Mussel‑Inspired Redox‑Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics
Corresponding Author: Xiong Lu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 169
Abstract
Conductive polymers (CPs) are generally insoluble, and developing hydrophilic CPs is significant to broaden the applications of CPs. In this work, a mussel-inspired strategy was proposed to construct hydrophilic CP nanoparticles (CP NPs), while endowing the CP NPs with redox activity and biocompatibility. This is a universal strategy applicable for a series of CPs, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). The catechol/quinone contained sulfonated lignin (LS) was doped into various CPs to form CP/LS NPs with hydrophilicity, conductivity, and redox activity. These CP/LS NPs were used as versatile nanofillers to prepare the conductive hydrogels with long-term adhesiveness. The CP/LS NPs-incorporated hydrogels have a good conductivity because of the uniform distribution of the hydrophilic NPs in the hydrogel network, forming a well-connected electric path. The hydrogel exhibits long-term adhesiveness, which is attributed to the mussel-inspired dynamic redox balance of catechol/quinone groups on the CP/LS NPs. This conductive and adhesive hydrogel shows good electroactivity and biocompatibility and therefore has broad applications in electrostimulation of tissue regeneration and implantable bioelectronics.
Highlights:
1 A universal strategy was proposed to producing conductive, redox-active, and hydrophilic sulfonated lignin-conductive polymer nanoparticles (CP/LS NPs).
2 By incorporating the CP/LS NPs into hydrogel network, a good conductive, adhesive, and tough hydrogel was obtained.
3 The redox-active NPs maintained enough catechol groups inner the hydrogel for adhesiveness.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Han, X. Lu, M. Wang, D. Gan, W. Deng et al., A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13(2), 1601916 (2017). https://doi.org/10.1002/smll.201601916
- D. Gan, Z. Huang, X. Wang, L. Jiang, C. Wang et al., Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907678
- Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P.X. Ma, B. Guo, Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15(12), e1900046 (2019). https://doi.org/10.1002/smll.201900046
- H. Luo, J. Dong, F. Yao, Z. Yang, W. Li et al., Layer-by-layer assembled bacterial cellulose/graphene oxide hydrogels with extremely enhanced mechanical properties. Nano-Micro Lett. 10, 42 (2018). https://doi.org/10.1007/s40820-018-0195-3
- K. Liu, L. Han, P. Tang, K. Yang, D. Gan et al., An anisotropic hydrogel based on mussel-inspired conductive ferrofluid composed of electromagnetic nanohybrids. Nano Lett. 19(12), 8343–8356 (2019). https://doi.org/10.1021/acs.nanolett.9b00363
- A. Vashist, A. Kaushik, A. Vashist, V. Sagar, A. Ghosal et al., Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv. Healthc. Mater. 7(9), 1701213 (2018). https://doi.org/10.1002/adhm.201701213
- F. Wahid, C. Zhong, H.S. Wang, X.H. Hu, L.Q. Chu, Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers 9(12), 636 (2017). https://doi.org/10.3390/polym9120636
- Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
- C. Zheng, Y. Yue, L. Gan, X. Xu, C. Mei, J. Han, Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels. Nanomaterials 9(7), 937 (2019). https://doi.org/10.3390/nano9070937
- Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu, L. Nie, J. Fu, Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30(21), 8062–8069 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
- C. Tondera, T.F. Akbar, A.K. Thomas, W. Lin, C. Werner, V. Busskamp, Y. Zhang, I.R. Minev, Highly conductive, stretchable, and cell-adhesive hydrogel by nanoclay doping. Small 15(27), 1901406 (2019). https://doi.org/10.1002/smll.201901406
- Y. Wang, Y. Shi, L. Pan, Y. Ding, Y. Zhao, Y. Li, Y. Shi, G. Yu, Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 15(11), 7736–7741 (2015). https://doi.org/10.1021/acs.nanolett.5b03891
- P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2(1–2), 1400010 (2015). https://doi.org/10.1002/advs.201400010
- B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu, J. Xu, X. Zhao, Pure PEDOT: PSS hydrogels. Nat. Commun. 10(1), 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
- S. Cao, X. Tong, K. Dai, Q. Xu, A super-stretchable and tough functionalized boron nitride/pedot: pss/poly (n-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J. Mater. Chem. A 7(14), 8204–8209 (2019). https://doi.org/10.1039/C9TA00618D
- V.R. Feig, H. Tran, M. Lee, Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467-018-05222-4
- B.W. Walker, R.P. Lara, E. Mogadam, C.H. Yu, W. Kimball, N. Annabi, Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog. Polym. Sci. 92, 135–157 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.007
- G. Cai, J. Wang, K. Qian, J. Chen, S. Li, P.S. Lee, Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4(2), 1600190 (2017). https://doi.org/10.1002/advs.201600190
- P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11(1), 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
- J.H. Ryu, H.J. Kim, K. Kim, G. Yoon, Y. Wang et al., Multipurpose intraperitoneal adhesive patches. Adv. Funct. Mater. 29(29), 1900495 (2019). https://doi.org/10.1002/adfm.201900495
- M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 2(1), 1–6 (2011). https://doi.org/10.1038/ncomms1521
- Q. Feng, K. Wei, S. Lin, Z. Xu, Y. Sun, P. Shi, G. Li, L. Bian, Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 101, 217–228 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.043
- Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater. 30(5), 1729–1742 (2018). https://doi.org/10.1021/acs.chemmater.8b00008
- S. Cheng, M. Zhang, N. Dixit, R.B. Moore, T.E. Long, Nucleobase self-assembly in supramolecular adhesives. Macromolecules 45(2), 805–812 (2012). https://doi.org/10.1021/ma202122r
- J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017). https://doi.org/10.1126/science.aah6362
- Y. Gao, F. Jia, G. Gao, Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors. Chem. Eng. J. 375, 121915 (2019). https://doi.org/10.1016/j.cej.2019.121915
- X. Wei, K. Ma, Y. Cheng, L. Sun, D. Chen et al., An adhesive, conductive, self-healing and antibacterial hydrogel based on chitosan-polyoxometalate complexes for wearable strain sensor. ACS Appl. Polym. Mater. 2(7), 2541–2549 (2020). https://doi.org/10.1021/acsapm.0c00150
- Y. Ma, S. Ma, W. Yang, B. Yu, X. Pei, F. Zhou, W. Liu, Sundew-inspired simultaneous actuation and adhesion/friction control for reversibly capturing objects underwater. Adv. Mater. Technol. 4(2), 1800467 (2019). https://doi.org/10.1002/admt.201800467
- Q. Zhao, D.W. Lee, B.K. Ahn, S. Seo, Y. Kaufman, J.N. Israelachvili, J.H. Waite, Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 15(4), 407–412 (2016). https://doi.org/10.1038/nmat4539
- Y. Jiang, X. Lu, Environment adaptive hydrogels for extreme conditions: a review. Biosurface Biotribology 5(4), 104–109 (2019). https://doi.org/10.1049/bsbt.2019.0030
- X. Ge, Antimicrobial biomaterials with non-antibiotic strategy. Biosurface Biotribology 5(3), 71–82 (2019). https://doi.org/10.1049/bsbt.2019.0010
- Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014). https://doi.org/10.1021/cr400407a
- A.H. Hofman, I.A. van Hees, J. Yang, M. Kamperman, Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater. 30(19), 1704640 (2018). https://doi.org/10.1002/adma.201704640
- L. Han, L. Yan, M. Wang, K. Wang, L. Fang et al., Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem. Mater. 30(16), 5561–5572 (2018). https://doi.org/10.1021/acs.chemmater.8b01446
- P. Kord Forooshani, B.P. Lee, Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci. A Polym. Chem. 55(1), 9–33 (2017). https://doi.org/10.1002/pola.28368
- B.P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite, Mussel-inspired wet adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2010). https://doi.org/10.1146/annurev-matsci-062910-100429
- L. Han, X. Lu, K. Liu, K. Wang, L. Fang et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11(3), 2561–2574 (2017). https://doi.org/10.1021/acsnano.6b05318
- Z. Jia, Y. Zeng, P. Tang, D. Gan, W. Xing et al., Conductive, tough, transparent, and self-healing hydrogels based on catechol®cmetal ion dual self-catalysis. Chem. Mater. 31(15), 5625–5632 (2019). https://doi.org/10.1021/acs.chemmater.9b01498
- W. Schutyser, T. Renders, S. Van den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47(3), 852–908 (2018). https://doi.org/10.1039/c7cs00566k
- G.T. Beckham, C.W. Johnson, E.M. Karp, D. Salvachua, D.R. Vardon, Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53 (2016). https://doi.org/10.1016/j.copbio.2016.02.030
- F.N. Ajjan, N. Casado, T. Rebis, A. Elfwing, N. Solin, D. Mecerreyes, O. InganS, High performance pedot/lignin biopolymer composites for electrochemical supercapacitors. J. Mater. Chem. A 4(5), 1838–1847 (2016). https://doi.org/10.1039/C5TA10096H
- F. Li, X. Wang, R. Sun, A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J. Mater. Chem. A 5(39), 20643–20650 (2017). https://doi.org/10.1039/C7TA03789A
- L. Shao, J. Qiu, H. Feng, M. Liu, G. Zhang et al., Structural investigation of lignosulfonate doped polyaniline. Synthetic Met. 159(17–18), 1761–1766 (2009). https://doi.org/10.1016/j.synthmet.2009.05.022
- Q. Wang, X. Pan, C. Lin, D. Lin, Y. Ni et al., Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with pedot: sulfonated lignin as conductive materials. Chem. Eng. J. 370, 1039–1047 (2019). https://doi.org/10.1016/j.cej.2019.03.287
- A. Mukhopadhyay, J. Hamel, R. Katahira, H. Zhu, Metal-free aqueous flow battery with novel ultrafiltered lignin as electrolyte. ACS Sustain. Chem. Eng. 6(4), 5394–5400 (2018). https://doi.org/10.1021/acssuschemeng.8b00221
- D. Gan, W. Xing, L. Jiang, J. Fang, C. Zhao et al., Plant-inspired adhesive and tough hydrogel based on ag-lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 10(1), 1487 (2019). https://doi.org/10.1038/s41467-019-09351-2
- S. Moulay, Dopa/catechol-tethered polymers: bioadhesives and biomimetic adhesive materials. Polym. Rev. 54(3), 436–513 (2014). https://doi.org/10.1080/15583724.2014.881373
- J. Yu, W. Wei, E. Danner, R.K. Ashley, J.N. Israelachvili, J.H. Waite, Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7(9), 588–590 (2011). https://doi.org/10.1038/nchembio.630
- J. Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busqué, D. Ruiz-Molina, The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 58(3), 696–714 (2019). https://doi.org/10.1002/anie.201801063
- L. Zhang, Z. Liu, X. Wu, Q. Guan, S. Chen et al., A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 31(23), e1901402 (2019). https://doi.org/10.1002/adma.201901402
- Y. Yang, X. Wang, F. Yang, H. Shen, D. Wu, A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv. Mater. 28(33), 7178–7184 (2016). https://doi.org/10.1002/adma.201601742
- D. Gan, T. Xu, W. Xing, M. Wang, J. Fang et al., Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (gelma) hydrogels for cartilage regeneration. J. Mater. Chem. B 7(10), 1716–1725 (2019). https://doi.org/10.1039/c8tb01664j
- M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
- C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
- Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma, B. Guo, Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3d printability for human motion sensing. ACS Appl. Mater. Interfaces 11(7), 6796–6808 (2019). https://doi.org/10.1021/acsami.8b20178
- L. Wang, G. Gao, Y. Zhou, T. Xu, J. Chen et al., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces 11(3), 3506–3515 (2018). https://doi.org/10.1021/acsami.8b20755
- Z. Wang, J. Chen, L. Wang, G. Gao, Y. Zhou et al., Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. J. Mater. Chem. B 7(1), 24–29 (2019). https://doi.org/10.1039/C8TB02629G
- Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Inter. Sci. 556, 514–528 (2019). https://doi.org/10.1016/j.jcis.2019.08.083
- X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.011
- Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P.X. Ma, B. Guo, Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15(12), 1900046 (2019). https://doi.org/10.1002/smll.201900046
- T.D. Gomes, S.G. Caridade, M.P. Sousa, S. Azevedo, M.Y. Kandur et al., Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomater. 69, 183–195 (2018). https://doi.org/10.1016/j.actbio.2018.01.027
- W. Hao, J. Han, Y. Chu, L. Huang, J. Sun et al., Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials 161, 106–116 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.034
- X. Chen, W. Du, Z. Cai, S. Ji, M. Dwivedi et al., Uniaxial stretching of cell-laden microfibers for promoting C2C12 myoblasts alignment and myofibers formation. ACS Appl. Mater. Interfaces 12(2), 2167–2170 (2019). https://doi.org/10.1021/acsami.9b22103
- D. Gan, L. Han, M. Wang, W. Xing, T. Xu et al., Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl. Mater. Interfaces 10(42), 36218–36228 (2018). https://doi.org/10.1021/acsami.8b10280
- P. Tang, L. Han, P. Li, Z. Jia, K. Wang et al., Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl. Mater. Interfaces 11(8), 7703–7714 (2019). https://doi.org/10.1021/acsami.8b18931
- C. Ning, Z. Zhou, G. Tan, Y. Zhu, C. Mao, Electroactive polymers for tissue regeneration: developments and perspectives. Prog. Polym. Sci. 81, 144–162 (2018). https://doi.org/10.1016/j.progpolymsci.2018.01.001
References
L. Han, X. Lu, M. Wang, D. Gan, W. Deng et al., A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13(2), 1601916 (2017). https://doi.org/10.1002/smll.201601916
D. Gan, Z. Huang, X. Wang, L. Jiang, C. Wang et al., Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907678
Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P.X. Ma, B. Guo, Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15(12), e1900046 (2019). https://doi.org/10.1002/smll.201900046
H. Luo, J. Dong, F. Yao, Z. Yang, W. Li et al., Layer-by-layer assembled bacterial cellulose/graphene oxide hydrogels with extremely enhanced mechanical properties. Nano-Micro Lett. 10, 42 (2018). https://doi.org/10.1007/s40820-018-0195-3
K. Liu, L. Han, P. Tang, K. Yang, D. Gan et al., An anisotropic hydrogel based on mussel-inspired conductive ferrofluid composed of electromagnetic nanohybrids. Nano Lett. 19(12), 8343–8356 (2019). https://doi.org/10.1021/acs.nanolett.9b00363
A. Vashist, A. Kaushik, A. Vashist, V. Sagar, A. Ghosal et al., Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv. Healthc. Mater. 7(9), 1701213 (2018). https://doi.org/10.1002/adhm.201701213
F. Wahid, C. Zhong, H.S. Wang, X.H. Hu, L.Q. Chu, Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers 9(12), 636 (2017). https://doi.org/10.3390/polym9120636
Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
C. Zheng, Y. Yue, L. Gan, X. Xu, C. Mei, J. Han, Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels. Nanomaterials 9(7), 937 (2019). https://doi.org/10.3390/nano9070937
Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu, L. Nie, J. Fu, Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30(21), 8062–8069 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
C. Tondera, T.F. Akbar, A.K. Thomas, W. Lin, C. Werner, V. Busskamp, Y. Zhang, I.R. Minev, Highly conductive, stretchable, and cell-adhesive hydrogel by nanoclay doping. Small 15(27), 1901406 (2019). https://doi.org/10.1002/smll.201901406
Y. Wang, Y. Shi, L. Pan, Y. Ding, Y. Zhao, Y. Li, Y. Shi, G. Yu, Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 15(11), 7736–7741 (2015). https://doi.org/10.1021/acs.nanolett.5b03891
P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2(1–2), 1400010 (2015). https://doi.org/10.1002/advs.201400010
B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu, J. Xu, X. Zhao, Pure PEDOT: PSS hydrogels. Nat. Commun. 10(1), 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
S. Cao, X. Tong, K. Dai, Q. Xu, A super-stretchable and tough functionalized boron nitride/pedot: pss/poly (n-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J. Mater. Chem. A 7(14), 8204–8209 (2019). https://doi.org/10.1039/C9TA00618D
V.R. Feig, H. Tran, M. Lee, Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467-018-05222-4
B.W. Walker, R.P. Lara, E. Mogadam, C.H. Yu, W. Kimball, N. Annabi, Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog. Polym. Sci. 92, 135–157 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.007
G. Cai, J. Wang, K. Qian, J. Chen, S. Li, P.S. Lee, Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4(2), 1600190 (2017). https://doi.org/10.1002/advs.201600190
P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11(1), 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
J.H. Ryu, H.J. Kim, K. Kim, G. Yoon, Y. Wang et al., Multipurpose intraperitoneal adhesive patches. Adv. Funct. Mater. 29(29), 1900495 (2019). https://doi.org/10.1002/adfm.201900495
M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 2(1), 1–6 (2011). https://doi.org/10.1038/ncomms1521
Q. Feng, K. Wei, S. Lin, Z. Xu, Y. Sun, P. Shi, G. Li, L. Bian, Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 101, 217–228 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.043
Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater. 30(5), 1729–1742 (2018). https://doi.org/10.1021/acs.chemmater.8b00008
S. Cheng, M. Zhang, N. Dixit, R.B. Moore, T.E. Long, Nucleobase self-assembly in supramolecular adhesives. Macromolecules 45(2), 805–812 (2012). https://doi.org/10.1021/ma202122r
J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017). https://doi.org/10.1126/science.aah6362
Y. Gao, F. Jia, G. Gao, Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors. Chem. Eng. J. 375, 121915 (2019). https://doi.org/10.1016/j.cej.2019.121915
X. Wei, K. Ma, Y. Cheng, L. Sun, D. Chen et al., An adhesive, conductive, self-healing and antibacterial hydrogel based on chitosan-polyoxometalate complexes for wearable strain sensor. ACS Appl. Polym. Mater. 2(7), 2541–2549 (2020). https://doi.org/10.1021/acsapm.0c00150
Y. Ma, S. Ma, W. Yang, B. Yu, X. Pei, F. Zhou, W. Liu, Sundew-inspired simultaneous actuation and adhesion/friction control for reversibly capturing objects underwater. Adv. Mater. Technol. 4(2), 1800467 (2019). https://doi.org/10.1002/admt.201800467
Q. Zhao, D.W. Lee, B.K. Ahn, S. Seo, Y. Kaufman, J.N. Israelachvili, J.H. Waite, Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 15(4), 407–412 (2016). https://doi.org/10.1038/nmat4539
Y. Jiang, X. Lu, Environment adaptive hydrogels for extreme conditions: a review. Biosurface Biotribology 5(4), 104–109 (2019). https://doi.org/10.1049/bsbt.2019.0030
X. Ge, Antimicrobial biomaterials with non-antibiotic strategy. Biosurface Biotribology 5(3), 71–82 (2019). https://doi.org/10.1049/bsbt.2019.0010
Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014). https://doi.org/10.1021/cr400407a
A.H. Hofman, I.A. van Hees, J. Yang, M. Kamperman, Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater. 30(19), 1704640 (2018). https://doi.org/10.1002/adma.201704640
L. Han, L. Yan, M. Wang, K. Wang, L. Fang et al., Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem. Mater. 30(16), 5561–5572 (2018). https://doi.org/10.1021/acs.chemmater.8b01446
P. Kord Forooshani, B.P. Lee, Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci. A Polym. Chem. 55(1), 9–33 (2017). https://doi.org/10.1002/pola.28368
B.P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite, Mussel-inspired wet adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2010). https://doi.org/10.1146/annurev-matsci-062910-100429
L. Han, X. Lu, K. Liu, K. Wang, L. Fang et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11(3), 2561–2574 (2017). https://doi.org/10.1021/acsnano.6b05318
Z. Jia, Y. Zeng, P. Tang, D. Gan, W. Xing et al., Conductive, tough, transparent, and self-healing hydrogels based on catechol®cmetal ion dual self-catalysis. Chem. Mater. 31(15), 5625–5632 (2019). https://doi.org/10.1021/acs.chemmater.9b01498
W. Schutyser, T. Renders, S. Van den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47(3), 852–908 (2018). https://doi.org/10.1039/c7cs00566k
G.T. Beckham, C.W. Johnson, E.M. Karp, D. Salvachua, D.R. Vardon, Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53 (2016). https://doi.org/10.1016/j.copbio.2016.02.030
F.N. Ajjan, N. Casado, T. Rebis, A. Elfwing, N. Solin, D. Mecerreyes, O. InganS, High performance pedot/lignin biopolymer composites for electrochemical supercapacitors. J. Mater. Chem. A 4(5), 1838–1847 (2016). https://doi.org/10.1039/C5TA10096H
F. Li, X. Wang, R. Sun, A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J. Mater. Chem. A 5(39), 20643–20650 (2017). https://doi.org/10.1039/C7TA03789A
L. Shao, J. Qiu, H. Feng, M. Liu, G. Zhang et al., Structural investigation of lignosulfonate doped polyaniline. Synthetic Met. 159(17–18), 1761–1766 (2009). https://doi.org/10.1016/j.synthmet.2009.05.022
Q. Wang, X. Pan, C. Lin, D. Lin, Y. Ni et al., Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with pedot: sulfonated lignin as conductive materials. Chem. Eng. J. 370, 1039–1047 (2019). https://doi.org/10.1016/j.cej.2019.03.287
A. Mukhopadhyay, J. Hamel, R. Katahira, H. Zhu, Metal-free aqueous flow battery with novel ultrafiltered lignin as electrolyte. ACS Sustain. Chem. Eng. 6(4), 5394–5400 (2018). https://doi.org/10.1021/acssuschemeng.8b00221
D. Gan, W. Xing, L. Jiang, J. Fang, C. Zhao et al., Plant-inspired adhesive and tough hydrogel based on ag-lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 10(1), 1487 (2019). https://doi.org/10.1038/s41467-019-09351-2
S. Moulay, Dopa/catechol-tethered polymers: bioadhesives and biomimetic adhesive materials. Polym. Rev. 54(3), 436–513 (2014). https://doi.org/10.1080/15583724.2014.881373
J. Yu, W. Wei, E. Danner, R.K. Ashley, J.N. Israelachvili, J.H. Waite, Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7(9), 588–590 (2011). https://doi.org/10.1038/nchembio.630
J. Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busqué, D. Ruiz-Molina, The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 58(3), 696–714 (2019). https://doi.org/10.1002/anie.201801063
L. Zhang, Z. Liu, X. Wu, Q. Guan, S. Chen et al., A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 31(23), e1901402 (2019). https://doi.org/10.1002/adma.201901402
Y. Yang, X. Wang, F. Yang, H. Shen, D. Wu, A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv. Mater. 28(33), 7178–7184 (2016). https://doi.org/10.1002/adma.201601742
D. Gan, T. Xu, W. Xing, M. Wang, J. Fang et al., Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (gelma) hydrogels for cartilage regeneration. J. Mater. Chem. B 7(10), 1716–1725 (2019). https://doi.org/10.1039/c8tb01664j
M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma, B. Guo, Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3d printability for human motion sensing. ACS Appl. Mater. Interfaces 11(7), 6796–6808 (2019). https://doi.org/10.1021/acsami.8b20178
L. Wang, G. Gao, Y. Zhou, T. Xu, J. Chen et al., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces 11(3), 3506–3515 (2018). https://doi.org/10.1021/acsami.8b20755
Z. Wang, J. Chen, L. Wang, G. Gao, Y. Zhou et al., Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. J. Mater. Chem. B 7(1), 24–29 (2019). https://doi.org/10.1039/C8TB02629G
Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Inter. Sci. 556, 514–528 (2019). https://doi.org/10.1016/j.jcis.2019.08.083
X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.011
Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P.X. Ma, B. Guo, Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15(12), 1900046 (2019). https://doi.org/10.1002/smll.201900046
T.D. Gomes, S.G. Caridade, M.P. Sousa, S. Azevedo, M.Y. Kandur et al., Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomater. 69, 183–195 (2018). https://doi.org/10.1016/j.actbio.2018.01.027
W. Hao, J. Han, Y. Chu, L. Huang, J. Sun et al., Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials 161, 106–116 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.034
X. Chen, W. Du, Z. Cai, S. Ji, M. Dwivedi et al., Uniaxial stretching of cell-laden microfibers for promoting C2C12 myoblasts alignment and myofibers formation. ACS Appl. Mater. Interfaces 12(2), 2167–2170 (2019). https://doi.org/10.1021/acsami.9b22103
D. Gan, L. Han, M. Wang, W. Xing, T. Xu et al., Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl. Mater. Interfaces 10(42), 36218–36228 (2018). https://doi.org/10.1021/acsami.8b10280
P. Tang, L. Han, P. Li, Z. Jia, K. Wang et al., Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl. Mater. Interfaces 11(8), 7703–7714 (2019). https://doi.org/10.1021/acsami.8b18931
C. Ning, Z. Zhou, G. Tan, Y. Zhu, C. Mao, Electroactive polymers for tissue regeneration: developments and perspectives. Prog. Polym. Sci. 81, 144–162 (2018). https://doi.org/10.1016/j.progpolymsci.2018.01.001