Flexible Large-Area Graphene Films of 50–600 nm Thickness with High Carrier Mobility
Corresponding Author: Chao Gao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 61
Abstract
Bulk graphene nanofilms feature fast electronic and phonon transport in combination with strong light–matter interaction and thus have great potential for versatile applications, spanning from photonic, electronic, and optoelectronic devices to charge-stripping and electromagnetic shielding, etc. However, large-area flexible close-stacked graphene nanofilms with a wide thickness range have yet to be reported. Here, we report a polyacrylonitrile-assisted ‘substrate replacement’ strategy to fabricate large-area free-standing graphene oxide/polyacrylonitrile nanofilms (lateral size ~ 20 cm). Linear polyacrylonitrile chains-derived nanochannels promote the escape of gases and enable macro-assembled graphene nanofilms (nMAGs) of 50–600 nm thickness following heat treatment at 3,000 °C. The uniform nMAGs exhibit 802–1,540 cm2 V−1 s−1 carrier mobility, 4.3–4.7 ps carrier lifetime, and > 1,581 W m−1 K−1 thermal conductivity (nMAG-assembled 10 µm-thick films, mMAGs). nMAGs are highly flexible and show no structure damage even after 1.0 × 105 cycles of folding–unfolding. Furthermore, nMAGs broaden the detection region of graphene/silicon heterojunction from near-infrared to mid-infrared and demonstrate higher absolute electromagnetic interference (EMI) shielding effectiveness than state-of-the-art EMI materials of the same thickness. These results are expected to lead to the broad applications of such bulk nanofilms, especially as micro/nanoelectronic and optoelectronic platforms.
Highlights:
1 Large-area production of self-standing graphene nanofilm (~ 20 cm) through a clean ‘substrate replacement’ strategy.
2 Realizing highly crystalline graphene nanofilms without micro-gasbags by introducing polymers.
3 The graphene nanofilms demonstrate a solid light–matter interaction (photoelectric conversion in the mid-infrared and electromagnetic interference (EMI) shielding in X-band) with performance beyond state-of-the-art graphene/silicon diodes and EMI materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Tan, X. Cao, Q. Wu, J. He, X. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- L. Peng, Y. Han, M. Wang, X. Cao, J. Gao et al., Multifunctional macroassembled graphene nanofilms with high crystallinity. Adv. Mater. 33(49), 2104195 (2021). https://doi.org/10.1002/adma.202104195
- R. Song, X. Zhao, Z. Wang, H. Fu, K. Han et al., Sandwiched graphene clad laminate: a binder-free flexible printed circuit board for 5G antenna application. Adv. Eng. Mater. 22(10), 2000451 (2020). https://doi.org/10.1002/adem.202000451
- R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen et al., High-frequency self-aligned graphene transistors with transferred gate stacks. PNAS 109(29), 11588–11592 (2012). https://doi.org/10.1073/pnas.1205696109
- L. Peng, L. Liu, S. Du, S. Bodepudi, L. Li et al., Macroscopic assembled graphene nanofilms based room temperature ultrafast mid-infrared photodetectors. InfoMat 4, 12309 (2022). https://doi.org/10.1002/inf2.12309
- F.M. Aghamir, A.R. Momen-Baghdadabad, M. Etminan, Effects of deposition angle on synthesis of amorphous carbon nitride thin films prepared by plasma focus device. Appl. Surf. Sci. 463, 141–149 (2019). https://doi.org/10.1016/j.apsusc.2018.08.154
- P. Ball, New lessons for stealth technology. Nat. Mater. 20, 4 (2021). https://doi.org/10.1038/s41563-020-00887-z
- Y. Gong, X. Zhang, G. Liu, L. Wu, X. Geng et al., Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv. Funct. Mater. 22(15), 3153–3159 (2012). https://doi.org/10.1002/adfm.201200388
- T. Zhou, C. Xu, H. Liu, Q. Wei, H. Wang et al., Second time-scale synthesis of high-quality graphite films by quenching for effective electromagnetic interference shielding. ACS Nano 14(3), 3121–3128 (2020). https://doi.org/10.1021/acsnano.9b08169
- Z. Zhang, M. Ding, T. Cheng, R. Qiao, M. Zhao et al., Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat. Nanotechnol. 17, 1258–1264 (2022). https://doi.org/10.1038/s41565-022-01230-0
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
- H. Huang, X. Ming, Y. Wang, F. Guo, Y. Liu et al., Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect. Carbon 180, 197–203 (2021). https://doi.org/10.1016/j.carbon.2021.04.090
- B. Dan, G.C. Irvin, M. Pasquali, Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3(4), 835–843 (2009). https://doi.org/10.1021/nn8008307
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- M. Tan, D. Chen, Y. Cheng, H. Sun, G. Chen et al., Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater. 32(31), 2202057 (2022). https://doi.org/10.1002/adfm.202202057
- X. Wang, Z. Xiong, Z. Liu, T. Zhang, Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 27(8), 1370–1375 (2015). https://doi.org/10.1002/adma.201404069
- H. Xin, W. Li, A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Phys. Rev. Appl. 5(3), 031105 (2018). https://doi.org/10.1063/1.5035295
- Z. Gao, J. Zhu, S. Rajabpour, K. Joshi, M. Kowalik et al., Graphene reinforced carbon fibers. Sci. Adv. 6(17), eaaz4191 (2020). https://doi.org/10.1126/sciadv.aaz4191
- X. Ming, A. Wei, Y. Liu, L. Peng, P. Li et al., 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv. Mater. 34(28), 2201867 (2022). https://doi.org/10.1002/adma.202201867
- X. Liu, C. Zhu, J. Guo, Q. Liu, H. Dong et al., Nanoscale dynamic mechanical imaging of the skin–core difference: from PAN precursors to carbon fibers. Mater. Lett. 128, 417–420 (2014). https://doi.org/10.1016/j.matlet.2014.04.176
- H. Khayyam, R.N. Jazar, S. Nunna, G. Golkarnarenji, K. Badii et al., PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling. Prog. Mater. Sci. 107, 100575 (2020). https://doi.org/10.1016/j.pmatsci.2019.100575
- X. Wang, Y. Qian, L. Wang, H. Yang, H. Li et al., Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium–sulfur batteries. Adv. Funct. Mater. 29(39), 1902929 (2019). https://doi.org/10.1002/adfm.201902929
- W. Watt, W. Johnson, Mechanism of oxidisation of polyacrylonitrile fibres. Nature 257(5523), 210–212 (1975). https://doi.org/10.1038/257210a0
- F. Li, Y. Chen, M. Li, Y. Liu, B. Wang, Structure evolution mechanism of polyacrylonitrile films incorporated with graphene oxide during oxidative stabilization. J. Appl. Polym. Sci. 136(26), 47701 (2019). https://doi.org/10.1002/app.47701
- İ Gergin, E. Ismar, A.S.J. Sarac, Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study. Beilstein J. Nanotechnol. 8(1), 1616–1628 (2017). https://doi.org/10.3762/bjnano.8.161
- E. Frank, L.M. Steudle, D. Ingildeev, J.M. Sporl, M.R. Buchmeiser, Carbon fibers: precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 53(21), 5262–5298 (2014). https://doi.org/10.1002/anie.201306129
- B. Wang, B.V. Cunning, N.Y. Kim, F. Kargar, S. Park et al., Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order. Adv. Mater. 31(29), 1903039 (2019). https://doi.org/10.1002/adma.201903039
- Q. Li, E.H. Hwang, S.D. Sarma, Disorder-induced temperature-dependent transport in graphene: puddles, impurities, activation, and diffusion. Phys. Rev. B 84(11), 115442 (2011). https://doi.org/10.1103/PhysRevB.84.115442
- Y. Sun, C. Wang, L. Pan, X. Fu, P. Yin et al., Electrical conductivity of single polycrystalline-amorphous carbon nanocoils. Carbon 98, 285–290 (2016). https://doi.org/10.1016/j.carbon.2015.11.025
- A. Yildiz, N. Serin, T. Serin, M. Kasap, Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48(11R), 111203 (2009). https://doi.org/10.1143/JJAP.48.111203
- D. Brida, A. Tomadin, C. Manzoni, Y.J. Kim, A. Lombardo et al., Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013). https://doi.org/10.1038/ncomms2987
- K.J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma et al., Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10(5), 437–443 (2015). https://doi.org/10.1038/nnano.2015.54
- W. Zhang, L. Wei, Z. Ma, Q. Fan, J. Ma, Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 177, 412–426 (2021). https://doi.org/10.1016/j.carbon.2021.02.093
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
- S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
- E. Zhou, J. Xi, Y. Liu, Z. Xu, Y. Guo et al., Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale 9(47), 18613–18618 (2017). https://doi.org/10.1039/C7NR07030F
- S. Wan, Y. Chen, Y. Wang, G. Li, G. Wang et al., Ultrastrong graphene films via long-chain π-bridging. Matter 1(2), 389–401 (2019). https://doi.org/10.1016/j.matt.2019.04.006
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
- B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces 9(24), 20873–20884 (2017). https://doi.org/10.1021/acsami.7b04935
- J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
- L. Zhang, N.T. Alvarez, M. Zhang, M. Haase, R. Malik et al., Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82, 353–359 (2015). https://doi.org/10.1016/j.carbon.2014.10.080
- J. Xi, Y. Li, E. Zhou, Y. Liu, W. Gao et al., Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 135, 44–51 (2018). https://doi.org/10.1016/j.carbon.2018.04.041
- W. Song, X. Guan, L. Fan, W. Cao, C. Wang et al., Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93, 151–160 (2015). https://doi.org/10.1016/j.carbon.2015.05.033
- L. Xu, H. Lu, Y. Zhou, Z. Chi, Z. Li et al., Ultrathin, ultralight, and anisotropic ordered reduced graphene oxide fiber electromagnetic interference shielding membrane. Adv. Mater. Technol. 6(12), 2100531 (2021). https://doi.org/10.1002/admt.202100531
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides. Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable Manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5), 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
- J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- W. Cao, F. Chen, Y. Zhu, Y. Zhang, Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- Y. Chen, X. Zheng, J. Cai, G. Zhao, B. Zhang et al., Sulfur doping triggering enhanced Pt–N coordination in graphitic carbon nitride-supported Pt electrocatalysts toward efficient oxygen reduction reaction. ACS Catal. 12(12), 7406–7414 (2022). https://doi.org/10.1021/acscatal.2c00944
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
- K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
- J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5(80), 65283–65296 (2015). https://doi.org/10.1039/C5RA09507
- X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo et al., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016). https://doi.org/10.1038/ncomms10672
- X. Cao, L. Peng, L. Liu, J. Lv, Z. Li et al., Defect-induced photocurrent gain for carbon nanofilm-based broadband infrared photodetector. Carbon 198, 244–251 (2022). https://doi.org/10.1016/j.carbon.2022.07.028
- J. Kniepert, D. Neher, Effect of the RC time on photocurrent transients and determination of charge carrier mobilities. J. Appl. Phys. 122(19), 195501 (2017). https://doi.org/10.1063/1.4999278
- M.M.R. Khan, M. Akter, M.K. Amin, M. Younus, N. Chakraborty, Synthesis, luminescence and thermal properties of PVA–ZnO–Al2O3 composite films: towards fabrication of sunlight-induced catalyst for organic dye removal. J. Polym. Environ. 26(8), 3371–3381 (2018). https://doi.org/10.1007/s10924-018-1220-9
- Y. Zhang, S. Wang, P. Tang, Z. Zhao, Z. Xu et al., Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films. ACS Nano 16(6), 8869–8880 (2022). https://doi.org/10.1021/acsnano.1c10561
References
C. Tan, X. Cao, Q. Wu, J. He, X. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
L. Peng, Y. Han, M. Wang, X. Cao, J. Gao et al., Multifunctional macroassembled graphene nanofilms with high crystallinity. Adv. Mater. 33(49), 2104195 (2021). https://doi.org/10.1002/adma.202104195
R. Song, X. Zhao, Z. Wang, H. Fu, K. Han et al., Sandwiched graphene clad laminate: a binder-free flexible printed circuit board for 5G antenna application. Adv. Eng. Mater. 22(10), 2000451 (2020). https://doi.org/10.1002/adem.202000451
R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen et al., High-frequency self-aligned graphene transistors with transferred gate stacks. PNAS 109(29), 11588–11592 (2012). https://doi.org/10.1073/pnas.1205696109
L. Peng, L. Liu, S. Du, S. Bodepudi, L. Li et al., Macroscopic assembled graphene nanofilms based room temperature ultrafast mid-infrared photodetectors. InfoMat 4, 12309 (2022). https://doi.org/10.1002/inf2.12309
F.M. Aghamir, A.R. Momen-Baghdadabad, M. Etminan, Effects of deposition angle on synthesis of amorphous carbon nitride thin films prepared by plasma focus device. Appl. Surf. Sci. 463, 141–149 (2019). https://doi.org/10.1016/j.apsusc.2018.08.154
P. Ball, New lessons for stealth technology. Nat. Mater. 20, 4 (2021). https://doi.org/10.1038/s41563-020-00887-z
Y. Gong, X. Zhang, G. Liu, L. Wu, X. Geng et al., Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv. Funct. Mater. 22(15), 3153–3159 (2012). https://doi.org/10.1002/adfm.201200388
T. Zhou, C. Xu, H. Liu, Q. Wei, H. Wang et al., Second time-scale synthesis of high-quality graphite films by quenching for effective electromagnetic interference shielding. ACS Nano 14(3), 3121–3128 (2020). https://doi.org/10.1021/acsnano.9b08169
Z. Zhang, M. Ding, T. Cheng, R. Qiao, M. Zhao et al., Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat. Nanotechnol. 17, 1258–1264 (2022). https://doi.org/10.1038/s41565-022-01230-0
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
H. Huang, X. Ming, Y. Wang, F. Guo, Y. Liu et al., Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect. Carbon 180, 197–203 (2021). https://doi.org/10.1016/j.carbon.2021.04.090
B. Dan, G.C. Irvin, M. Pasquali, Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3(4), 835–843 (2009). https://doi.org/10.1021/nn8008307
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
M. Tan, D. Chen, Y. Cheng, H. Sun, G. Chen et al., Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater. 32(31), 2202057 (2022). https://doi.org/10.1002/adfm.202202057
X. Wang, Z. Xiong, Z. Liu, T. Zhang, Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 27(8), 1370–1375 (2015). https://doi.org/10.1002/adma.201404069
H. Xin, W. Li, A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Phys. Rev. Appl. 5(3), 031105 (2018). https://doi.org/10.1063/1.5035295
Z. Gao, J. Zhu, S. Rajabpour, K. Joshi, M. Kowalik et al., Graphene reinforced carbon fibers. Sci. Adv. 6(17), eaaz4191 (2020). https://doi.org/10.1126/sciadv.aaz4191
X. Ming, A. Wei, Y. Liu, L. Peng, P. Li et al., 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv. Mater. 34(28), 2201867 (2022). https://doi.org/10.1002/adma.202201867
X. Liu, C. Zhu, J. Guo, Q. Liu, H. Dong et al., Nanoscale dynamic mechanical imaging of the skin–core difference: from PAN precursors to carbon fibers. Mater. Lett. 128, 417–420 (2014). https://doi.org/10.1016/j.matlet.2014.04.176
H. Khayyam, R.N. Jazar, S. Nunna, G. Golkarnarenji, K. Badii et al., PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling. Prog. Mater. Sci. 107, 100575 (2020). https://doi.org/10.1016/j.pmatsci.2019.100575
X. Wang, Y. Qian, L. Wang, H. Yang, H. Li et al., Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium–sulfur batteries. Adv. Funct. Mater. 29(39), 1902929 (2019). https://doi.org/10.1002/adfm.201902929
W. Watt, W. Johnson, Mechanism of oxidisation of polyacrylonitrile fibres. Nature 257(5523), 210–212 (1975). https://doi.org/10.1038/257210a0
F. Li, Y. Chen, M. Li, Y. Liu, B. Wang, Structure evolution mechanism of polyacrylonitrile films incorporated with graphene oxide during oxidative stabilization. J. Appl. Polym. Sci. 136(26), 47701 (2019). https://doi.org/10.1002/app.47701
İ Gergin, E. Ismar, A.S.J. Sarac, Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study. Beilstein J. Nanotechnol. 8(1), 1616–1628 (2017). https://doi.org/10.3762/bjnano.8.161
E. Frank, L.M. Steudle, D. Ingildeev, J.M. Sporl, M.R. Buchmeiser, Carbon fibers: precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 53(21), 5262–5298 (2014). https://doi.org/10.1002/anie.201306129
B. Wang, B.V. Cunning, N.Y. Kim, F. Kargar, S. Park et al., Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order. Adv. Mater. 31(29), 1903039 (2019). https://doi.org/10.1002/adma.201903039
Q. Li, E.H. Hwang, S.D. Sarma, Disorder-induced temperature-dependent transport in graphene: puddles, impurities, activation, and diffusion. Phys. Rev. B 84(11), 115442 (2011). https://doi.org/10.1103/PhysRevB.84.115442
Y. Sun, C. Wang, L. Pan, X. Fu, P. Yin et al., Electrical conductivity of single polycrystalline-amorphous carbon nanocoils. Carbon 98, 285–290 (2016). https://doi.org/10.1016/j.carbon.2015.11.025
A. Yildiz, N. Serin, T. Serin, M. Kasap, Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48(11R), 111203 (2009). https://doi.org/10.1143/JJAP.48.111203
D. Brida, A. Tomadin, C. Manzoni, Y.J. Kim, A. Lombardo et al., Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013). https://doi.org/10.1038/ncomms2987
K.J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma et al., Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10(5), 437–443 (2015). https://doi.org/10.1038/nnano.2015.54
W. Zhang, L. Wei, Z. Ma, Q. Fan, J. Ma, Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 177, 412–426 (2021). https://doi.org/10.1016/j.carbon.2021.02.093
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
E. Zhou, J. Xi, Y. Liu, Z. Xu, Y. Guo et al., Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale 9(47), 18613–18618 (2017). https://doi.org/10.1039/C7NR07030F
S. Wan, Y. Chen, Y. Wang, G. Li, G. Wang et al., Ultrastrong graphene films via long-chain π-bridging. Matter 1(2), 389–401 (2019). https://doi.org/10.1016/j.matt.2019.04.006
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces 9(24), 20873–20884 (2017). https://doi.org/10.1021/acsami.7b04935
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
L. Zhang, N.T. Alvarez, M. Zhang, M. Haase, R. Malik et al., Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82, 353–359 (2015). https://doi.org/10.1016/j.carbon.2014.10.080
J. Xi, Y. Li, E. Zhou, Y. Liu, W. Gao et al., Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 135, 44–51 (2018). https://doi.org/10.1016/j.carbon.2018.04.041
W. Song, X. Guan, L. Fan, W. Cao, C. Wang et al., Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93, 151–160 (2015). https://doi.org/10.1016/j.carbon.2015.05.033
L. Xu, H. Lu, Y. Zhou, Z. Chi, Z. Li et al., Ultrathin, ultralight, and anisotropic ordered reduced graphene oxide fiber electromagnetic interference shielding membrane. Adv. Mater. Technol. 6(12), 2100531 (2021). https://doi.org/10.1002/admt.202100531
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides. Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable Manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5), 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
W. Cao, F. Chen, Y. Zhu, Y. Zhang, Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
Y. Chen, X. Zheng, J. Cai, G. Zhao, B. Zhang et al., Sulfur doping triggering enhanced Pt–N coordination in graphitic carbon nitride-supported Pt electrocatalysts toward efficient oxygen reduction reaction. ACS Catal. 12(12), 7406–7414 (2022). https://doi.org/10.1021/acscatal.2c00944
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5(80), 65283–65296 (2015). https://doi.org/10.1039/C5RA09507
X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo et al., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016). https://doi.org/10.1038/ncomms10672
X. Cao, L. Peng, L. Liu, J. Lv, Z. Li et al., Defect-induced photocurrent gain for carbon nanofilm-based broadband infrared photodetector. Carbon 198, 244–251 (2022). https://doi.org/10.1016/j.carbon.2022.07.028
J. Kniepert, D. Neher, Effect of the RC time on photocurrent transients and determination of charge carrier mobilities. J. Appl. Phys. 122(19), 195501 (2017). https://doi.org/10.1063/1.4999278
M.M.R. Khan, M. Akter, M.K. Amin, M. Younus, N. Chakraborty, Synthesis, luminescence and thermal properties of PVA–ZnO–Al2O3 composite films: towards fabrication of sunlight-induced catalyst for organic dye removal. J. Polym. Environ. 26(8), 3371–3381 (2018). https://doi.org/10.1007/s10924-018-1220-9
Y. Zhang, S. Wang, P. Tang, Z. Zhao, Z. Xu et al., Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films. ACS Nano 16(6), 8869–8880 (2022). https://doi.org/10.1021/acsnano.1c10561