Ternary MOF-Based Redox Active Sites Enabled 3D-on-2D Nanoarchitectured Battery-Type Electrodes for High-Energy-Density Supercapatteries
Corresponding Author: Jae Su Yu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 17
Abstract
Designing rationally combined metal–organic frameworks (MOFs) with multifunctional nanogeometries is of significant research interest to enable the electrochemical properties in advanced energy storage devices. Herein, we explored a new class of binder-free dual-layered Ni–Co–Mn-based MOFs (NCM-based MOFs) with three-dimensional (3D)-on-2D nanoarchitectures through a polarity-induced solution-phase method for high-performance supercapatteries. The hierarchical NCM-based MOFs having grown on nickel foam exhibit a battery-type charge storage mechanism with superior areal capacity (1311.4 μAh cm−2 at 5 mA cm−2), good rate capability (61.8%; 811.67 μAh cm−2 at 50 mA cm−2), and an excellent cycling durability. The superior charge storage properties are ascribed to the synergistic features, higher accessible active sites of dual-layered nanogeometries, and exalted redox chemistry of multi metallic guest species, respectively. The bilayered NCM-based MOFs are further employed as a battery-type electrode for the fabrication of supercapattery paradigm with biomass-derived nitrogen/oxygen doped porous carbon as a negative electrode, which demonstrates excellent capacity of 1.6 mAh cm−2 along with high energy and power densities of 1.21 mWh cm−2 and 32.49 mW cm−2, respectively. Following, the MOF-based supercapattery was further assembled with a renewable solar power harvester to use as a self-charging station for various portable electronic applications.
Highlights:
1 Redox chemistry enabled Ni–Co–Mn (NCM)-based MOF nanoarchitectures are used as battery-type electrodes.
2 The NCM-based MOFs demonstrate high areal capacity and good cycling stability.
3 The fabricated hybrid supercapattery showed high energy and power densities of 1.21 mWh cm−2 and 32.49 mW cm−2, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju, Y.-K. Han, J.S. Yu, Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: a sunlight-driven rechargeable energy storage system to portable electronics. Nano Energy 50, 448–461 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
- X. Liu, K. Zhao, Z.L. Wang, Y. Yang, Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics. Adv. Energy Mater. 7(22), 1701629 (2017). https://doi.org/10.1002/aenm.201701629
- K. Zhao, Y. Yang, X. Liu, Z.L. Wang, Triboelectrification-enabled self-charging lithium-ion batteries. Adv. Energy Mater. 7(21), 1700103 (2017). https://doi.org/10.1002/aenm.201700103
- C. Liu, S. Wang, C. Zhang, H. Fu, X. Nan, Y. Yang, G. Cao, High power high safety battery with electrospun Li3V2(PO4)3 cathode and Li4Ti5O12 anode with 95% energy efficiency. Energy Storag. Mater. 5, 93–102 (2016). https://doi.org/10.1016/j.ensm.2016.06.004
- C. Han, H. Li, R. Shi, L. Xu, J. Li, F. Kang, B. Li, Nanostructured anode materials for non-aqueous lithium ion hybrid capacitors. Energy Environ. Mater. 1(2), 75–87 (2018). https://doi.org/10.1002/eem2.12009
- S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 5(20), 9960–9969 (2017). https://doi.org/10.1039/C7TA01805C
- G. Nagaraju, Y.H. Ko, J.S. Yu, Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: facile synthesis and application for electrochemical supercapacitors. J. Power Sources 283, 251–259 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.104
- X. Li, Q. Liu, S. Chen, W. Li, Z. Liang et al., Quasi-aligned SiC@C nanowire arrays as free-standing electrodes for high-performance micro-supercapacitors. Energy Storage Mater. 27, 261–269 (2020). https://doi.org/10.1016/j.ensm.2020.02.009
- Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, X. Ji, Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J. Power Sources 273, 584–590 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.144
- N. Goli, S.S. Chandra, Y.J. Su, Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. Adv. Energy Mater. 8(7), 1702201 (2018). https://doi.org/10.1002/aenm.201702201
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
- G. Nagaraju, S.C. Sekhar, G.S. Rama Raju, L.K. Bharat, J.S. Yu, Designed construction of yolk-shell structured trimanganese tetraoxide nanospheres via polar solvent-assisted etching and biomass-derived activated porous carbon materials for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5(30), 15808–15821 (2017). https://doi.org/10.1039/C7TA04314G
- G.K. Veerasubramani, K. Krishnamoorthy, S.J. Kim, Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Sources 306, 378–386 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.034
- N. Goli, C.S. Min, S.S. Chandra, Y.J. Su, Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 7(4), 1601362 (2017). https://doi.org/10.1002/aenm.201601362
- X.-Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
- B.C. Kim, R. Manikandan, K.H. Yu, M.-S. Park, D.-W. Kim, S.Y. Park, C. Justin Raj, Efficient supercapattery behavior of mesoporous hydrous and anhydrous cobalt molybdate nanostructures. J. Alloys Compd. 789, 256–265 (2019). https://doi.org/10.1016/j.jallcom.2019.03.033
- W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
- H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K.M. Razeeb, Cobalt phosphate-based supercapattery as alternative power source for implantable medical devices. ACS Appl. Energy Mater. 2(1), 569–578 (2019). https://doi.org/10.1021/acsaem.8b01612
- K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications. J. Power Sources 373, 211–219 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.013
- Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/C4EE03229B
- W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, A novel phase-transformation activation process toward Ni–Mn–O nanoprism arrays for 2.4v ultrahigh-voltage aqueous supercapacitors. Adv. Mater. 29(36), 1703463 (2017). https://doi.org/10.1002/adma.201703463
- D.T. Lee, J.D. Jamir, G.W. Peterson, G.N. Parsons, Water-stable chemical-protective textiles via euhedral surface-oriented 2d Cu–TCPP metal-organic frameworks. Small 15(10), 1805133 (2019). https://doi.org/10.1002/smll.201805133
- H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi et al., Ultrahigh porosity in metal-organic frameworks. Science 329(5990), 424–428 (2010). https://doi.org/10.1126/science.1192160
- L. Zou, C.-C. Hou, Z. Liu, H. Pang, Q. Xu, Superlong single-crystal metal–organic framework nanotubes. JACS 140(45), 15393–15401 (2018). https://doi.org/10.1021/jacs.8b09092
- C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016). https://doi.org/10.1016/j.nanoen.2016.04.003
- G. Zhu, H. Wen, M. Ma, W. Wang, L. Yang et al., A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chem. Commun. 54(74), 10499–10502 (2018). https://doi.org/10.1039/C8CC03669A
- H. Shiozawa, B.C. Bayer, H. Peterlik, J.C. Meyer, W. Lang, T. Pichler, Doping of metal–organic frameworks towards resistive sensing. Sci. Rep. 7(1), 2439 (2017). https://doi.org/10.1038/s41598-017-02618-y
- J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2(44), 19005–19010 (2014). https://doi.org/10.1039/C4TA04346D
- Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic mof based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5(3), 1094–1102 (2017). https://doi.org/10.1039/C6TA09805C
- Q. Qian, Y. Li, Y. Liu, L. Yu, G. Zhang, Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal–organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 1, 1901139 (2019). https://doi.org/10.1002/adma.201901139
- X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding et al., Bimetallic metal–organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces. 11(17), 15662–15669 (2019). https://doi.org/10.1021/acsami.9b02859
- Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li, J. Zhang, H. Hou, J. Yang, Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2(3), 2063–2071 (2019). https://doi.org/10.1021/acsaem.8b02128
- S.H. Kazemi, B. Hosseinzadeh, H. Kazemi, M.A. Kiani, S. Hajati, Facile synthesis of mixed metal–organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl. Mater. Interfaces. 10(27), 23063–23073 (2018). https://doi.org/10.1021/acsami.8b04502
- Q. Qian, Y. Li, Y. Liu, L. Yu, G. Zhang, Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal–organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 31(23), 1901139 (2019). https://doi.org/10.1002/adma.201901139
- Y. Chi, W. Yang, Y. Xing, Y. Li, H. Pang, Q. Xu, Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale 12(19), 10685–10692 (2020). https://doi.org/10.1039/D0NR02016H
- M. Zhou, F. Xu, S. Zhang, B. Liu, Y. Yang, K. Chen, J. Qi, Low consumption design of hollow NiCo-lDH nanoflakes derived from mofs for high-capacity electrode materials. J. Mater. Sci.-Mater. Electron. 31(4), 3281–3288 (2020). https://doi.org/10.1007/s10854-020-02876-z
- M. Guo, K. Li, L. Liu, H. Zhang, W. Guo et al., Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation. J. Hazardous Mater. 380, 120905 (2019). https://doi.org/10.1016/j.jhazmat.2019.120905
- L.G. Beka, X. Bu, X. Li, X. Wang, C. Han, W. Liu, A 2d metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application. RSC Adv. 9(62), 36123–36135 (2019). https://doi.org/10.1039/C9RA07061C
- G. Nagaraju, G.S.R. Raju, Y.H. Ko, J.S. Yu, Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8(2), 812–825 (2016). https://doi.org/10.1039/C5NR05643H
- I. Shakir, M. Shahid, H.W. Yang, D.J. Kang, Structural and electrochemical characterization of α-moo3 nanorod-based electrochemical energy storage devices. Electrochim. Acta 56(1), 376–380 (2010). https://doi.org/10.1016/j.electacta.2010.09.028
- Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials—capacitive, pseudocapacitive, or battery-like? ACS Nano 12(3), 2081–2083 (2018). https://doi.org/10.1021/acsnano.8b01914
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013). https://doi.org/10.1038/nmat3601
- M. Zhang, H. Fan, X. Ren, N. Zhao, H. Peng et al., Study of pseudocapacitive contribution to superior energy storage of 3d heterostructure CoWO4/Co3O4 nanocone arrays. J. Power Sources 418, 202–210 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.041
- G.K. Veerasubramani, M.S.P. Sudhakaran, N.R. Alluri, K. Krishnamoorthy, Y.S. Mok, S.J. Kim, Effective use of an idle carbon-deposited catalyst for energy storage applications. J. Mater. Chem. A 4(32), 12571–12582 (2016). https://doi.org/10.1039/C6TA05082D
- G. Nagaraju, S. Chandra Sekhar, L. Krishna Bharat, J.S. Yu, Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 11(11), 10860–10874 (2017). https://doi.org/10.1021/acsnano.7b04368
- C.J. Raj, M. Rajesh, R. Manikandan, K.H. Yu, J.R. Anusha et al., High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. J. Power Sources 386, 66–76 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.038
- R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3d nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9(6), 6288–6296 (2015). https://doi.org/10.1021/acsnano.5b01790
- G.K. Veerasubramani, A. Chandrasekhar, M.S.P. Sudhakaran, S. Mok, S.J. Kim, Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomb-like porous carbon. J. Mater. Chem. A 5, 11100–11113 (2017). https://doi.org/10.1039/C7TA01308F
- K. Tao, X. Han, Q. Ma, L. Han, A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47(10), 3496–3502 (2018). https://doi.org/10.1039/C7DT04942K
- X. Wang, B. Shi, Y. Fang, F. Rong, F. Huang, R. Que, M. Shao, High capacitance and rate capability of a Ni3S2@CdS core-shell nanostructure supercapacitor. J. Mater. Chem. A 5(15), 7165–7172 (2017). https://doi.org/10.1039/C7TA00593H
- Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4(48), 19078–19085 (2016). https://doi.org/10.1039/C6TA08331E
- G. Nagaraju, S.C. Sekhar, B. Ramulu, G.K. Veerasubramani, D. Narsimulu, S.K. Hussain, J.S. Yu, An agriculture-inspired nanostrategy towards flexible and highly efficient hybrid supercapacitors using ubiquitous substrates. Nano Energy 66, 104054 (2019). https://doi.org/10.1016/j.nanoen.2019.104054
References
G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju, Y.-K. Han, J.S. Yu, Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: a sunlight-driven rechargeable energy storage system to portable electronics. Nano Energy 50, 448–461 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
X. Liu, K. Zhao, Z.L. Wang, Y. Yang, Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics. Adv. Energy Mater. 7(22), 1701629 (2017). https://doi.org/10.1002/aenm.201701629
K. Zhao, Y. Yang, X. Liu, Z.L. Wang, Triboelectrification-enabled self-charging lithium-ion batteries. Adv. Energy Mater. 7(21), 1700103 (2017). https://doi.org/10.1002/aenm.201700103
C. Liu, S. Wang, C. Zhang, H. Fu, X. Nan, Y. Yang, G. Cao, High power high safety battery with electrospun Li3V2(PO4)3 cathode and Li4Ti5O12 anode with 95% energy efficiency. Energy Storag. Mater. 5, 93–102 (2016). https://doi.org/10.1016/j.ensm.2016.06.004
C. Han, H. Li, R. Shi, L. Xu, J. Li, F. Kang, B. Li, Nanostructured anode materials for non-aqueous lithium ion hybrid capacitors. Energy Environ. Mater. 1(2), 75–87 (2018). https://doi.org/10.1002/eem2.12009
S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 5(20), 9960–9969 (2017). https://doi.org/10.1039/C7TA01805C
G. Nagaraju, Y.H. Ko, J.S. Yu, Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: facile synthesis and application for electrochemical supercapacitors. J. Power Sources 283, 251–259 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.104
X. Li, Q. Liu, S. Chen, W. Li, Z. Liang et al., Quasi-aligned SiC@C nanowire arrays as free-standing electrodes for high-performance micro-supercapacitors. Energy Storage Mater. 27, 261–269 (2020). https://doi.org/10.1016/j.ensm.2020.02.009
Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, X. Ji, Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J. Power Sources 273, 584–590 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.144
N. Goli, S.S. Chandra, Y.J. Su, Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. Adv. Energy Mater. 8(7), 1702201 (2018). https://doi.org/10.1002/aenm.201702201
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
G. Nagaraju, S.C. Sekhar, G.S. Rama Raju, L.K. Bharat, J.S. Yu, Designed construction of yolk-shell structured trimanganese tetraoxide nanospheres via polar solvent-assisted etching and biomass-derived activated porous carbon materials for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5(30), 15808–15821 (2017). https://doi.org/10.1039/C7TA04314G
G.K. Veerasubramani, K. Krishnamoorthy, S.J. Kim, Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Sources 306, 378–386 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.034
N. Goli, C.S. Min, S.S. Chandra, Y.J. Su, Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 7(4), 1601362 (2017). https://doi.org/10.1002/aenm.201601362
X.-Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
B.C. Kim, R. Manikandan, K.H. Yu, M.-S. Park, D.-W. Kim, S.Y. Park, C. Justin Raj, Efficient supercapattery behavior of mesoporous hydrous and anhydrous cobalt molybdate nanostructures. J. Alloys Compd. 789, 256–265 (2019). https://doi.org/10.1016/j.jallcom.2019.03.033
W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K.M. Razeeb, Cobalt phosphate-based supercapattery as alternative power source for implantable medical devices. ACS Appl. Energy Mater. 2(1), 569–578 (2019). https://doi.org/10.1021/acsaem.8b01612
K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications. J. Power Sources 373, 211–219 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.013
Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/C4EE03229B
W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, A novel phase-transformation activation process toward Ni–Mn–O nanoprism arrays for 2.4v ultrahigh-voltage aqueous supercapacitors. Adv. Mater. 29(36), 1703463 (2017). https://doi.org/10.1002/adma.201703463
D.T. Lee, J.D. Jamir, G.W. Peterson, G.N. Parsons, Water-stable chemical-protective textiles via euhedral surface-oriented 2d Cu–TCPP metal-organic frameworks. Small 15(10), 1805133 (2019). https://doi.org/10.1002/smll.201805133
H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi et al., Ultrahigh porosity in metal-organic frameworks. Science 329(5990), 424–428 (2010). https://doi.org/10.1126/science.1192160
L. Zou, C.-C. Hou, Z. Liu, H. Pang, Q. Xu, Superlong single-crystal metal–organic framework nanotubes. JACS 140(45), 15393–15401 (2018). https://doi.org/10.1021/jacs.8b09092
C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016). https://doi.org/10.1016/j.nanoen.2016.04.003
G. Zhu, H. Wen, M. Ma, W. Wang, L. Yang et al., A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chem. Commun. 54(74), 10499–10502 (2018). https://doi.org/10.1039/C8CC03669A
H. Shiozawa, B.C. Bayer, H. Peterlik, J.C. Meyer, W. Lang, T. Pichler, Doping of metal–organic frameworks towards resistive sensing. Sci. Rep. 7(1), 2439 (2017). https://doi.org/10.1038/s41598-017-02618-y
J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2(44), 19005–19010 (2014). https://doi.org/10.1039/C4TA04346D
Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic mof based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5(3), 1094–1102 (2017). https://doi.org/10.1039/C6TA09805C
Q. Qian, Y. Li, Y. Liu, L. Yu, G. Zhang, Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal–organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 1, 1901139 (2019). https://doi.org/10.1002/adma.201901139
X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding et al., Bimetallic metal–organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces. 11(17), 15662–15669 (2019). https://doi.org/10.1021/acsami.9b02859
Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li, J. Zhang, H. Hou, J. Yang, Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2(3), 2063–2071 (2019). https://doi.org/10.1021/acsaem.8b02128
S.H. Kazemi, B. Hosseinzadeh, H. Kazemi, M.A. Kiani, S. Hajati, Facile synthesis of mixed metal–organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl. Mater. Interfaces. 10(27), 23063–23073 (2018). https://doi.org/10.1021/acsami.8b04502
Q. Qian, Y. Li, Y. Liu, L. Yu, G. Zhang, Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal–organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 31(23), 1901139 (2019). https://doi.org/10.1002/adma.201901139
Y. Chi, W. Yang, Y. Xing, Y. Li, H. Pang, Q. Xu, Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale 12(19), 10685–10692 (2020). https://doi.org/10.1039/D0NR02016H
M. Zhou, F. Xu, S. Zhang, B. Liu, Y. Yang, K. Chen, J. Qi, Low consumption design of hollow NiCo-lDH nanoflakes derived from mofs for high-capacity electrode materials. J. Mater. Sci.-Mater. Electron. 31(4), 3281–3288 (2020). https://doi.org/10.1007/s10854-020-02876-z
M. Guo, K. Li, L. Liu, H. Zhang, W. Guo et al., Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation. J. Hazardous Mater. 380, 120905 (2019). https://doi.org/10.1016/j.jhazmat.2019.120905
L.G. Beka, X. Bu, X. Li, X. Wang, C. Han, W. Liu, A 2d metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application. RSC Adv. 9(62), 36123–36135 (2019). https://doi.org/10.1039/C9RA07061C
G. Nagaraju, G.S.R. Raju, Y.H. Ko, J.S. Yu, Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8(2), 812–825 (2016). https://doi.org/10.1039/C5NR05643H
I. Shakir, M. Shahid, H.W. Yang, D.J. Kang, Structural and electrochemical characterization of α-moo3 nanorod-based electrochemical energy storage devices. Electrochim. Acta 56(1), 376–380 (2010). https://doi.org/10.1016/j.electacta.2010.09.028
Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials—capacitive, pseudocapacitive, or battery-like? ACS Nano 12(3), 2081–2083 (2018). https://doi.org/10.1021/acsnano.8b01914
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013). https://doi.org/10.1038/nmat3601
M. Zhang, H. Fan, X. Ren, N. Zhao, H. Peng et al., Study of pseudocapacitive contribution to superior energy storage of 3d heterostructure CoWO4/Co3O4 nanocone arrays. J. Power Sources 418, 202–210 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.041
G.K. Veerasubramani, M.S.P. Sudhakaran, N.R. Alluri, K. Krishnamoorthy, Y.S. Mok, S.J. Kim, Effective use of an idle carbon-deposited catalyst for energy storage applications. J. Mater. Chem. A 4(32), 12571–12582 (2016). https://doi.org/10.1039/C6TA05082D
G. Nagaraju, S. Chandra Sekhar, L. Krishna Bharat, J.S. Yu, Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 11(11), 10860–10874 (2017). https://doi.org/10.1021/acsnano.7b04368
C.J. Raj, M. Rajesh, R. Manikandan, K.H. Yu, J.R. Anusha et al., High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. J. Power Sources 386, 66–76 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.038
R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3d nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9(6), 6288–6296 (2015). https://doi.org/10.1021/acsnano.5b01790
G.K. Veerasubramani, A. Chandrasekhar, M.S.P. Sudhakaran, S. Mok, S.J. Kim, Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomb-like porous carbon. J. Mater. Chem. A 5, 11100–11113 (2017). https://doi.org/10.1039/C7TA01308F
K. Tao, X. Han, Q. Ma, L. Han, A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47(10), 3496–3502 (2018). https://doi.org/10.1039/C7DT04942K
X. Wang, B. Shi, Y. Fang, F. Rong, F. Huang, R. Que, M. Shao, High capacitance and rate capability of a Ni3S2@CdS core-shell nanostructure supercapacitor. J. Mater. Chem. A 5(15), 7165–7172 (2017). https://doi.org/10.1039/C7TA00593H
Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4(48), 19078–19085 (2016). https://doi.org/10.1039/C6TA08331E
G. Nagaraju, S.C. Sekhar, B. Ramulu, G.K. Veerasubramani, D. Narsimulu, S.K. Hussain, J.S. Yu, An agriculture-inspired nanostrategy towards flexible and highly efficient hybrid supercapacitors using ubiquitous substrates. Nano Energy 66, 104054 (2019). https://doi.org/10.1016/j.nanoen.2019.104054