6, 1122 (2020). https://doi.org/10.1126/sciadv.abb1122
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/D2EE02931F
J. Zheng, Z. Cao, F. Ming, H. Liang, Z. Qi et al., Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 7, 197–203 (2022). https://doi.org/10.1021/acsenergylett.1c02299
P. Wang, S. Liang, C. Chen, X. Xie, J. Chen et al., Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv. Mater. 34, e2202733 (2022). https://doi.org/10.1002/adma.202202733
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33, e2100187 (2021). https://doi.org/10.1002/adma.202100187
J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35, 2300073 (2023). https://doi.org/10.1002/adma.202300073
H. Fu, L. Xiong, W. Han, M. Wang, Y.J. Kim et al., Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Mater. 51, 550–558 (2022). https://doi.org/10.1016/j.ensm.2022.06.057
Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 15, 5017–5038 (2022). https://doi.org/10.1039/D2EE02416K
T. Wang, J. Sun, Y. Hua, B.N.V. Krishna, Q. Xi et al., Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 53, 273–304 (2022). https://doi.org/10.1016/j.ensm.2022.08.046
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15, 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34, e2202552 (2022). https://doi.org/10.1002/adma.202202552
P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6, 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34, e2203835 (2022). https://doi.org/10.1002/adma.202203835
P. Xue, C. Guo, L. Li, H. Li, D. Luo et al., A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater. 34, e2110047 (2022). https://doi.org/10.1002/adma.202110047
P. Bai, J. Guo, M. Wang, A. Kushima, L. Su et al., Interactions between lithium growths and nanoporous ceramic separators. Joule 2, 2434–2449 (2018). https://doi.org/10.1016/j.joule.2018.08.018
S. Jin, J. Yin, X. Gao, A. Sharma, P. Chen et al., Production of fast-charge Zn-based aqueous batteries via interfacial orption of ion-oligomer complexes. Nat. Commun. 13, 2283 (2022). https://doi.org/10.1038/s41467-022-29954-6
P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). https://doi.org/10.1039/C6EE01674J
W. Liu, D. Lin, A. Pei, Y. Cui, Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138, 15443–15450 (2016). https://doi.org/10.1021/jacs.6b08730
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
P. Zou, Y. Wang, S.-W. Chiang, X. Wang, F. Kang et al., Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 9, 464 (2018). https://doi.org/10.1038/s41467-018-02888-8
Q. Cao, Y. Gao, J. Pu, X. Zhao, Y. Wang et al., Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14, 641 (2023). https://doi.org/10.1038/s41467-023-36386-3
E.V. Dydek, B. Zaltzman, I. Rubinstein, D.S. Deng, A. Mani et al., Overlimiting Current in a microchannel. Phys. Rev. Lett. 107, 118301 (2011). https://doi.org/10.1103/PhysRevLett.107.118301
J. Zhi, S. Li, M. Han, P. Chen, Biomolecule-guided cation regulation for dendrite-free metal anodes. Sci. Adv. 6, eabb342 (2020). https://doi.org/10.1126/sciadv.abb1342
S. Nam, I. Cho, J. Heo, G. Lim, M.Z. Bazant et al., Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels. Phys. Rev. Lett. 114, 114501 (2015). https://doi.org/10.1103/PhysRevLett.114.114501
N. Dong, X. Zhao, M. Yan, H. Li, H. Pan, Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity. Nano Energy 104, 107903 (2022). https://doi.org/10.1016/j.nanoen.2022.107903
Y. Zhong, M. Liu, Y. Lu, B. Qiu, J. Yu et al., An in-depth study of heterometallic interface chemistry: Bi-component layer enables highly reversible and stable Zn metal anodes. Energy Storage Mater. 55, 575–586 (2023). https://doi.org/10.1016/j.ensm.2022.12.024
M. Fayette, H.J. Chang, X. Li, D. Reed, High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 7, 1888–1895 (2022). https://doi.org/10.1021/acsenergylett.2c00843
P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao et al., An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 15, 1638–1646 (2022). https://doi.org/10.1039/D1EE03882F
Z. Cai, Y. Ou, B. Zhang, J. Wang, L. Fu et al., A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm−2 and 20 mAh cm−2. J. Am. Chem. Soc. 143, 3143–3152 (2021). https://doi.org/10.1021/jacs.0c11753
K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32, 2109749 (2022). https://doi.org/10.1002/adfm.202109749
J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez et al., Textured electrodes: manipulating built-In crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 34, e2106867 (2022). https://doi.org/10.1002/adma.202106867
Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
X. Tian, X. Zhao, Y.Q. Su, L. Wang, H. Wang et al., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019). https://doi.org/10.1126/science.aaw7493
A.J. Nelson, H. Aharoni, X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition. J. Vac. Sci. Technol. A Vac. Surf. Films. 5(2), 231–233 (1987). https://doi.org/10.1116/1.574109
L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119, e2121138119 (2022). https://doi.org/10.1073/pnas.2121138119
T. Wang, P. Wang, L. Pan, Z. He, L. Dai, L. Wang, S. Liu, S.C. Jun, B. Lu, S. Liang, J. Zhou, Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 13(5), 2203523 (2023). https://doi.org/10.1002/aenm.202203523
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35, e2209288 (2023). https://doi.org/10.1002/adma.202209288
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
J. Zhu, Z. Bie, X. Cai, Z. Jiao, Z. Wang et al., A molecular-sieve electrolyte membrane enables separator-free zinc batteries with ultralong cycle life. Adv. Mater. 34, e2207209 (2022). https://doi.org/10.1002/adma.202207209
H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12, 2200665 (2022). https://doi.org/10.1002/aenm.202200665
S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16, 1013–1024 (2022). https://doi.org/10.1021/acsnano.1c08638
D. Deng, K. Fu, R. Yu, J. Zhu, H. Cai et al., Ion tunnel matrix initiated oriented attachment for highly utilized Zn anodes. Adv. Mater. 35, e2302353 (2023). https://doi.org/10.1002/adma.202302353
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
H. Gan, J. Wu, F. Zhang, R. Li, H. Liu, Uniform Zn2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Mater. 55, 264–271 (2023). https://doi.org/10.1016/j.ensm.2022.11.044
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Regulation of ionic distribution and desolvation activation energy enabled by in situ zinc phosphate protective layer toward highly reversible zinc metal anodes. Adv. Funct. Mater. 33, 2208230 (2023). https://doi.org/10.1002/adfm.202208230
L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian et al., Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 13, 2370050 (2023). https://doi.org/10.1002/aenm.202370050
J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim et al., Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 11, 2100676 (2021). https://doi.org/10.1002/aenm.202100676
Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35, e2300019 (2023). https://doi.org/10.1002/adma.202300019
Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, e202215324 (2023). https://doi.org/10.1002/anie.202215324
X. Luan, L. Qi, Z. Zheng, Y. Gao, Y. Xue et al., Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202215968 (2023). https://doi.org/10.1002/anie.202215968
H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun et al., Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ. Sci. 15, 1872–1881 (2022). https://doi.org/10.1039/D2EE00209D
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13, 3699 (2022). https://doi.org/10.1038/s41467-022-31461-7
H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13, 2300550 (2023). https://doi.org/10.1002/aenm.202300550
Q. Hu, J. Hou, Y. Liu, L. Li, Q. Ran et al., Modulating zinc metal reversibility by confined antifluctuator film for durable and dendrite-free zinc ion batteries. Adv. Mater. 35, e2303336 (2023). https://doi.org/10.1002/adma.202303336
Y. Lyu, J.A. Yuwono, P. Wang, Y. Wang, F. Yang et al., Organic pH buffer for dendrite-free and shuttle-free Zn-I2 batteries. Angew. Chem. Int. Ed. 62, e202303011 (2023). https://doi.org/10.1002/anie.202303011
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15, 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
S. Liu, Y. Yin, D. Ni, K.S. Hui, M. Ma et al., New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Mater. 22, 384–396 (2019). https://doi.org/10.1016/j.ensm.2019.02.014
S. Liu, L. Kang, J. Zhang, S.C. Jun, Y. Yamauchi, Sodium preintercalation-induced oxygen-deficient hydrated potassium manganese oxide for high-energy flexible Mg-ion supercapacitors. NPG Asia Mater. 15, 9 (2023). https://doi.org/10.1038/s41427-022-00450-z