Electrocatalytic Self-Coupling of N-Heterocyclic Amides for Energy-Efficient Bipolar Hydrogen Production
Corresponding Author: Zhenhai Wen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 197
Abstract
This study proposes a green electrochemical strategy for addressing the high-energy-barrier oxygen evolution reaction (OER) in traditional overall water splitting. Leveraging the thermodynamic advantages of N–H bond activation/cleavage and N–N coupling processes, the 3,5-diamino-1,2,4-triazole (DAT) oxidative coupling reaction (DATOR) has been introduced to replace the high-energy-barrier oxygen evolution reaction (OER). This substitution enables low-energy-consumption hydrogen production while simultaneously yielding high-value azo energetic materials. Furthermore, to enhance electron and atom economy, the anodic DATOR process allows the hydrogen radicals (H*) generated from amine dehydrogenation to chemically combine via the Tafel process, producing hydrogen gas. By constructing coupling system with Pts,n@NiS2@CC cathode and CuO/CF anode, the operating voltage of the system was significantly reduced (0.96 V@10 mA cm− 2), which was 680 mV more energy efficient than conventional water electrolysis (1.64 V). In situ spectroscopy and theoretical calculations indicate that the anode DATOR generates DAAT through the N–H bond cleavage and N–N coupling path mediated by hydroxyl radicals (OH*), while releasing hydrogen gas. The coupling system has been operating stably for more than 300 h at an industrial-grade current density. This research provides new ideas for dual-electrode hydrogen production and green electrosynthesis of functional materials, with significant energy and economic benefits.
Highlights:
1 Replacing anodic oxygen evolution reaction with 3,5-diamino-1,2,4-triazole oxidative coupling enables ultra-low-voltage (0.96 V @10 mA cm− 2) dual-electrode H2 production and simultaneous synthesis of energetic 5,5′-diamino-3,3′-azido-1H-1,2,4-triazole (DAAT), achieving 35.8% energy savings.
2 A Pt single-atom/nanoparticle hybrid on NiS2 nanosheets (Pts,n@NiS2@CC) exhibits exceptional alkaline hydrogen evolution reaction performance and stability via optimized H* adsorption.
3 Anodic DAAT formation proceeds via an OH*-mediated N–N coupling pathway, enabling stable (> 300 h @500 mA cm− 2), industrial-scale bipolar H2 production coupled with green DAAT synthesis in an anion-exchange membrane water electrolyzer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.N. Dinh, Y. Sun, Z. Pei, Z. Yuan, A. Suwardi et al., Electronic modulation of nickel disulfide toward efficient water electrolysis. Small 16(17), e1905885 (2020). https://doi.org/10.1002/smll.201905885
- Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
- X. Han, X. Wu, Y. Deng, J. Liu, J. Lu et al., Ultrafine Pt nanop-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 8(24), 1800935 (2018). https://doi.org/10.1002/aenm.201800935
- W. Tang, L. Zhang, T. Qiu, H. Tan, Y. Wang et al., Efficient conversion of biomass to formic acid coupled with low energy consumption hydrogen production from water electrolysis. Angew. Chem. Int. Ed. 62(30), e202305843 (2023). https://doi.org/10.1002/anie.202305843
- Z. Lei, S. Ali, C.I. Sathish, M. Ahmed, J. Qu et al., Transition metal carbonitride MXenes anchored with Pt sub-nanometer clusters to achieve high-performance hydrogen evolution reaction at all pH range. Nano-Micro Lett. 17(1), 123 (2025). https://doi.org/10.1007/s40820-025-01654-y
- J.-Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He et al., Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 14(1), 365–373 (2021). https://doi.org/10.1039/d0ee03500a
- B. Deng, Z.-Y. Wu, E. Feng, L. Ma, Z. Wang et al., Coupling amorphization and compositional optimization of ternary metal phosphides toward high-performance electrocatalytic hydrogen production. J. Am. Chem. Soc. 147(19), 16129–16140 (2025). https://doi.org/10.1021/jacs.5c00071
- X. Gao, S. Dai, Y. Teng, Q. Wang, Z. Zhang et al., Ultra-efficient and cost-effective platinum nanomembrane electrocatalyst for sustainable hydrogen production. Nano-Micro Lett. 16(1), 108 (2024). https://doi.org/10.1007/s40820-024-01324-5
- Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen et al., Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet @ NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 34(13), 2107053 (2022). https://doi.org/10.1002/adma.202107053
- P. Wang, X. Gao, M. Zheng, M. Jaroniec, Y. Zheng et al., Urine electrooxidation for energy–saving hydrogen generation. Nat. Commun. 16, 2424 (2025). https://doi.org/10.1038/s41467-025-57798-3
- R.-Y. Fan, X.-J. Zhai, W.-Z. Qiao, Y.-S. Zhang, N. Yu et al., Optimized electronic modification of S-doped CuO induced by oxidative reconstruction for coupling glycerol electrooxidation with hydrogen evolution. Nano-Micro Lett. 15(1), 190 (2023). https://doi.org/10.1007/s40820-023-01159-6
- Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao et al., Lattice-strain engineering of homogeneous NiS0.5Se0.5 core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater. 32(40), e2000231 (2020). https://doi.org/10.1002/adma.202000231
- J. Li, J. Zhao, Z. Lai, Y. Zhang, Y. Wang et al., Efficient and stable neutral seawater splitting achieved via strong-proton-adsorption in Pd-O-Co collaborative coordination. Chem. Eng. J. 492, 152226 (2024). https://doi.org/10.1016/j.cej.2024.152226
- J. Li, T. Zhang, Y. Ma, Z. Zhao, H. Ma et al., Bipolar hydrogen production by hybrid water electrolysis. Adv. Funct. Mater. e15761 (2025). https://doi.org/10.1002/adfm.202515761
- Z.-X. Ge, Y. Ding, T.-J. Wang, F. Shi, P.-J. Jin et al., Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting. J. Energy Chem. 77, 209–216 (2023). https://doi.org/10.1016/j.jechem.2022.10.020
- S. Chen, T. Zhang, J. Han, H. Qi, S. Jiao et al., Interface engineering of Fe-Sn-Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano Res. Energy 3(2), e9120106 (2024). https://doi.org/10.26599/nre.2023.9120106
- M. Yang, Y. Jiang, C.-L. Dong, L. Xu, Y. Huang et al., A self-reactivated PdCu catalyst for aldehyde electro-oxidation with anodic hydrogen production. Nat. Commun. 15, 9852 (2024). https://doi.org/10.1038/s41467-024-54286-y
- J. Kim, J. Guo, N. Shan, J. Yoo, P. Farinazzo Bergamo Dias Martins et al., Deciphering catalyst–support interaction via doping for highly active and durable oxygen evolution catalysis. J. Am. Chem. Soc. 147(19), 16340–16349 (2025). https://doi.org/10.1021/jacs.5c02001
- Y. Wang, X. Li, Z. Huang, H. Wang, Z. Chen et al., Amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew. Chem. Int. Ed. 62(6), e202215256 (2023). https://doi.org/10.1002/anie.202215256
- Z. Chang, F. Kong, M. Wang, S. Han, X. Cui et al., Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation. Chem Catalysis 2(2), 358–371 (2022). https://doi.org/10.1016/j.checat.2021.12.004
- Y. Zhang, X. Wu, G. Fu, F. Si, X.-Z. Fu et al., NiFexP@NiCo-LDH nanoarray bifunctional electrocatalysts for coupling of methanol oxidation and hydrogen production. Int. J. Hydrogen Energy 47(39), 17150–17160 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.182
- Z.-J. Chen, J. Dong, J. Wu, Q. Shao, N. Luo et al., Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density. Nat. Commun. 14(1), 4210 (2023). https://doi.org/10.1038/s41467-023-39848-w
- Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59(43), 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
- L. Chen, C. Yu, X. Song, J. Dong, J. Mu et al., Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen. Nat. Commun. 15(1), 8072 (2024). https://doi.org/10.1038/s41467-024-51937-y
- X.-L. Liu, Y.-C. Jiang, J.-T. Huang, W. Zhong, B. He et al., Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis. Carbon Energy 5(12), e367 (2023). https://doi.org/10.1002/cey2.367
- X. Xia, J. Liu, Y. Wen, X. Zhu, X. Yang et al., Research on urea oxidation coupled with electrolysis of water to produce hydrogen based on (NiFe)2P catalyst. J. Electrochem. Soc. 171(3), 036504 (2024). https://doi.org/10.1149/1945-7111/ad2e7e
- Z. Chen, C. Lei, X. Liu, Y. Li, T. Jiang et al., Pyrazole-mediated on-surface synthesis of nickel/nickel oxide hybrids for efficient urea-assisted hydrogen production. Nano Lett. 25(1), 222–229 (2025). https://doi.org/10.1021/acs.nanolett.4c04826
- T. Wang, X. Cao, L. Jiao, Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem. Int. Ed. 61(51), e202213328 (2022). https://doi.org/10.1002/anie.202213328
- J. Wang, H.T.D. Bui, H. Hu, S. Kong, X. Wang et al., Industrial-current ammonia synthesis by polarized cuprous cyanamide coupled to valorization of glycerol at 4, 000 mA cm−2. Adv. Mater. 37(14), 2418451 (2025). https://doi.org/10.1002/adma.202418451
- T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5(1), 66–73 (2022). https://doi.org/10.1038/s41929-021-00721-y
- B.-G. Cai, C. Empel, W.-Z. Yao, R.M. Koenigs, J. Xuan, Azoxy compounds: from synthesis to reagents for azoxy group transfer reactions. Angew. Chem. Int. Ed. 135(48), e202312031 (2023). https://doi.org/10.1002/ange.202312031
- C. Luo, X. Ji, S. Hou, N. Eidson, X. Fan et al., Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30(23), 1706498 (2018). https://doi.org/10.1002/adma.201706498
- A.B. Isaev, N.S. Shabanov, A.G. Magomedova, P.V. Nidheesh, M.A. Oturan, Electrochemical oxidation of azo dyes in water: a review. Environ. Chem. Lett. 21(5), 2863–2911 (2023). https://doi.org/10.1007/s10311-023-01610-5
- Y. Wu, B. Xiao, K. Liu, S. Wang, Y. Hou et al., Electrochemical synthesis of high-efficiency water electrolysis catalysts. Electrochem. Energy Rev. 8(1), 2 (2025). https://doi.org/10.1007/s41918-024-00237-6
- J. Tian, M. Xia, X. Cheng, C. Mao, Y. Chen et al., Understanding Pt active sites on nitrogen-doped carbon nanocages for industrial hydrogen evolution with ultralow Pt usage. J. Am. Chem. Soc. 146(49), 33640–33650 (2024). https://doi.org/10.1021/jacs.4c11445
- L. Sun, X. Pan, Y.-N. Xie, J. Zheng, S. Xu et al., Accelerated dynamic reconstruction in metal–organic frameworks with ligand defects for selective electrooxidation of amines to azos coupling with hydrogen production. Angew. Chem. Int. Ed. 63(21), e202402176 (2024). https://doi.org/10.1002/anie.202402176
- J. Li, Y. Li, Y. Ma, Z. Zhao, H. Peng et al., Electrochemical N-N oxidatively coupled dehydrogenation of 3, 5-diamino-1H-1, 2, 4-triazole for value-added chemicals and bipolar hydrogen production. J. Am. Chem. Soc. 147(11), 9505–9518 (2025). https://doi.org/10.1021/jacs.4c17225
- D.J. Schild, J.C. Peters, Light enhanced Fe-mediated nitrogen fixation: mechanistic insights regarding H2 elimination, HER, and NH3 generation. ACS Catal. 9(5), 4286–4295 (2019). https://doi.org/10.1021/acscatal9b00523
- M. Xie, J. Gong, J. Zhou, J. Wang, Y. Cao et al., Green coupling of 3, 5-diamino-1H-1, 2, 4-triazole into the azo compound. Mendeleev Commun. 33(5), 717–720 (2023). https://doi.org/10.1016/j.mencom.2023.09.040
- C. Liu, S. Wu, Y. Yang, J. Wei, S. Chen et al., Atomic cluster outperforms single atom in hydrogen evolution and hydrazine oxidation for energy-efficient water splitting. Adv. Funct. Mater. 35(19), 2422634 (2025). https://doi.org/10.1002/adfm.202422634
- X. Ding, C. Jia, P. Ma, H. Chen, J. Xue et al., Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution. Nano Lett. 23(8), 3309–3316 (2023). https://doi.org/10.1021/acs.nanolett.3c00228
- H. Zhai, P. Tan, M. Jiang, M. Zhang, R. Ren et al., Electronic regulation of Pt single-atom catalysts via local coordination state adjustment for enhanced photocatalytic performance. ACS Catal. 13(12), 8063–8072 (2023). https://doi.org/10.1021/acscatal.3c01141
- M. Liu, H. Su, X. Liu, X. He, P. Tan et al., Dynamic modulation of electron redistribution at the heterogeneous interface nickel hydroxides/platinum boosts acidic oxygen reduction reaction. Nat. Commun. 16(1), 2826 (2025). https://doi.org/10.1038/s41467-025-58193-8
- H. Jiang, W. Yang, M. Xu, E. Wang, Y. Wei et al., Single atom catalysts in Van der Waals gaps. Nat. Commun. 13(1), 6863 (2022). https://doi.org/10.1038/s41467-022-34572-3
- Z. Wang, B. Xiao, Z. Lin, Y. Xu, Y. Lin et al., PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew. Chem. Int. Ed. 60(43), 23388–23393 (2021). https://doi.org/10.1002/anie.202110335
- L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen et al., Single-atom Cr–N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 145(39), 21432–21441 (2023). https://doi.org/10.1021/jacs.3c06863
- L. Zhao, K. Meng, Y. Guo, Q. Wu, Q. Zhu et al., FeCoP sub-nanometric-sheets for electrocatalzing overall water splitting. Nano Res. Energy 3(4), e9120129 (2024). https://doi.org/10.26599/nre.2024.9120129
- S. Barwe, B. Mei, J. Masa, W. Schuhmann, E. Ventosa, Overcoming cathode poisoning from electrolyte impurities in alkaline electrolysis by means of self-healing electrocatalyst films. Nano Energy 53, 763–768 (2018). https://doi.org/10.1016/j.nanoen.2018.09.045
- Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Synergistic action of Pt and Nb2O5 ultrafine nanops for bidirectional conversion of polysulfides in high-performance lithium-sulfur cells. Chem. Eng. J. 430, 132714 (2022). https://doi.org/10.1016/j.cej.2021.132714
- Y. Liu, W. Kou, X. Li, C. Huang, R. Shui et al., Constructing patch-Ni-shelled Pt@Ni nanops within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries. Small 15(34), 1902431 (2019). https://doi.org/10.1002/smll.201902431
- W. Liu, Z. Xiang, A. Tan, K. Wan, Z. Fu et al., Single-layer platinum cluster catalyst for efficient hydrogen electro-production. Adv. Funct. Mater. 33(10), 2212752 (2023). https://doi.org/10.1002/adfm.202212752
- T. Wang, X. Guo, J. Zhang, W. Xiao, P. Xi et al., Electronic structure modulation of NiS2 by transition metal doping for accelerating the hydrogen evolution reaction. J. Mater. Chem. A 7(9), 4971–4976 (2019). https://doi.org/10.1039/c8ta11286j
- W. Shen, Y. Zheng, Y. Hu, J. Jin, Y. Hou et al., Rare-earth-modified NiS2 improves OH coverage for an industrial alkaline water electrolyzer. J. Am. Chem. Soc. 146(8), 5324–5332 (2024). https://doi.org/10.1021/jacs.3c11861
- D.D. Alemayehu, M.-C. Tsai, M.-H. Tsai, C.-C. Yang, C.-C. Chang et al., Heterogeneous interfaces of Ni3Se4 nanoclusters decorated on a Ni3N surface enhance efficient and durable hydrogen evolution reactions in alkaline electrolyte. J. Am. Chem. Soc. 147(19), 16047–16059 (2025). https://doi.org/10.1021/jacs.4c17747
- X. Liu, H. Liao, S. Zhang, M. Liu, Y. Zhang et al., Deciphering role of dual nickel sites in reconstructed hetero-anionic structure of nickel sulfide for boosted hydrogen evolution reaction. Appl. Catal. B Environ. Energy 357, 124270 (2024). https://doi.org/10.1016/j.apcatb.2024.124270
- H. Liao, K. Chen, X. He, J. Tong, X. Liu et al., Metal hydroxide–organic framework mediated structural reengineering enables efficient NiFe interaction for robust water oxidation. Nano Lett. 24(48), 15436–15443 (2024). https://doi.org/10.1021/acs.nanolett.4c04815
- W. Zhong, W. Li, C. Yang, J. Wu, R. Zhao et al., Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. J. Energy Chem. 61, 236–242 (2021). https://doi.org/10.1016/j.jechem.2021.02.013
- S. Parvin, E. Aransiola, M. Ammar, S. Lee, L. Zhang et al., Tailored Ni(OH)2/CuCo/Ni(OH)2 composite interfaces for efficient and durable urea oxidation reaction. ACS Appl. Mater. Interfaces 16(49), 67715–67729 (2024). https://doi.org/10.1021/acsami.4c14041
- H. Yu, J. Pan, Y. Zhang, L. Wang, H. Ji et al., Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution. Nano Res. 17(6), 4782–4789 (2024). https://doi.org/10.1007/s12274-024-6430-y
- Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang et al., Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 144(5), 2171–2178 (2022). https://doi.org/10.1021/jacs.1c10814
- M. Chen, Y. Zhang, R. Wang, B. Zhang, B. Song et al., Surface reconstruction of Se-doped NiS2 enables high-efficiency oxygen evolution reaction. J. Energy Chem. 84, 173–180 (2023). https://doi.org/10.1016/j.jechem.2023.05.009
- J. Liang, Y. Wang, Q. Liu, Y. Luo, T. Li et al., Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 9(10), 6117–6122 (2021). https://doi.org/10.1039/D0TA12008A
- D. Kim, K.-E. Ryou, G. Park, S. Jung, J. Park et al., Tailoring mesopores on ultrathin hollow carbon nanoarchitecture with N2O2 coordinated Ni single-atom catalysts for hydrogen evolution. J. Am. Chem. Soc. 147(19), 16522–16535 (2025). https://doi.org/10.1021/jacs.5c03118
- T. Luo, J. Huang, Y. Hu, C. Yuan, J. Chen et al., Fullerene lattice-confined Ru nanops and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 33(12), 2213058 (2023). https://doi.org/10.1002/adfm.202213058
- J. Wang, Z. Zhang, H. Song, B. Zhang, J. Liu et al., Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 31(9), 2008578 (2021). https://doi.org/10.1002/adfm.202008578
- C. Meng, Y. Gao, Y. Zhou, K. Sun, Y. Wang et al., P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res. 16(5), 6228–6236 (2023). https://doi.org/10.1007/s12274-022-5287-1
- A. Dippold, T.M. Klapötke, F.A. Martin, Synthesis and characterization of bis(triaminoguanidinium) 5, 5’-dinitrimino-3, 3’-azo-1H-1, 2, 4-triazolate–a novel insensitive energetic material. Z. Für Anorg. Und Allg. Chem. 637(9), 1181–1193 (2011). https://doi.org/10.1002/zaac.201100102
References
K.N. Dinh, Y. Sun, Z. Pei, Z. Yuan, A. Suwardi et al., Electronic modulation of nickel disulfide toward efficient water electrolysis. Small 16(17), e1905885 (2020). https://doi.org/10.1002/smll.201905885
Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
X. Han, X. Wu, Y. Deng, J. Liu, J. Lu et al., Ultrafine Pt nanop-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 8(24), 1800935 (2018). https://doi.org/10.1002/aenm.201800935
W. Tang, L. Zhang, T. Qiu, H. Tan, Y. Wang et al., Efficient conversion of biomass to formic acid coupled with low energy consumption hydrogen production from water electrolysis. Angew. Chem. Int. Ed. 62(30), e202305843 (2023). https://doi.org/10.1002/anie.202305843
Z. Lei, S. Ali, C.I. Sathish, M. Ahmed, J. Qu et al., Transition metal carbonitride MXenes anchored with Pt sub-nanometer clusters to achieve high-performance hydrogen evolution reaction at all pH range. Nano-Micro Lett. 17(1), 123 (2025). https://doi.org/10.1007/s40820-025-01654-y
J.-Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He et al., Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 14(1), 365–373 (2021). https://doi.org/10.1039/d0ee03500a
B. Deng, Z.-Y. Wu, E. Feng, L. Ma, Z. Wang et al., Coupling amorphization and compositional optimization of ternary metal phosphides toward high-performance electrocatalytic hydrogen production. J. Am. Chem. Soc. 147(19), 16129–16140 (2025). https://doi.org/10.1021/jacs.5c00071
X. Gao, S. Dai, Y. Teng, Q. Wang, Z. Zhang et al., Ultra-efficient and cost-effective platinum nanomembrane electrocatalyst for sustainable hydrogen production. Nano-Micro Lett. 16(1), 108 (2024). https://doi.org/10.1007/s40820-024-01324-5
Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen et al., Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet @ NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 34(13), 2107053 (2022). https://doi.org/10.1002/adma.202107053
P. Wang, X. Gao, M. Zheng, M. Jaroniec, Y. Zheng et al., Urine electrooxidation for energy–saving hydrogen generation. Nat. Commun. 16, 2424 (2025). https://doi.org/10.1038/s41467-025-57798-3
R.-Y. Fan, X.-J. Zhai, W.-Z. Qiao, Y.-S. Zhang, N. Yu et al., Optimized electronic modification of S-doped CuO induced by oxidative reconstruction for coupling glycerol electrooxidation with hydrogen evolution. Nano-Micro Lett. 15(1), 190 (2023). https://doi.org/10.1007/s40820-023-01159-6
Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao et al., Lattice-strain engineering of homogeneous NiS0.5Se0.5 core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater. 32(40), e2000231 (2020). https://doi.org/10.1002/adma.202000231
J. Li, J. Zhao, Z. Lai, Y. Zhang, Y. Wang et al., Efficient and stable neutral seawater splitting achieved via strong-proton-adsorption in Pd-O-Co collaborative coordination. Chem. Eng. J. 492, 152226 (2024). https://doi.org/10.1016/j.cej.2024.152226
J. Li, T. Zhang, Y. Ma, Z. Zhao, H. Ma et al., Bipolar hydrogen production by hybrid water electrolysis. Adv. Funct. Mater. e15761 (2025). https://doi.org/10.1002/adfm.202515761
Z.-X. Ge, Y. Ding, T.-J. Wang, F. Shi, P.-J. Jin et al., Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting. J. Energy Chem. 77, 209–216 (2023). https://doi.org/10.1016/j.jechem.2022.10.020
S. Chen, T. Zhang, J. Han, H. Qi, S. Jiao et al., Interface engineering of Fe-Sn-Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano Res. Energy 3(2), e9120106 (2024). https://doi.org/10.26599/nre.2023.9120106
M. Yang, Y. Jiang, C.-L. Dong, L. Xu, Y. Huang et al., A self-reactivated PdCu catalyst for aldehyde electro-oxidation with anodic hydrogen production. Nat. Commun. 15, 9852 (2024). https://doi.org/10.1038/s41467-024-54286-y
J. Kim, J. Guo, N. Shan, J. Yoo, P. Farinazzo Bergamo Dias Martins et al., Deciphering catalyst–support interaction via doping for highly active and durable oxygen evolution catalysis. J. Am. Chem. Soc. 147(19), 16340–16349 (2025). https://doi.org/10.1021/jacs.5c02001
Y. Wang, X. Li, Z. Huang, H. Wang, Z. Chen et al., Amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew. Chem. Int. Ed. 62(6), e202215256 (2023). https://doi.org/10.1002/anie.202215256
Z. Chang, F. Kong, M. Wang, S. Han, X. Cui et al., Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation. Chem Catalysis 2(2), 358–371 (2022). https://doi.org/10.1016/j.checat.2021.12.004
Y. Zhang, X. Wu, G. Fu, F. Si, X.-Z. Fu et al., NiFexP@NiCo-LDH nanoarray bifunctional electrocatalysts for coupling of methanol oxidation and hydrogen production. Int. J. Hydrogen Energy 47(39), 17150–17160 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.182
Z.-J. Chen, J. Dong, J. Wu, Q. Shao, N. Luo et al., Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density. Nat. Commun. 14(1), 4210 (2023). https://doi.org/10.1038/s41467-023-39848-w
Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59(43), 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
L. Chen, C. Yu, X. Song, J. Dong, J. Mu et al., Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen. Nat. Commun. 15(1), 8072 (2024). https://doi.org/10.1038/s41467-024-51937-y
X.-L. Liu, Y.-C. Jiang, J.-T. Huang, W. Zhong, B. He et al., Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis. Carbon Energy 5(12), e367 (2023). https://doi.org/10.1002/cey2.367
X. Xia, J. Liu, Y. Wen, X. Zhu, X. Yang et al., Research on urea oxidation coupled with electrolysis of water to produce hydrogen based on (NiFe)2P catalyst. J. Electrochem. Soc. 171(3), 036504 (2024). https://doi.org/10.1149/1945-7111/ad2e7e
Z. Chen, C. Lei, X. Liu, Y. Li, T. Jiang et al., Pyrazole-mediated on-surface synthesis of nickel/nickel oxide hybrids for efficient urea-assisted hydrogen production. Nano Lett. 25(1), 222–229 (2025). https://doi.org/10.1021/acs.nanolett.4c04826
T. Wang, X. Cao, L. Jiao, Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem. Int. Ed. 61(51), e202213328 (2022). https://doi.org/10.1002/anie.202213328
J. Wang, H.T.D. Bui, H. Hu, S. Kong, X. Wang et al., Industrial-current ammonia synthesis by polarized cuprous cyanamide coupled to valorization of glycerol at 4, 000 mA cm−2. Adv. Mater. 37(14), 2418451 (2025). https://doi.org/10.1002/adma.202418451
T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5(1), 66–73 (2022). https://doi.org/10.1038/s41929-021-00721-y
B.-G. Cai, C. Empel, W.-Z. Yao, R.M. Koenigs, J. Xuan, Azoxy compounds: from synthesis to reagents for azoxy group transfer reactions. Angew. Chem. Int. Ed. 135(48), e202312031 (2023). https://doi.org/10.1002/ange.202312031
C. Luo, X. Ji, S. Hou, N. Eidson, X. Fan et al., Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30(23), 1706498 (2018). https://doi.org/10.1002/adma.201706498
A.B. Isaev, N.S. Shabanov, A.G. Magomedova, P.V. Nidheesh, M.A. Oturan, Electrochemical oxidation of azo dyes in water: a review. Environ. Chem. Lett. 21(5), 2863–2911 (2023). https://doi.org/10.1007/s10311-023-01610-5
Y. Wu, B. Xiao, K. Liu, S. Wang, Y. Hou et al., Electrochemical synthesis of high-efficiency water electrolysis catalysts. Electrochem. Energy Rev. 8(1), 2 (2025). https://doi.org/10.1007/s41918-024-00237-6
J. Tian, M. Xia, X. Cheng, C. Mao, Y. Chen et al., Understanding Pt active sites on nitrogen-doped carbon nanocages for industrial hydrogen evolution with ultralow Pt usage. J. Am. Chem. Soc. 146(49), 33640–33650 (2024). https://doi.org/10.1021/jacs.4c11445
L. Sun, X. Pan, Y.-N. Xie, J. Zheng, S. Xu et al., Accelerated dynamic reconstruction in metal–organic frameworks with ligand defects for selective electrooxidation of amines to azos coupling with hydrogen production. Angew. Chem. Int. Ed. 63(21), e202402176 (2024). https://doi.org/10.1002/anie.202402176
J. Li, Y. Li, Y. Ma, Z. Zhao, H. Peng et al., Electrochemical N-N oxidatively coupled dehydrogenation of 3, 5-diamino-1H-1, 2, 4-triazole for value-added chemicals and bipolar hydrogen production. J. Am. Chem. Soc. 147(11), 9505–9518 (2025). https://doi.org/10.1021/jacs.4c17225
D.J. Schild, J.C. Peters, Light enhanced Fe-mediated nitrogen fixation: mechanistic insights regarding H2 elimination, HER, and NH3 generation. ACS Catal. 9(5), 4286–4295 (2019). https://doi.org/10.1021/acscatal9b00523
M. Xie, J. Gong, J. Zhou, J. Wang, Y. Cao et al., Green coupling of 3, 5-diamino-1H-1, 2, 4-triazole into the azo compound. Mendeleev Commun. 33(5), 717–720 (2023). https://doi.org/10.1016/j.mencom.2023.09.040
C. Liu, S. Wu, Y. Yang, J. Wei, S. Chen et al., Atomic cluster outperforms single atom in hydrogen evolution and hydrazine oxidation for energy-efficient water splitting. Adv. Funct. Mater. 35(19), 2422634 (2025). https://doi.org/10.1002/adfm.202422634
X. Ding, C. Jia, P. Ma, H. Chen, J. Xue et al., Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution. Nano Lett. 23(8), 3309–3316 (2023). https://doi.org/10.1021/acs.nanolett.3c00228
H. Zhai, P. Tan, M. Jiang, M. Zhang, R. Ren et al., Electronic regulation of Pt single-atom catalysts via local coordination state adjustment for enhanced photocatalytic performance. ACS Catal. 13(12), 8063–8072 (2023). https://doi.org/10.1021/acscatal.3c01141
M. Liu, H. Su, X. Liu, X. He, P. Tan et al., Dynamic modulation of electron redistribution at the heterogeneous interface nickel hydroxides/platinum boosts acidic oxygen reduction reaction. Nat. Commun. 16(1), 2826 (2025). https://doi.org/10.1038/s41467-025-58193-8
H. Jiang, W. Yang, M. Xu, E. Wang, Y. Wei et al., Single atom catalysts in Van der Waals gaps. Nat. Commun. 13(1), 6863 (2022). https://doi.org/10.1038/s41467-022-34572-3
Z. Wang, B. Xiao, Z. Lin, Y. Xu, Y. Lin et al., PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew. Chem. Int. Ed. 60(43), 23388–23393 (2021). https://doi.org/10.1002/anie.202110335
L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen et al., Single-atom Cr–N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 145(39), 21432–21441 (2023). https://doi.org/10.1021/jacs.3c06863
L. Zhao, K. Meng, Y. Guo, Q. Wu, Q. Zhu et al., FeCoP sub-nanometric-sheets for electrocatalzing overall water splitting. Nano Res. Energy 3(4), e9120129 (2024). https://doi.org/10.26599/nre.2024.9120129
S. Barwe, B. Mei, J. Masa, W. Schuhmann, E. Ventosa, Overcoming cathode poisoning from electrolyte impurities in alkaline electrolysis by means of self-healing electrocatalyst films. Nano Energy 53, 763–768 (2018). https://doi.org/10.1016/j.nanoen.2018.09.045
Y. Liu, D. Hong, M. Chen, Z. Su, Y. Gao et al., Synergistic action of Pt and Nb2O5 ultrafine nanops for bidirectional conversion of polysulfides in high-performance lithium-sulfur cells. Chem. Eng. J. 430, 132714 (2022). https://doi.org/10.1016/j.cej.2021.132714
Y. Liu, W. Kou, X. Li, C. Huang, R. Shui et al., Constructing patch-Ni-shelled Pt@Ni nanops within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries. Small 15(34), 1902431 (2019). https://doi.org/10.1002/smll.201902431
W. Liu, Z. Xiang, A. Tan, K. Wan, Z. Fu et al., Single-layer platinum cluster catalyst for efficient hydrogen electro-production. Adv. Funct. Mater. 33(10), 2212752 (2023). https://doi.org/10.1002/adfm.202212752
T. Wang, X. Guo, J. Zhang, W. Xiao, P. Xi et al., Electronic structure modulation of NiS2 by transition metal doping for accelerating the hydrogen evolution reaction. J. Mater. Chem. A 7(9), 4971–4976 (2019). https://doi.org/10.1039/c8ta11286j
W. Shen, Y. Zheng, Y. Hu, J. Jin, Y. Hou et al., Rare-earth-modified NiS2 improves OH coverage for an industrial alkaline water electrolyzer. J. Am. Chem. Soc. 146(8), 5324–5332 (2024). https://doi.org/10.1021/jacs.3c11861
D.D. Alemayehu, M.-C. Tsai, M.-H. Tsai, C.-C. Yang, C.-C. Chang et al., Heterogeneous interfaces of Ni3Se4 nanoclusters decorated on a Ni3N surface enhance efficient and durable hydrogen evolution reactions in alkaline electrolyte. J. Am. Chem. Soc. 147(19), 16047–16059 (2025). https://doi.org/10.1021/jacs.4c17747
X. Liu, H. Liao, S. Zhang, M. Liu, Y. Zhang et al., Deciphering role of dual nickel sites in reconstructed hetero-anionic structure of nickel sulfide for boosted hydrogen evolution reaction. Appl. Catal. B Environ. Energy 357, 124270 (2024). https://doi.org/10.1016/j.apcatb.2024.124270
H. Liao, K. Chen, X. He, J. Tong, X. Liu et al., Metal hydroxide–organic framework mediated structural reengineering enables efficient NiFe interaction for robust water oxidation. Nano Lett. 24(48), 15436–15443 (2024). https://doi.org/10.1021/acs.nanolett.4c04815
W. Zhong, W. Li, C. Yang, J. Wu, R. Zhao et al., Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. J. Energy Chem. 61, 236–242 (2021). https://doi.org/10.1016/j.jechem.2021.02.013
S. Parvin, E. Aransiola, M. Ammar, S. Lee, L. Zhang et al., Tailored Ni(OH)2/CuCo/Ni(OH)2 composite interfaces for efficient and durable urea oxidation reaction. ACS Appl. Mater. Interfaces 16(49), 67715–67729 (2024). https://doi.org/10.1021/acsami.4c14041
H. Yu, J. Pan, Y. Zhang, L. Wang, H. Ji et al., Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution. Nano Res. 17(6), 4782–4789 (2024). https://doi.org/10.1007/s12274-024-6430-y
Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang et al., Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 144(5), 2171–2178 (2022). https://doi.org/10.1021/jacs.1c10814
M. Chen, Y. Zhang, R. Wang, B. Zhang, B. Song et al., Surface reconstruction of Se-doped NiS2 enables high-efficiency oxygen evolution reaction. J. Energy Chem. 84, 173–180 (2023). https://doi.org/10.1016/j.jechem.2023.05.009
J. Liang, Y. Wang, Q. Liu, Y. Luo, T. Li et al., Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 9(10), 6117–6122 (2021). https://doi.org/10.1039/D0TA12008A
D. Kim, K.-E. Ryou, G. Park, S. Jung, J. Park et al., Tailoring mesopores on ultrathin hollow carbon nanoarchitecture with N2O2 coordinated Ni single-atom catalysts for hydrogen evolution. J. Am. Chem. Soc. 147(19), 16522–16535 (2025). https://doi.org/10.1021/jacs.5c03118
T. Luo, J. Huang, Y. Hu, C. Yuan, J. Chen et al., Fullerene lattice-confined Ru nanops and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 33(12), 2213058 (2023). https://doi.org/10.1002/adfm.202213058
J. Wang, Z. Zhang, H. Song, B. Zhang, J. Liu et al., Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 31(9), 2008578 (2021). https://doi.org/10.1002/adfm.202008578
C. Meng, Y. Gao, Y. Zhou, K. Sun, Y. Wang et al., P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res. 16(5), 6228–6236 (2023). https://doi.org/10.1007/s12274-022-5287-1
A. Dippold, T.M. Klapötke, F.A. Martin, Synthesis and characterization of bis(triaminoguanidinium) 5, 5’-dinitrimino-3, 3’-azo-1H-1, 2, 4-triazolate–a novel insensitive energetic material. Z. Für Anorg. Und Allg. Chem. 637(9), 1181–1193 (2011). https://doi.org/10.1002/zaac.201100102