Approaching Ultimate Synthesis Reaction Rate of Ni-Rich Layered Cathodes for Lithium-Ion Batteries
Corresponding Author: Yanan Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 210
Abstract
Nickel-rich layered oxide LiNixCoyMnzO2 (NCM, x + y + z = 1) is the most promising cathode material for high-energy lithium-ion batteries. However, conventional synthesis methods are limited by the slow heating rate, sluggish reaction dynamics, high energy consumption, and long reaction time. To overcome these challenges, we first employed a high-temperature shock (HTS) strategy for fast synthesis of the NCM, and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time. In the HTS process, ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li- containing oxides is 66.7 (% s−1), that is, taking only 1.5 s. An ultrahigh heating rate leads to fast reaction kinetics, which induces the rapid phase transition of NCM cathodes. The HTS-synthesized nickel-rich layered oxides perform good cycling performances (94% for NCM523, 94% for NCM622, and 80% for NCM811 after 200 cycles at 4.3 V). These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.
Highlights:
1 A series of layered oxide cathode materials were synthesized by high-temperature shock strategy for the first time.
2 The approaching ultimate solid reaction rate of the layered nickel-rich layered oxide LiNixCoyMnzO2 was investigated for the first time. Ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li-containing oxides is 66.7 (% s-1), that is, taking only 1.5 s.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P.J. Reeves et al., Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021). https://doi.org/10.1038/s41563-020-0767-8
- Y. You, H. Celio, J. Li, A. Dolocan, A. Manthiram, Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 6480–6485 (2018). https://doi.org/10.1002/anie.201801533
- W. Li, E.M. Erickson, A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020). https://doi.org/10.1038/s41560-019-0513-0
- K. Wang, C. Gao, J. Tu, K. Guo, Y.-L. Ding, Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density. J. Mater. Chem. A 12, 6681–6692 (2024). https://doi.org/10.1039/D3TA07300A
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn et al., Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019). https://doi.org/10.1038/s41467-019-13240-z
- C. Sun, B. Zhao, J. Mao, K.-H. Dai, Z.-Y. Wang et al., Enhanced cycling stability of 4.6V LiCoO2 cathodes by inhibiting catalytic activity of its interface via MXene modification. Adv. Funct. Mater. 33, 2300589 (2023). https://doi.org/10.1002/adfm.202300589
- S. Ahmed, A. Pokle, M. Bianchini, S. Schweidler, A. Beyer et al., Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter 4, 3953–3966 (2021). https://doi.org/10.1016/j.matt.2021.10.001
- T. Demuth, T. Fuchs, F. Walther, A. Pokle, S. Ahmed et al., Influence of the sintering temperature on LLZO-NCM cathode composites for solid-state batteries studied by transmission electron microscopy. Matter 6, 2324–2339 (2023). https://doi.org/10.1016/j.matt.2023.04.022
- S. Ahmed, K. Volz, Stressed during cycling: Electrochemically induced mechanical deformation in Ni-rich cathode materials. Matter 6, 1682–1684 (2023). https://doi.org/10.1016/j.matt.2023.05.014
- X. Wang, Y.-L. Ding, Y.-P. Deng, Z. Chen, Ni-rich/co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Adv. Energy Mater. 10, 1903864 (2020). https://doi.org/10.1002/aenm.201903864
- S. Jo, J. Han, S. Seo, O.-S. Kwon, S. Choi et al., Solid-state reaction heterogeneity during calcination of lithium-ion battery cathode. Adv. Mater. 35, e2207076 (2023). https://doi.org/10.1002/adma.202207076
- H. Park, H. Park, K. Song, S.H. Song, S. Kang et al., In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nat. Chem. 14, 614–622 (2022). https://doi.org/10.1038/s41557-022-00915-2
- S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi et al., Extreme environmental thermal shock induced dislocation-rich Pt nanops boosting hydrogen evolution reaction. Adv. Mater. 34, e2106973 (2022). https://doi.org/10.1002/adma.202106973
- S. Liu, Z. Hu, Y. Wu, J. Zhang, Y. Zhang et al., Dislocation-strained IrNi alloy nanops driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 32, e2006034 (2020). https://doi.org/10.1002/adma.202006034
- C. Liu, Y. Shen, J. Zhang, G. Li, X. Zheng et al., Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 12, 2103505 (2022). https://doi.org/10.1002/aenm.202103505
- J. Zhang, J. Luo, Z. Guo, Z. Liu, C. Duan et al., Ultrafast manufacturing of ultrafine structure to achieve an energy density of over 120 Wh kg–1 in supercapacitors. Adv. Energy Mater. 13, 2203061 (2023). https://doi.org/10.1002/aenm.202203061
- T. Li, L. Tao, L. Xu, T. Meng, B.C. Clifford et al., Direct and rapid high-temperature upcycling of degraded graphite. Adv. Funct. Mater. 33, 2302951 (2023). https://doi.org/10.1002/adfm.202302951
- W. Zhu, J. Zhang, J. Luo, C. Zeng, H. Su et al., Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries. Adv. Mater. 35, e2208974 (2023). https://doi.org/10.1002/adma.202208974
- D. Wang, R. Kou, Y. Ren, C.J. Sun, H. Zhao et al., Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 29, 1606715 (2017). https://doi.org/10.1002/adma.201606715
- J. Bai, W. Sun, J. Zhao, D. Wang, P. Xiao et al., Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides. Chem. Mater. 32, 9906–9913 (2020). https://doi.org/10.1021/acs.chemmater.0c02568
- Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su et al., Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 137, 8364–8367 (2015). https://doi.org/10.1021/jacs.5b04040
- W. Hua, K. Wang, M. Knapp, B. Schwarz, S. Wang et al., Chemical and structural evolution during the synthesis of layered Li(Ni, Co, Mn)O2 oxides. Chem. Mater. 32, 4984–4997 (2020). https://doi.org/10.1021/acs.chemmater.9b05279
- A. Khawam, D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315–17328 (2006). https://doi.org/10.1021/jp062746a
- J. Zhao, W. Zhang, A. Huq, S.T. Misture, B. Zhang et al., In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv. Energy Mater. 7, 1601266 (2017). https://doi.org/10.1002/aenm.201601266
- G.-T. Park, B. Namkoong, S.-B. Kim, J. Liu, C.S. Yoon et al., Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat. Energy 7, 946–954 (2022). https://doi.org/10.1038/s41560-022-01106-6
- S. Ahmed, M. Bianchini, A. Pokle, M.S. Munde, P. Hartmann et al., Visualization of light elements using 4D STEM: the layered-to-rock salt phase transition in LiNiO2 cathode material. Adv. Energy Mater. 10, 2001026 (2020). https://doi.org/10.1002/aenm.202001026
References
C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P.J. Reeves et al., Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021). https://doi.org/10.1038/s41563-020-0767-8
Y. You, H. Celio, J. Li, A. Dolocan, A. Manthiram, Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 6480–6485 (2018). https://doi.org/10.1002/anie.201801533
W. Li, E.M. Erickson, A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020). https://doi.org/10.1038/s41560-019-0513-0
K. Wang, C. Gao, J. Tu, K. Guo, Y.-L. Ding, Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density. J. Mater. Chem. A 12, 6681–6692 (2024). https://doi.org/10.1039/D3TA07300A
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn et al., Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019). https://doi.org/10.1038/s41467-019-13240-z
C. Sun, B. Zhao, J. Mao, K.-H. Dai, Z.-Y. Wang et al., Enhanced cycling stability of 4.6V LiCoO2 cathodes by inhibiting catalytic activity of its interface via MXene modification. Adv. Funct. Mater. 33, 2300589 (2023). https://doi.org/10.1002/adfm.202300589
S. Ahmed, A. Pokle, M. Bianchini, S. Schweidler, A. Beyer et al., Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter 4, 3953–3966 (2021). https://doi.org/10.1016/j.matt.2021.10.001
T. Demuth, T. Fuchs, F. Walther, A. Pokle, S. Ahmed et al., Influence of the sintering temperature on LLZO-NCM cathode composites for solid-state batteries studied by transmission electron microscopy. Matter 6, 2324–2339 (2023). https://doi.org/10.1016/j.matt.2023.04.022
S. Ahmed, K. Volz, Stressed during cycling: Electrochemically induced mechanical deformation in Ni-rich cathode materials. Matter 6, 1682–1684 (2023). https://doi.org/10.1016/j.matt.2023.05.014
X. Wang, Y.-L. Ding, Y.-P. Deng, Z. Chen, Ni-rich/co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Adv. Energy Mater. 10, 1903864 (2020). https://doi.org/10.1002/aenm.201903864
S. Jo, J. Han, S. Seo, O.-S. Kwon, S. Choi et al., Solid-state reaction heterogeneity during calcination of lithium-ion battery cathode. Adv. Mater. 35, e2207076 (2023). https://doi.org/10.1002/adma.202207076
H. Park, H. Park, K. Song, S.H. Song, S. Kang et al., In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nat. Chem. 14, 614–622 (2022). https://doi.org/10.1038/s41557-022-00915-2
S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi et al., Extreme environmental thermal shock induced dislocation-rich Pt nanops boosting hydrogen evolution reaction. Adv. Mater. 34, e2106973 (2022). https://doi.org/10.1002/adma.202106973
S. Liu, Z. Hu, Y. Wu, J. Zhang, Y. Zhang et al., Dislocation-strained IrNi alloy nanops driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 32, e2006034 (2020). https://doi.org/10.1002/adma.202006034
C. Liu, Y. Shen, J. Zhang, G. Li, X. Zheng et al., Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 12, 2103505 (2022). https://doi.org/10.1002/aenm.202103505
J. Zhang, J. Luo, Z. Guo, Z. Liu, C. Duan et al., Ultrafast manufacturing of ultrafine structure to achieve an energy density of over 120 Wh kg–1 in supercapacitors. Adv. Energy Mater. 13, 2203061 (2023). https://doi.org/10.1002/aenm.202203061
T. Li, L. Tao, L. Xu, T. Meng, B.C. Clifford et al., Direct and rapid high-temperature upcycling of degraded graphite. Adv. Funct. Mater. 33, 2302951 (2023). https://doi.org/10.1002/adfm.202302951
W. Zhu, J. Zhang, J. Luo, C. Zeng, H. Su et al., Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries. Adv. Mater. 35, e2208974 (2023). https://doi.org/10.1002/adma.202208974
D. Wang, R. Kou, Y. Ren, C.J. Sun, H. Zhao et al., Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 29, 1606715 (2017). https://doi.org/10.1002/adma.201606715
J. Bai, W. Sun, J. Zhao, D. Wang, P. Xiao et al., Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides. Chem. Mater. 32, 9906–9913 (2020). https://doi.org/10.1021/acs.chemmater.0c02568
Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su et al., Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 137, 8364–8367 (2015). https://doi.org/10.1021/jacs.5b04040
W. Hua, K. Wang, M. Knapp, B. Schwarz, S. Wang et al., Chemical and structural evolution during the synthesis of layered Li(Ni, Co, Mn)O2 oxides. Chem. Mater. 32, 4984–4997 (2020). https://doi.org/10.1021/acs.chemmater.9b05279
A. Khawam, D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315–17328 (2006). https://doi.org/10.1021/jp062746a
J. Zhao, W. Zhang, A. Huq, S.T. Misture, B. Zhang et al., In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv. Energy Mater. 7, 1601266 (2017). https://doi.org/10.1002/aenm.201601266
G.-T. Park, B. Namkoong, S.-B. Kim, J. Liu, C.S. Yoon et al., Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat. Energy 7, 946–954 (2022). https://doi.org/10.1038/s41560-022-01106-6
S. Ahmed, M. Bianchini, A. Pokle, M.S. Munde, P. Hartmann et al., Visualization of light elements using 4D STEM: the layered-to-rock salt phase transition in LiNiO2 cathode material. Adv. Energy Mater. 10, 2001026 (2020). https://doi.org/10.1002/aenm.202001026