Sulfolane-Based Flame-Retardant Electrolyte for High-Voltage Sodium-Ion Batteries
Corresponding Author: Qianling Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 45
Abstract
Sodium-ion batteries hold great promise as next-generation energy storage systems. However, the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs. In particular, an unstable cathode–electrolyte interphase (CEI) leads to successive electrolyte side reactions, transition metal leaching and rapid capacity decay, which tends to be exacerbated under high-voltage conditions. Therefore, constructing dense and stable CEIs are crucial for high-performance SIBs. This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H, 1H, 5H-octafluoropentyl-1, 1, 2, 2-tetrafluoroethyl ether, which exhibited excellent oxidative stability and was able to form thin, dense and homogeneous CEI. The excellent CEI enabled the O3-type layered oxide cathode NaNi1/3Mn1/3Fe1/3O2 (NaNMF) to achieve stable cycling, with a capacity retention of 79.48% after 300 cycles at 1 C and 81.15% after 400 cycles at 2 C with a high charging voltage of 4.2 V. In addition, its nonflammable nature enhances the safety of SIBs. This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
Highlights:
1 NaTFSI/SUL:OTE:FEC facilitates the formation of S, N-rich, dense and robust cathode–electrolyte interphase on NaNMF cathode, which improves the cycling stability under high voltage.
2 By utilizing NaTFSI/SUL:OTE:FEC, the Na||NaNMF batteries achieved an impressive retention of 81.15% after 400 cycles at 2 C with the cutoff voltage of 4.2 V.
3 The study offers a reference for the utilization of sulfolane-based electrolytes in sodium-ion batteries (SIBs), while the nonflammability of the NaTFSI/SUL:OTE:FEC enhances the safety of SIBs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020). https://doi.org/10.1126/science.aay9972
- L. Yu, Z. Cheng, K. Xu, Y.-X. Chang, Y.-H. Feng et al., Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode. Energy Storage Mater. 50, 730–739 (2022). https://doi.org/10.1016/j.ensm.2022.06.012
- R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya et al., Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021). https://doi.org/10.1038/s41578-021-00324-w
- Y. Qi, Z. Tong, J. Zhao, L. Ma, T. Wu et al., Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes. Joule 2, 2348–2363 (2018). https://doi.org/10.1016/j.joule.2018.07.027
- P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018). https://doi.org/10.1002/aenm.201701912
- Y. Sun, S. Guo, H. Zhou, Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 12, 825–840 (2019). https://doi.org/10.1039/C8EE01006D
- C. Delmas, D. Carlier, M. Guignard, The layered oxides in lithium and sodium-ion batteries: a solid-state chemistry approach. Adv. Energy Mater. 11, 2001201 (2021). https://doi.org/10.1002/aenm.202001201
- S. Guo, H. Yu, P. Liu, Y. Ren, T. Zhang et al., High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 8, 1237–1244 (2015). https://doi.org/10.1039/C4EE03361B
- M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015). https://doi.org/10.1039/C4EE03192J
- M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaïm et al., P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74–80 (2013). https://doi.org/10.1038/nmat3478
- S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa et al., Study on the reversible electrode reaction of Na1−xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 51, 6211–6220 (2012). https://doi.org/10.1021/ic300357d
- D. Su, C. Wang, H.-J. Ahn, G. Wang, Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry 19, 10884–10889 (2013). https://doi.org/10.1002/chem.201301563
- T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16, 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
- M. Leng, J. Bi, W. Wang, Z. Xing, W. Yan et al., Superior electrochemical performance of O3-type NaNi0.5−xMn0.3Ti0.2ZrxO2 cathode material for sodium-ion batteries from Ti and Zr substitution of the transition metals. J. Alloys Compd. 816, 152581 (2020). https://doi.org/10.1016/j.jallcom.2019.152581
- P.-F. Wang, H.-R. Yao, X.-Y. Liu, J.-N. Zhang, L. Gu et al., Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29, 1700210 (2017). https://doi.org/10.1002/adma.201700210
- Y.-K. Sun, Direction for commercialization of O3-type layered cathodes for sodium-ion batteries. ACS Energy Lett. 5, 1278–1280 (2020). https://doi.org/10.1021/acsenergylett.0c00597
- Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51, 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
- J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
- B. Peng, G. Wan, N. Ahmad, L. Yu, X. Ma et al., Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 13, 2370117 (2023). https://doi.org/10.1002/aenm.202370117
- Z. Su, H. Guo, C. Zhao, Rational design of electrode-electrolyte interphase and electrolytes for rechargeable proton batteries. Nano-Micro Lett. 15, 96 (2023). https://doi.org/10.1007/s40820-023-01071-z
- H. Su, H. Zhang, Z. Chen, M. Li, J. Zhao et al., Electrolyte and interphase engineering through solvation structure regulation for stable lithium metal batteries. Chin. Chem. Lett. 34, 108640 (2023). https://doi.org/10.1016/j.cclet.2023.108640
- J. Song, K. Wang, J. Zheng, M.H. Engelhard, B. Xiao et al., Controlling surface phase transition and chemical reactivity of O3-Layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5, 1718–1725 (2020). https://doi.org/10.1021/acsenergylett.0c00700
- H. Wan, J. Xu, C. Wang, Designing electrolytesand interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2023). https://doi.org/10.1038/s41570-023-00557-z
- Y. Jin, Y. Xu, B. Xiao, M.H. Engelhard, R. Yi et al., Stabilizing interfacial reactions for stable cycling of high-voltage sodium batteries. Adv. Funct. Mater. 32, 2204995 (2022). https://doi.org/10.1002/adfm.202204995
- S. Wu, B. Su, K. Ni, F. Pan, C. Wang et al., Carbonate electrolytes: fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv. Energy Mater. 11, 2170034 (2021). https://doi.org/10.1002/aenm.202170034
- X. Zheng, L. Huang, X. Ye, J. Zhang, F. Min et al., Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 7, 2312–2346 (2021). https://doi.org/10.1016/j.chempr.2021.02.025
- Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9, 2201207 (2022). https://doi.org/10.1002/advs.202201207
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- Z. Yu, J. Zhang, T. Liu, B. Tang, X. Yang et al., Research progress and perspectives of localized high-concentration electrolytes for secondary batteries. Acta Chim. Sinica 78, 114 (2020). https://doi.org/10.6023/a19100385
- J. Lee, Y. Lee, J. Lee, S.M. Lee, J.H. Choi et al., Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries. ACS Appl. Mater. Interfaces 9, 3723–3732 (2017). https://doi.org/10.1021/acsami.6b14878
- X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
- J. Lamb, A. Manthiram, Stable sodium-based batteries with advanced electrolytes and layered-oxide cathodes. ACS Appl. Mater. Interfaces 14, 28865–28872 (2022). https://doi.org/10.1021/acsami.2c05402
- X. Zhou, Q. Zhang, Z. Zhu, Y. Cai, H. Li et al., Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem. Int. Ed. 61, e202205045 (2022). https://doi.org/10.1002/anie.202205045
- J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard et al., Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018). https://doi.org/10.1021/acsenergylett.7b01213
- H.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang et al., Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries. Angew. Chem. Int. Ed. 60, 26837–26846 (2021). https://doi.org/10.1002/anie.202112550
- N. Shao, X.-G. Sun, S. Dai, D.-E. Jiang, Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. J. Phys. Chem. B 115, 12120–12125 (2011). https://doi.org/10.1021/jp204401t
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb et al., Gaussian 16 (2016).
- A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992). https://doi.org/10.1063/1.462066
- G.G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R.J. Behm et al., Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy 55, 327–340 (2019). https://doi.org/10.1016/j.nanoen.2018.10.040
- Y. Ugata, Y. Chen, S. Miyazaki, S. Sasagawa, K. Ueno et al., High-concentration LiPF6/sulfone electrolytes: structure, transport properties, and battery application. Phys. Chem. Chem. Phys. 25, 29566–29575 (2023). https://doi.org/10.1039/d3cp04561g
- E. Huangzhang, X. Zeng, T. Yang, H. Liu, C. Sun et al., A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li||LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chem. Eng. J. 439, 135534 (2022). https://doi.org/10.1016/j.cej.2022.135534
- Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
- Z. Guo, Z. Cui, R. Sim, A. Manthiram, Localized high-concentration electrolytes with low-cost diluents compatible with both cobalt-free LiNiO2 cathode and lithium-metal anode. Small 19, 2305055 (2023). https://doi.org/10.1002/smll.202305055
- S. Chen, Z. Wang, H. Zhao, H. Qiao, H. Luan et al., A novel flame retardant and film-forming electrolyte additive for lithium ion batteries. J. Power. Sources 187, 229–232 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.091
- L. Xue, S.-Y. Lee, Z. Zhao, C.A. Angell, Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries. J. Power. Sources 295, 190–196 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.112
- O. Zhanadilov, S. Baiju, N. Voronina, J.H. Yu, A.Y. Kim et al., Impact of transition metal layer vacancy on the structure and performance of P2 type layered sodium cathode material. Nano-Micro Lett. 16, 239 (2024). https://doi.org/10.1007/s40820-024-01439-9
- G.-L. Xu, X. Liu, X. Zhou, C. Zhao, I. Hwang et al., Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022). https://doi.org/10.1038/s41467-022-28052-x
- S. Ma, P. Zou, H.L. Xin, Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability. Mater. Today Energy 38, 101446 (2023). https://doi.org/10.1016/j.mtener.2023.101446
- N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Nabatteries. Nat. Mater. 11, 512–517 (2012). https://doi.org/10.1038/nmat3309
- J. Feng, Y. Liu, D. Fang, J. Li, Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries. Nano Energy 118, 109030 (2023). https://doi.org/10.1016/j.nanoen.2023.109030
- Y. Xiao, N.M. Abbasi, Y.-F. Zhu, S. Li, S.-J. Tan et al., Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv. Funct. Mater. 30, 2001334 (2020). https://doi.org/10.1002/adfm.202001334
- K. Wang, P. Yan, M. Sui, Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy 54, 148–155 (2018). https://doi.org/10.1016/j.nanoen.2018.09.073
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- Z. Zhang, J. Yang, W. Huang, H. Wang, W. Zhou et al., Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. Matter 4, 302–312 (2021). https://doi.org/10.1016/j.matt.2020.10.021
- Y. Liu, L. Zhu, E. Wang, Y. An, Y. Liu et al., Electrolyte engineering with tamed electrode interphases for high-voltage sodium-ion batteries. Adv. Mater. 36, e2310051 (2024). https://doi.org/10.1002/adma.202310051
- Y. Jin, Y. Xu, P.M.L. Le, T.D. Vo, Q. Zhou et al., Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS Energy Lett. 5, 3212–3220 (2020). https://doi.org/10.1021/acsenergylett.0c01712
- W. Xiao, Q. Sun, M.N. Banis, B. Wang, W. Li et al., Understanding the critical role of binders in phosphorus/carbon anode for sodium-ion batteries through unexpected mechanism. Adv. Funct. Mater. 30, 2000060 (2020). https://doi.org/10.1002/adfm.202000060
- M.-Y. Sun, B. Liu, Y. Xia, Y.-X. Wang, Y.-Q. Zheng et al., Reorganizing Helmholtz adsorption plane enables sodium layered-oxide cathode beyond high oxidation limits. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311432
- D. Huang, C. Engtrakul, S. Nanayakkara, D.W. Mulder, S.-D. Han et al., Understanding degradation at the lithium-ion battery cathode/electrolyte interface: connecting transition-metal dissolution mechanisms to electrolyte composition. ACS Appl. Mater. Interfaces 13, 11930–11939 (2021). https://doi.org/10.1021/acsami.0c22235
- J.-G. Han, K. Kim, Y. Lee, N.-S. Choi, Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv. Mater. 31, e1804822 (2019). https://doi.org/10.1002/adma.201804822
- H. Yildirim, A. Kinaci, M.K.Y. Chan, J.P. Greeley, First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015). https://doi.org/10.1021/acsami.5b02904
- S. Lei, Z. Zeng, M. Liu, H. Zhang, S. Cheng et al., Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries. Nano Energy 98, 107265 (2022). https://doi.org/10.1016/j.nanoen.2022.107265
- C. Li, X. Zhang, Z. Yang, H. Lv, T. Song et al., Stable cycling of LiNi0.9Co0.05Mn0.05O2/lithium metal batteries enabled by synergistic tuning the surface stability of cathode/anode. J. Energy Chem. 87, 342–350 (2023). https://doi.org/10.1016/j.jechem.2023.08.033
- H. Cheng, Z. Ma, P. Kumar, H. Liang, Z. Cao et al., High voltage electrolyte design mediated by advanced solvation chemistry toward high energy density and fast charging lithium-ion batteries. Adv. Energy Mater. 14, 2304321 (2024). https://doi.org/10.1002/aenm.202304321
- Z. Li, L. Wang, X. Huang, X. He, Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI): a prominent lithium salt in lithium-ion battery electrolytes–fundamentals, progress, and future perspectives. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202408319
- L.A. Ma, A.J. Naylor, L. Nyholm, R. Younesi, Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. Int. Ed. 60, 4855–4863 (2021). https://doi.org/10.1002/anie.202013803
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- P. Liu, T. Huang, B. Xiao, L. Zou, K. Wang et al., Ultra-thin and mechanically stable LiCoO2-electrolyte interphase enabled by Mg2+ involved electrolyte. Small 20, e2311520 (2024). https://doi.org/10.1002/smll.202311520
- C. Sheng, F. Yu, C. Li, H. Zhang, J. Huang et al., Diagnosing the SEI layer in a potassium ion battery using distribution of relaxation time. J. Phys. Chem. Lett. 12, 2064–2071 (2021). https://doi.org/10.1021/acs.jpclett.1c00118
- Y. Tang, Y. Wei, A.F. Hollenkamp, M. Musameh, A. Seeber et al., Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano-Micro Lett. 13, 178 (2021). https://doi.org/10.1007/s40820-021-00686-4
- J. Yan, B. Wang, Y. Tang, W. Du, M. Ye et al., Dynamically ion-coordinated bipolar organodichalcogenide cathodes enabling high-energy and durable aqueous Zn batteries. Angew. Chem. Int. Ed. 63, e202400121 (2024). https://doi.org/10.1002/anie.202400121
- Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15, 104 (2023). https://doi.org/10.1007/s40820-023-01070-0
References
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020). https://doi.org/10.1126/science.aay9972
L. Yu, Z. Cheng, K. Xu, Y.-X. Chang, Y.-H. Feng et al., Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode. Energy Storage Mater. 50, 730–739 (2022). https://doi.org/10.1016/j.ensm.2022.06.012
R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya et al., Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021). https://doi.org/10.1038/s41578-021-00324-w
Y. Qi, Z. Tong, J. Zhao, L. Ma, T. Wu et al., Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes. Joule 2, 2348–2363 (2018). https://doi.org/10.1016/j.joule.2018.07.027
P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018). https://doi.org/10.1002/aenm.201701912
Y. Sun, S. Guo, H. Zhou, Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 12, 825–840 (2019). https://doi.org/10.1039/C8EE01006D
C. Delmas, D. Carlier, M. Guignard, The layered oxides in lithium and sodium-ion batteries: a solid-state chemistry approach. Adv. Energy Mater. 11, 2001201 (2021). https://doi.org/10.1002/aenm.202001201
S. Guo, H. Yu, P. Liu, Y. Ren, T. Zhang et al., High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 8, 1237–1244 (2015). https://doi.org/10.1039/C4EE03361B
M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015). https://doi.org/10.1039/C4EE03192J
M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaïm et al., P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74–80 (2013). https://doi.org/10.1038/nmat3478
S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa et al., Study on the reversible electrode reaction of Na1−xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 51, 6211–6220 (2012). https://doi.org/10.1021/ic300357d
D. Su, C. Wang, H.-J. Ahn, G. Wang, Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry 19, 10884–10889 (2013). https://doi.org/10.1002/chem.201301563
T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16, 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
M. Leng, J. Bi, W. Wang, Z. Xing, W. Yan et al., Superior electrochemical performance of O3-type NaNi0.5−xMn0.3Ti0.2ZrxO2 cathode material for sodium-ion batteries from Ti and Zr substitution of the transition metals. J. Alloys Compd. 816, 152581 (2020). https://doi.org/10.1016/j.jallcom.2019.152581
P.-F. Wang, H.-R. Yao, X.-Y. Liu, J.-N. Zhang, L. Gu et al., Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29, 1700210 (2017). https://doi.org/10.1002/adma.201700210
Y.-K. Sun, Direction for commercialization of O3-type layered cathodes for sodium-ion batteries. ACS Energy Lett. 5, 1278–1280 (2020). https://doi.org/10.1021/acsenergylett.0c00597
Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51, 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
B. Peng, G. Wan, N. Ahmad, L. Yu, X. Ma et al., Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 13, 2370117 (2023). https://doi.org/10.1002/aenm.202370117
Z. Su, H. Guo, C. Zhao, Rational design of electrode-electrolyte interphase and electrolytes for rechargeable proton batteries. Nano-Micro Lett. 15, 96 (2023). https://doi.org/10.1007/s40820-023-01071-z
H. Su, H. Zhang, Z. Chen, M. Li, J. Zhao et al., Electrolyte and interphase engineering through solvation structure regulation for stable lithium metal batteries. Chin. Chem. Lett. 34, 108640 (2023). https://doi.org/10.1016/j.cclet.2023.108640
J. Song, K. Wang, J. Zheng, M.H. Engelhard, B. Xiao et al., Controlling surface phase transition and chemical reactivity of O3-Layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5, 1718–1725 (2020). https://doi.org/10.1021/acsenergylett.0c00700
H. Wan, J. Xu, C. Wang, Designing electrolytesand interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2023). https://doi.org/10.1038/s41570-023-00557-z
Y. Jin, Y. Xu, B. Xiao, M.H. Engelhard, R. Yi et al., Stabilizing interfacial reactions for stable cycling of high-voltage sodium batteries. Adv. Funct. Mater. 32, 2204995 (2022). https://doi.org/10.1002/adfm.202204995
S. Wu, B. Su, K. Ni, F. Pan, C. Wang et al., Carbonate electrolytes: fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv. Energy Mater. 11, 2170034 (2021). https://doi.org/10.1002/aenm.202170034
X. Zheng, L. Huang, X. Ye, J. Zhang, F. Min et al., Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 7, 2312–2346 (2021). https://doi.org/10.1016/j.chempr.2021.02.025
Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9, 2201207 (2022). https://doi.org/10.1002/advs.202201207
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
Z. Yu, J. Zhang, T. Liu, B. Tang, X. Yang et al., Research progress and perspectives of localized high-concentration electrolytes for secondary batteries. Acta Chim. Sinica 78, 114 (2020). https://doi.org/10.6023/a19100385
J. Lee, Y. Lee, J. Lee, S.M. Lee, J.H. Choi et al., Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries. ACS Appl. Mater. Interfaces 9, 3723–3732 (2017). https://doi.org/10.1021/acsami.6b14878
X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
J. Lamb, A. Manthiram, Stable sodium-based batteries with advanced electrolytes and layered-oxide cathodes. ACS Appl. Mater. Interfaces 14, 28865–28872 (2022). https://doi.org/10.1021/acsami.2c05402
X. Zhou, Q. Zhang, Z. Zhu, Y. Cai, H. Li et al., Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem. Int. Ed. 61, e202205045 (2022). https://doi.org/10.1002/anie.202205045
J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard et al., Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018). https://doi.org/10.1021/acsenergylett.7b01213
H.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang et al., Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries. Angew. Chem. Int. Ed. 60, 26837–26846 (2021). https://doi.org/10.1002/anie.202112550
N. Shao, X.-G. Sun, S. Dai, D.-E. Jiang, Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. J. Phys. Chem. B 115, 12120–12125 (2011). https://doi.org/10.1021/jp204401t
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb et al., Gaussian 16 (2016).
A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992). https://doi.org/10.1063/1.462066
G.G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R.J. Behm et al., Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy 55, 327–340 (2019). https://doi.org/10.1016/j.nanoen.2018.10.040
Y. Ugata, Y. Chen, S. Miyazaki, S. Sasagawa, K. Ueno et al., High-concentration LiPF6/sulfone electrolytes: structure, transport properties, and battery application. Phys. Chem. Chem. Phys. 25, 29566–29575 (2023). https://doi.org/10.1039/d3cp04561g
E. Huangzhang, X. Zeng, T. Yang, H. Liu, C. Sun et al., A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li||LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chem. Eng. J. 439, 135534 (2022). https://doi.org/10.1016/j.cej.2022.135534
Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
Z. Guo, Z. Cui, R. Sim, A. Manthiram, Localized high-concentration electrolytes with low-cost diluents compatible with both cobalt-free LiNiO2 cathode and lithium-metal anode. Small 19, 2305055 (2023). https://doi.org/10.1002/smll.202305055
S. Chen, Z. Wang, H. Zhao, H. Qiao, H. Luan et al., A novel flame retardant and film-forming electrolyte additive for lithium ion batteries. J. Power. Sources 187, 229–232 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.091
L. Xue, S.-Y. Lee, Z. Zhao, C.A. Angell, Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries. J. Power. Sources 295, 190–196 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.112
O. Zhanadilov, S. Baiju, N. Voronina, J.H. Yu, A.Y. Kim et al., Impact of transition metal layer vacancy on the structure and performance of P2 type layered sodium cathode material. Nano-Micro Lett. 16, 239 (2024). https://doi.org/10.1007/s40820-024-01439-9
G.-L. Xu, X. Liu, X. Zhou, C. Zhao, I. Hwang et al., Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022). https://doi.org/10.1038/s41467-022-28052-x
S. Ma, P. Zou, H.L. Xin, Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability. Mater. Today Energy 38, 101446 (2023). https://doi.org/10.1016/j.mtener.2023.101446
N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi et al., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Nabatteries. Nat. Mater. 11, 512–517 (2012). https://doi.org/10.1038/nmat3309
J. Feng, Y. Liu, D. Fang, J. Li, Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries. Nano Energy 118, 109030 (2023). https://doi.org/10.1016/j.nanoen.2023.109030
Y. Xiao, N.M. Abbasi, Y.-F. Zhu, S. Li, S.-J. Tan et al., Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv. Funct. Mater. 30, 2001334 (2020). https://doi.org/10.1002/adfm.202001334
K. Wang, P. Yan, M. Sui, Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy 54, 148–155 (2018). https://doi.org/10.1016/j.nanoen.2018.09.073
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
Z. Zhang, J. Yang, W. Huang, H. Wang, W. Zhou et al., Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. Matter 4, 302–312 (2021). https://doi.org/10.1016/j.matt.2020.10.021
Y. Liu, L. Zhu, E. Wang, Y. An, Y. Liu et al., Electrolyte engineering with tamed electrode interphases for high-voltage sodium-ion batteries. Adv. Mater. 36, e2310051 (2024). https://doi.org/10.1002/adma.202310051
Y. Jin, Y. Xu, P.M.L. Le, T.D. Vo, Q. Zhou et al., Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS Energy Lett. 5, 3212–3220 (2020). https://doi.org/10.1021/acsenergylett.0c01712
W. Xiao, Q. Sun, M.N. Banis, B. Wang, W. Li et al., Understanding the critical role of binders in phosphorus/carbon anode for sodium-ion batteries through unexpected mechanism. Adv. Funct. Mater. 30, 2000060 (2020). https://doi.org/10.1002/adfm.202000060
M.-Y. Sun, B. Liu, Y. Xia, Y.-X. Wang, Y.-Q. Zheng et al., Reorganizing Helmholtz adsorption plane enables sodium layered-oxide cathode beyond high oxidation limits. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311432
D. Huang, C. Engtrakul, S. Nanayakkara, D.W. Mulder, S.-D. Han et al., Understanding degradation at the lithium-ion battery cathode/electrolyte interface: connecting transition-metal dissolution mechanisms to electrolyte composition. ACS Appl. Mater. Interfaces 13, 11930–11939 (2021). https://doi.org/10.1021/acsami.0c22235
J.-G. Han, K. Kim, Y. Lee, N.-S. Choi, Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv. Mater. 31, e1804822 (2019). https://doi.org/10.1002/adma.201804822
H. Yildirim, A. Kinaci, M.K.Y. Chan, J.P. Greeley, First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015). https://doi.org/10.1021/acsami.5b02904
S. Lei, Z. Zeng, M. Liu, H. Zhang, S. Cheng et al., Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries. Nano Energy 98, 107265 (2022). https://doi.org/10.1016/j.nanoen.2022.107265
C. Li, X. Zhang, Z. Yang, H. Lv, T. Song et al., Stable cycling of LiNi0.9Co0.05Mn0.05O2/lithium metal batteries enabled by synergistic tuning the surface stability of cathode/anode. J. Energy Chem. 87, 342–350 (2023). https://doi.org/10.1016/j.jechem.2023.08.033
H. Cheng, Z. Ma, P. Kumar, H. Liang, Z. Cao et al., High voltage electrolyte design mediated by advanced solvation chemistry toward high energy density and fast charging lithium-ion batteries. Adv. Energy Mater. 14, 2304321 (2024). https://doi.org/10.1002/aenm.202304321
Z. Li, L. Wang, X. Huang, X. He, Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI): a prominent lithium salt in lithium-ion battery electrolytes–fundamentals, progress, and future perspectives. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202408319
L.A. Ma, A.J. Naylor, L. Nyholm, R. Younesi, Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. Int. Ed. 60, 4855–4863 (2021). https://doi.org/10.1002/anie.202013803
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
P. Liu, T. Huang, B. Xiao, L. Zou, K. Wang et al., Ultra-thin and mechanically stable LiCoO2-electrolyte interphase enabled by Mg2+ involved electrolyte. Small 20, e2311520 (2024). https://doi.org/10.1002/smll.202311520
C. Sheng, F. Yu, C. Li, H. Zhang, J. Huang et al., Diagnosing the SEI layer in a potassium ion battery using distribution of relaxation time. J. Phys. Chem. Lett. 12, 2064–2071 (2021). https://doi.org/10.1021/acs.jpclett.1c00118
Y. Tang, Y. Wei, A.F. Hollenkamp, M. Musameh, A. Seeber et al., Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano-Micro Lett. 13, 178 (2021). https://doi.org/10.1007/s40820-021-00686-4
J. Yan, B. Wang, Y. Tang, W. Du, M. Ye et al., Dynamically ion-coordinated bipolar organodichalcogenide cathodes enabling high-energy and durable aqueous Zn batteries. Angew. Chem. Int. Ed. 63, e202400121 (2024). https://doi.org/10.1002/anie.202400121
Y. Liu, M. Qiu, X. Hu, J. Yuan, W. Liao et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries. Nano-Micro Lett. 15, 104 (2023). https://doi.org/10.1007/s40820-023-01070-0