A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator
Corresponding Author: Xiangyu Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 7
Abstract
The triboelectric nanogenerator (TENG) can effectively collect energy based on contact electrification (CE) at diverse interfaces, including solid–solid, liquid–solid, liquid–liquid, gas–solid, and gas–liquid. This enables energy harvesting from sources such as water, wind, and sound. In this review, we provide an overview of the coexistence of electron and ion transfer in the CE process. We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies. The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques. Additionally, we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces. Finally, this review elucidates the future opportunities and challenges that interface CE may encounter. We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
Highlights:
1 The distinctive characteristics, underlying mechanisms, diverse range of selected materials, and modification methods of contact electrification (CE) at various interfaces are summarized and comparatively analyzed, offering valuable guidance for future investigations of triboelectric nanogenerator (TENG) at different interfaces.
2 This review gives a detailed insight into the unique applications of TENG relying on different interfacial electrification.
3 The challenges and development prospects of TENGs based on CE are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
- H. Zhang, L.J. Yao, L.W. Quan et al., Theories for triboelectric nanogenerators: A comprehensive review. Nanotechnol. Rev. 9(1), 610–625 (2020). https://doi.org/10.1515/ntrev-2020-0049
- T.H. Cheng, Q. Gao, Z.L. Wang, The current development and future outlook of triboelectric nanogenerators: A survey of literature. Adv. Mater. Technol. 4(3), 1800588 (2019)
- T.X. Xiao, X. Liang, T. Jiang et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018). https://doi.org/10.1002/adfm.201802634
- Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- Y.L. Nannan Wang, E. Ye, Z. Li, D. Wang, Contact electrification behaviors of solid–liquid interface: Regulation, mechanisms, and applications. Adv. Energy Sustain. (2023). https://doi.org/10.1002/aesr.202200186
- W. Tang, B.D. Chen, Z.L. Wang, Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29(41), 1901069 (2019)
- S. Lin, X. Chen, Z.L. Wang, Contact electrification at the liquid-solid interface. Chem. Rev. 122(5), 5209–5232 (2022). https://doi.org/10.1021/acs.chemrev.1c00176
- Y. Lu, L. Jiang, Y. Yu et al., Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 13(1), 5316 (2022). https://doi.org/10.1038/s41467-022-33086-2
- L. Sun, Z. Wang, C. Li et al., Probing contact electrification between gas and solid surface. Nanoenergy Adv. 3(1), 1–11 (2023). https://doi.org/10.3390/nanoenergyadv3010001
- Y. Dong, S. Xu, C. Zhang et al., Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 8(48), eadd0464 (2022). https://doi.org/10.1126/sciadv.add0464
- J. Tian, X. Chen, Z.L. Wang, Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 31(24), 242001 (2020). https://doi.org/10.1088/1361-6528/ab793e
- H. Wang, L. Xu, Z. Wang, Advances of high-performance triboelectric nanogenerators for blue energy harvesting. Nanoenergy Adv. 1(1), 32–57 (2021). https://doi.org/10.3390/nanoenergyadv1010003
- J.V. Vidal, V. Slabov, A.L. Kholkin et al., Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review. Nano-Micro Lett. 13(1), 199 (2021). https://doi.org/10.1007/s40820-021-00713-4
- H. Shao, H. Wang, Y. Cao et al., Efficient conversion of sound noise into electric energy using electrospun polyacrylonitrile membranes. Nano Energy 75, 104956 (2020). https://doi.org/10.1016/j.nanoen.2020.104956
- J. Shen, B. Li, Y. Yang et al., Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 216, 114595 (2022). https://doi.org/10.1016/j.bios.2022.114595
- X. Wang, X. Chen, M. Iwamoto, Recent progress in the development of portable high voltage source based on triboelectric nanogenerator. Smart Mater. Medicine 1, 66–76 (2020). https://doi.org/10.1016/j.smaim.2020.07.002
- C. Zhang, Z.L. Wang, Tribotronics-a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016). https://doi.org/10.1016/j.nantod.2016.07.004
- A. Chen, C. Zhang, G. Zhu et al., Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. 7(14), 2000186 (2020). https://doi.org/10.1002/advs.202000186
- M.P. Kim, C.W. Ahn, Y. Lee et al., Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy 82, 105697 (2021). https://doi.org/10.1016/j.nanoen.2020.105697
- K. Parida, V. Kumar, W. Jiangxin et al., Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 29(37), 1702181 (2017). https://doi.org/10.1002/adma.201702181
- T. Liu, M. Liu, S. Dou et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018). https://doi.org/10.1021/acsnano.8b00108
- Y.H. Zhou, W.L. Deng, J. Xu et al., Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 1(8), 100142 (2020)
- D. Zhao, X. Yu, J.L. Wang et al., A standard for normalizing the outputs of triboelectric nanogenerators in various modes. Energy Environ. Sci. 15(9), 3901–3911 (2022). https://doi.org/10.1039/d2ee01553f
- C. Cai, B. Luo, Y. Liu et al., Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 52, 299–326 (2022). https://doi.org/10.1016/j.mattod.2021.10.034
- Q. Lu, M. Sun, B. Huang et al., Electronic view of triboelectric nanogenerator for energy harvesting: Mechanisms and applications. Adv. Energy Sustain. Res. 2(4), 2000087 (2021). https://doi.org/10.1002/aesr.202000087
- S. Pan, Z. Zhang, Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1), 2–17 (2018). https://doi.org/10.1007/s40544-018-0217-7
- B. Sun, D. Xu, Z. Wang et al., Interfacial structure design for triboelectric nanogenerators. Battery Energy 1(3), 220001 (2022). https://doi.org/10.1002/bte2.20220001
- W. Zhang, Y. Shi, Y. Li et al., A review: Contact electrification on special interfaces. Front. Mater. 9, 909746 (2022). https://doi.org/10.3389/fmats.2022.909746
- Y. Zheng, H. Zhao, Y. Cai et al., Recent advances in one-dimensional micro/nanomotors: Fabrication, propulsion and application. Nano-Micro Lett. 15(1), 20 (2022). https://doi.org/10.1007/s40820-022-00988-1
- S. Lin, L. Xu, A. Chi Wang et al., Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 11(1), 399 (2020). https://doi.org/10.1038/s41467-019-14278-9
- Y.S. Zhou, S. Li, S. Niu et al., Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 9(12), 3705–3713 (2016). https://doi.org/10.1007/s12274-016-1241-4
- Y.S. Zhou, Y. Liu, G. Zhu et al., In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771–2776 (2013). https://doi.org/10.1021/nl401006x
- C. Xu, Y. Zi, A.C. Wang et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), e1706790 (2018). https://doi.org/10.1002/adma.201706790
- C. Xu, B. Zhang, A.C. Wang et al., Contact-electrification between two identical materials: Curvature effect. ACS Nano 13(2), 2034–2041 (2019). https://doi.org/10.1021/acsnano.8b08533
- S. Lin, X. Chen, Z.L. Wang, The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76, 105070 (2020). https://doi.org/10.1016/j.nanoen.2020.105070
- W. Xu, X. Zhou, C. Hao et al., Slips-teng: Robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl. Sci. Rev. 6(3), 540–550 (2019). https://doi.org/10.1093/nsr/nwz025
- W. Xu, H. Zheng, Y. Liu et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- F. Zhan, A.C. Wang, L. Xu et al., Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 14(12), 17565–17573 (2020). https://doi.org/10.1021/acsnano.0c08332
- Z.H. Loh, G. Doumy, C. Arnold et al., Observation of the fastest chemical processes in the radiolysis of water. Science 367(6474), 179–182 (2020). https://doi.org/10.1126/science.aaz4740
- Y.H. Wang, S. Zheng, W.M. Yang et al., In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
- R. Zhang, H. Lin, Y. Pan et al., Liquid–liquid triboelectric nanogenerator for harvesting distributed energy. Adv. Funct. Mater. 32(51), 08393 (2022). https://doi.org/10.1002/adfm.202208393
- S.A. Lone, K.C. Lim, K. Kaswan et al., Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 99, 107318 (2022). https://doi.org/10.1016/j.nanoen.2022.107318
- Y.H. Liu, J.L. Mo, Q. Fu et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020)
- W.Y. Qiao, Z.H. Zhao, L.L. Zhou et al., Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 32(46), 2208544 (2022)
- Y. Yu, Q. Gao, D. Zhao et al., Influence of mechanical motions on the output characteristics of triboelectric nanogenerators. Mater. Today Phys. 25, 100701 (2022)
- Z. Zhao, L. Zhou, S. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12(1), 4686 (2021). https://doi.org/10.1038/s41467-021-25046-z
- S. Li, J. Nie, Y. Shi et al., Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 32(25), e2001307 (2020). https://doi.org/10.1002/adma.202001307
- K.Y. Lee, H.J. Yoon, T. Jiang et al., Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6(11), 1502566 (2016). https://doi.org/10.1002/aenm.201502566
- T. Jing, B. Xu, Y. Yang et al., Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators. Nano Energy 78, 105374 (2020). https://doi.org/10.1016/j.nanoen.2020.105374
- W.T. Cao, H. Ouyang, W. Xin et al., A stretchable highoutput triboelectric nanogenerator improved by mxene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020)
- R.M. Wen, B. Zhao, L.M. Fan et al., Controlling the output performance of triboelectric nanogenerator through filling isostructural metal-organic frameworks with varying functional groups. Adv. Mater. Technol. (2023). https://doi.org/10.1002/admt.202201330
- Y. Wu, T.J. Cuthbert, Y. Luo et al., Cross-link-dependent ionogel-based triboelectric nanogenerators with slippery and antireflective properties. Small 19(24), e2301381 (2023). https://doi.org/10.1002/smll.202301381
- X. Tao, S. Fu, S. Li et al., Large and tunable ranking shift in triboelectric series of polymers by introducing phthalazinone moieties. Small Methods 7(6), e2201593 (2023). https://doi.org/10.1002/smtd.202201593
- F.R. Fan, L. Lin, G. Zhu et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012). https://doi.org/10.1021/nl300988z
- X. Sun, Y. Liu, N. Luo et al., Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment. Nano Energy 102, 107691 (2022). https://doi.org/10.1016/j.nanoen.2022.107691
- X. Tao, S. Li, Y. Shi et al., Triboelectric polymer with high thermal charge stability for harvesting energy from 200 °c flowing air. Adv. Funct. Mater. 31(49), 2106082 (2021). https://doi.org/10.1002/adfm.202106082
- Z. Liu, Y. Huang, Y. Shi et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13(1), 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
- Z.Q. Liu, Y.Z. Huang, Y.X. Shi et al., Creating ultrahigh and long-persistent triboelectric charge density on weak polar polymer via quenching polarization. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302164
- S.Y. Li, Y. Fan, H.Q. Chen et al., Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 13(3), 896–907 (2020). https://doi.org/10.1039/c9ee03307f
- J. Wang, H.Y. Wu, S.K. Fu et al., Enhancement of output charge density of teng in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy 104, 107916 (2022)
- L. Calzolai, C.M. Gorst, Z.H. Zhao et al., 1h NMR investigation of the electronic and molecular structure of the four-iron cluster ferredoxin from the hyperthermophile pyrococcus furiosus. Identification of asp 14 as a cluster ligand in each of the four redox states. Biochemistry 34(36), 11373–11384 (1995)
- J.C. Maggiore, J.C. Burrell, K.D. Browne et al., Tissue engineered axon-based “living scaffolds” promote survival of spinal cord motor neurons following peripheral nerve repair. J. Tissue Eng. Regen. Med. 14(12), 1892–1907 (2020). https://doi.org/10.1002/term.3145
- O. Verners, L. Lapčinskis, L. Ģermane et al., Smooth polymers charge negatively: Controlling contact electrification polarity in polymers. Nano Energy 104, 107914 (2022). https://doi.org/10.1016/j.nanoen.2022.107914
- D. Guan, X. Cong, J. Li et al., Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy 87, 106186 (2021). https://doi.org/10.1016/j.nanoen.2021.106186
- B. Cheng, Q. Xu, Y. Ding et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12(1), 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
- L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47(12), 2188–2207 (2008). https://doi.org/10.1002/anie.200701812
- B.D. Chen, W. Tang, C. He et al., Ultrafine capillary-tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing. Adv. Mater. Technol. 3(1), 1700229 (2018). https://doi.org/10.1002/admt.201700229
- J. Nie, Z. Ren, L. Xu et al., Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Adv. Mater. 32(2), e1905696 (2020). https://doi.org/10.1002/adma.201905696
- L. Zhang, X. Li, Y. Zhang et al., Regulation and influence factors of triboelectricity at the solid-liquid interface. Nano Energy 78, 105370 (2020). https://doi.org/10.1016/j.nanoen.2020.105370
- X. Li, L. Zhang, Y. Feng et al., Reversible temperature-sensitive liquid–solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing. Adv. Funct. Mater. 31(17), 2010220 (2021). https://doi.org/10.1002/adfm.202010220
- H. Cho, J. Chung, G. Shin et al., Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy 56, 56–64 (2019). https://doi.org/10.1016/j.nanoen.2018.11.039
- S. Lin, M. Zheng, J. Luo et al., Effects of surface functional groups on electron transfer at liquid-solid interfacial contact electrification. ACS Nano 14(8), 10733–10741 (2020). https://doi.org/10.1021/acsnano.0c06075
- X.Y. Li, J. Tao, J. Zhu et al., A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. Apl. Mater. 5(7), 074104 (2017). https://doi.org/10.1063/1.4977216
- A. Shahzad, K.R. Wijewardhana, J.-K. Song, Contact electrification efficiency dependence on surface energy at the water-solid interface. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5038605
- G. Xue, Y. Xu, T. Ding et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
- D.L. Vu, C.D. Le, C.P. Vo et al., Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator. Compos. B: Engin. 223, 109135 (2021). https://doi.org/10.1016/j.compositesb.2021.109135
- Q. Zeng, A. Chen, X. Zhang et al., A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 35(7), e2208139 (2023). https://doi.org/10.1002/adma.202208139
- M. Knobel, W.C. Nunes, L.M. Socolovsky et al., Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 8(6), 2836–2857 (2008). https://doi.org/10.1166/jnn.2008.15348
- Y.H. Wu, Y. Luo, J.K. Qu et al., Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy 75, 105027 (2020)
- C. Savin, C. Nejneru, C.A. Tugui et al., Analysis of contact angle for metallic materials in wastewater pumps. Rev. Chim-Bucharest 70(8), 2811–2817 (2019)
- N.A. Kermani, I. Petrushina, A. Nikiforov et al., Corrosion behavior of construction materials for ionic liquid hydrogen compressor. Int. J. Hydrogen Energ. 41(38), 16688–16695 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.221
- Y. Liu, W. Liu, Z. Wang et al., Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11(1), 1599 (2020). https://doi.org/10.1038/s41467-020-15368-9
- J. Chung, H. Cho, H. Yong et al., Versatile surface for solid-solid/liquid-solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces. Sci. Technol. Adv. Mater. 21(1), 139–146 (2020). https://doi.org/10.1080/14686996.2020.1733920
- L.P. Chen, X.J. Feng, Enhanced catalytic reaction at an air-liquid-solid triphase interface. Chem. Sci. 11(12), 3124–3131 (2020). https://doi.org/10.1039/c9sc06505a
- Q. Tang, H.Y. Guo, P. Yan et al., Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. Ecomat 2(4), 12060 (2020)
- P. Yang, Y.X. Shi, X.L. Tao et al., Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator. Matter 6(4), 1295–1311 (2023). https://doi.org/10.1016/j.matt.2023.02.006
- W.J. Li, Y.Y. Xiang, W. Zhang et al., Ordered mesoporous SiO2 nanops as charge storage sites for enhanced triboelectric nanogenerators. Nano Energy 113, 108539 (2023). https://doi.org/10.1016/j.nanoen.2023.108539
- B. Wang, Y. Wu, Y. Liu et al., New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting. ACS Appl. Mater. Interfaces 12(28), 31351–31359 (2020). https://doi.org/10.1021/acsami.0c03843
- Y. Feng, L. Ling, J. Nie et al., Self-powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built-in triboelectric nanogenerators. ACS Nano 11(12), 12411–12418 (2017). https://doi.org/10.1021/acsnano.7b06451
- J. Xiong, G. Thangavel, J. Wang et al., Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6(29), eabb4246 (2020). https://doi.org/10.1126/sciadv.abb4246
- J. Nie, Z. Wang, Z. Ren et al., Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 10(1), 2264 (2019). https://doi.org/10.1038/s41467-019-10232-x
- R. Zhang, H. Lin, Y. Pan et al., Liquid–liquid triboelectric nanogenerator for harvesting distributed energy. Adv. Funct. Mater. 32(51), 2270293 (2022). https://doi.org/10.1002/adfm.202270293
- F. Wang, P. Yang, X.L. Tao et al., Study of contact electrification at liquid-gas interface. ACS Nano 15(11), 18206–18213 (2021). https://doi.org/10.1021/acsnano.1c07158
- G. Yao, L. Kang, J. Li et al., Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9(1), 5349 (2018). https://doi.org/10.1038/s41467-018-07764-z
- S. Du, N. Zhou, G. Xie et al., Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing. Nano Energy 85, 106004 (2021). https://doi.org/10.1016/j.nanoen.2021.106004
- S. Gokhool, S. Bairagi, C. Kumar et al., Reflections on boosting wearable triboelectric nanogenerator performance via interface optimisation. Results Eng. 17, 100808 (2023). https://doi.org/10.1016/j.rineng.2022.100808
- Y. Zhang, X. Gao, Y. Wu et al., Self-powered technology based on nanogenerators for biomedical applications. Exploration 1(1), 90–114 (2021). https://doi.org/10.1002/EXP.20210152
- X. Cao, Y. Xiong, J. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
- Z. Wu, H. Guo, W. Ding et al., A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13(2), 2349–2356 (2019). https://doi.org/10.1021/acsnano.8b09088
- X. Qu, X. Ma, B. Shi et al., Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 31(5), 2006612 (2020). https://doi.org/10.1002/adfm.202006612
- L. Xu, H. Wu, G. Yao et al., Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12(10), 10262–10271 (2018). https://doi.org/10.1021/acsnano.8b05359
- Q. Zeng, Y. Luo, X. Zhang et al., A bistable triboelectric nanogenerator for low-grade thermal energy harvesting and solar thermal energy conversion. Small (2023). https://doi.org/10.1002/smll.202301952
- M.L. Di Lorenzo, M.C. Righetti, Crystallization-induced formation of rigid amorphous fraction. Polym. Crystal. 1(2), e10023 (2018). https://doi.org/10.1002/pcr2.10023
- I. Kim, H. Roh, W. Choi et al., Air-gap embedded triboelectric nanogenerator via surface modification of non-contact layer using sandpapers. Nanoscale 13(19), 8837–8847 (2021). https://doi.org/10.1039/d1nr01517f
- S.-B. Jeon, M.-L. Seol, D. Kim et al., Self-powered ion concentration sensor with triboelectricity from liquid-solid contact electrification. Adv. Electron. Mater. 2(5), 1600006 (2016). https://doi.org/10.1002/aelm.201600006
- A. Ibrahim, M. Jain, E. Salman et al., A smart knee implant using triboelectric energy harvesters. Smart Mater. Struct. 28(2), 025040 (2019). https://doi.org/10.1088/1361-665X/aaf3f1
- S. Dong, F. Xu, Y. Sheng et al., Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for e-textile power sources. Nano Energy 78, 105327 (2020). https://doi.org/10.1016/j.nanoen.2020.105327
- P.Y. Feng, Z. Xia, B. Sun et al., Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification. ACS Appl. Mater. Interfaces 13(14), 16916–16927 (2021). https://doi.org/10.1021/acsami.1c02815
- G. Liu, H. Guo, S. Xu et al., Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900801
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- R. Lei, Y. Shi, Y. Ding et al., Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 13(7), 2178–2190 (2020). https://doi.org/10.1039/d0ee01236j
- X. Dong, Q. Liu, S. Liu et al., Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv. Fiber Mater. 4(4), 885–893 (2022). https://doi.org/10.1007/s42765-022-00152-9
- S. Hu, Z. Yuan, R. Li et al., Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines. Nano Lett. 22(13), 5584–5591 (2022). https://doi.org/10.1021/acs.nanolett.2c01912
- S.-F. Leung, H.-C. Fu, M. Zhang et al., Blue energy fuels: Converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ. Sci. 13(5), 1300–1308 (2020). https://doi.org/10.1039/c9ee03566d
- P.F. Chen, J. An, R.W. Cheng et al., Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy Environ. Sci. 14(8), 4523–4532 (2021). https://doi.org/10.1039/d1ee01382c
- H. Ouyang, Z. Liu, N. Li et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
- L. Atzori, A. Iera, G. Morabito, The internet of things: A survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010
- S. Li, D. Liu, Z. Zhao et al., A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano 14(2), 2475–2482 (2020). https://doi.org/10.1021/acsnano.9b10142
- J. Wang, C. Meng, Q. Gu et al., Normally transparent tribo-induced smart window. ACS Nano 14(3), 3630–3639 (2020). https://doi.org/10.1021/acsnano.0c00107
- H. Xuan, Q. Guan, H. Tan et al., Light-controlled triple-shape-memory, high-permittivity dynamic elastomer for wearable multifunctional information encoding devices. ACS Nano 16(10), 16954–16965 (2022). https://doi.org/10.1021/acsnano.2c07004
- Y. Luo, J. Sun, Q. Zeng et al., Programmable tactile feedback system for blindness assistance based on triboelectric nanogenerator and self-excited electrostatic actuator. Nano Energy 111, 108425 (2023). https://doi.org/10.1016/j.nanoen.2023.108425
- S. Shen, J. Yi, Z. Sun et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- X. Pu, H. Guo, J. Chen et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
- P. Yang, Y. Shi, X. Tao et al., Self-powered virtual olfactory generation system based on bionic fibrous membrane and electrostatic field accelerated evaporation. EcoMat 5(2), 12298 (2022). https://doi.org/10.1002/eom2.12298
- Y. Shi, R. Lei, F. Li et al., Self-powered persistent phosphorescence for reliable optical display. ACS Energy Lett. 6(9), 3132–3140 (2021). https://doi.org/10.1021/acsenergylett.1c01508
- Y. Shi, F. Wang, J. Tian et al., Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 7(6), abe2943 (2021). https://doi.org/10.1126/sciadv.abe2943
- X. Qu, Z. Liu, P. Tan et al., Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8(31), eabq2521 (2022). https://doi.org/10.1126/sciadv.abq2521
- P. Yang, Y. Shi, S. Li et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3), 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
- T. Andreadou, D. Kontaxakis, K.V. Iakovou, Blue energy plants and preservation of local natural and cultural resources. Front Energy Res. 7, 00040 (2019)
- X.J. Zhao, S.Y. Kuang, Z.L. Wang et al., Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12(5), 4280–4285 (2018). https://doi.org/10.1021/acsnano.7b08716
- T. Jiang, H. Pang, J. An et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10(23), 2000064 (2020). https://doi.org/10.1002/aenm.202000064
- X. Yan, W. Xu, Y. Deng et al., Bubble energy generator. Sci. Adv. 8(25), eabo7698 (2022). https://doi.org/10.1126/sciadv.abo7698
- G. Zhu, Y. Su, P. Bai et al., Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014). https://doi.org/10.1021/nn5012732
- X. Li, J. Tao, X. Wang et al., Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8(21), 1800705 (2018). https://doi.org/10.1002/aenm.201800705
- Z. Ren, Y. Ding, J. Nie et al., Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators. ACS Appl. Mater. Interfaces 11(6), 6143–6153 (2019). https://doi.org/10.1021/acsami.8b21477
- S. Hu, Z. Shi, R. Zheng et al., Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl. Mater. Interfaces 12(36), 40021–40030 (2020). https://doi.org/10.1021/acsami.0c10097
- W. Sun, Y. Zheng, T. Li et al., Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 217, 119388 (2021). https://doi.org/10.1016/j.energy.2020.119388
- G. Li, P.-Y.A. Chuang, Identifying the forefront of electrocatalytic oxygen evolution reaction: Electronic double layer. Appl. Catal. B Environ. 239, 425–432 (2018). https://doi.org/10.1016/j.apcatb.2018.08.037
- S. Shen, J. Fu, J. Yi et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- J. Dong, S. Huang, J. Luo et al., Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer. Nano Energy 95, 106971 (2022). https://doi.org/10.1016/j.nanoen.2022.106971
- K.S. Zhao, K.J. He, Dielectric relaxation of suspensions of nanoscale ps surrounded by a thick electric double layer. Phys. Rev. B 74(20), 205319 (2006). https://doi.org/10.1103/PhysRevB.74.205319
- Z. Adamczyk, P. Warszynski, Role of electrostatic interactions in p adsorption. Adv. Colloid Interfaces 63, 41–149 (1996). https://doi.org/10.1016/0001-8686(95)00281-2
- Z. Wang, A. Berbille, Y. Feng et al., Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 13(1), 130 (2022). https://doi.org/10.1038/s41467-021-27789-1
- J. Fu, G. Xu, H. Wu et al., Liquid-interfaces-based triboelectric nanogenerator: An emerging power generation method from liquid-energy nexus. Adv. Energy Sustain. Res. 3(9), 2200051 (2022). https://doi.org/10.1002/aesr.202200051
- P. Wang, S. Zhang, L. Zhang et al., Non-contact and liquid–liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing. Nano Energy 72, 104703 (2020). https://doi.org/10.1016/j.nanoen.2020.104703
- C. Gong, X. Yuan, D. Xing et al., Fast sulfate formation initiated by the spin-forbidden excitation of SO(2) at the air-water interface. J. Am. Chem. Soc. 144(48), 22302–22308 (2022). https://doi.org/10.1021/jacs.2c10830
- J.J. Chen, L.F. Yan, W.Y. Song et al., Interfacial characteristics of carbon nanotube-polymer composites: A review. Compos. Part A-Appl. Sci. Manufact. 114, 149–169 (2018). https://doi.org/10.1016/j.compositesa.2018.08.021
- H. Ryu, H.M. Park, M.K. Kim et al., Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12(1), 4374 (2021). https://doi.org/10.1038/s41467-021-24417-w
- M.T. Rahman, S.M.S. Rana, M. Salauddin et al., Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 10(12), 1903663 (2020). https://doi.org/10.1002/aenm.201903663
- X. Wang, S. Niu, Y. Yin et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5(24), 1501467 (2015). https://doi.org/10.1002/aenm.201501467
- Z. Lin, B. Zhang, H. Guo et al., Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019). https://doi.org/10.1016/j.nanoen.2019.103908
- Y.C. Huang, D.X. Liu, X.Y. Gao et al., Flexible liquid-based continuous direct-current tribovoltaic generators enable self-powered multi-modal sensing. Adv. Funct. Mater. 33(1), 2209484 (2023). https://doi.org/10.1002/adfm.202209484
- M. Xu, S. Wang, S.L. Zhang et al., A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 57, 574–580 (2019). https://doi.org/10.1016/j.nanoen.2018.12.041
- J. Liu, Z. Wen, H. Lei et al., A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kpa(-1). Nano-Micro Lett. 14(1), 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
- I.W. Tcho, W.G. Kim, Y.K. Choi, A self-powered character recognition device based on a triboelectric nanogenerator. Nano Energy 70, 104534 (2020)
- D. Yang, Z. Liu, P. Yang et al., A curtain purification system based on a rabbit fur-based rotating triboelectric nanogenerator for efficient photocatalytic degradation of volatile organic compounds. Nanoscale 15(14), 6709–6721 (2023). https://doi.org/10.1039/d3nr00507k
- D.W. Jiang, M.Y. Lian, M.J. Xu et al., Advances in triboelectric nanogenerator technology-applications in self-powered sensors, internet of things, biomedicine, and blue energy. Adv. Compos. Hybrid. Mater. 6(2), 57 (2023). https://doi.org/10.1007/s42114-023-00632-5
- S. Tsukahara, Recent analytical methodologies on equilibrium, kinetics, and dynamics at liquid/liquid interface. Anal. Chim. Acta 556(1), 16–25 (2006). https://doi.org/10.1016/j.aca.2005.05.050
- N. Divakaran, J.P. Das, P.V.A. Kumar et al., Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. J. Manuf. Syst. 62, 477–502 (2022). https://doi.org/10.1016/j.jmsy.2022.01.002
- H. Xiang, Y. Zeng, X. Huang et al., From triboelectric nanogenerator to multifunctional triboelectric sensors: A chemical perspective toward the interface optimization and device integration. Small 18(43), e2107222 (2022). https://doi.org/10.1002/smll.202107222
- J.X. Zhu, M.L. Zhu, Q.F. Shi et al., Progress in teng technology-a journey from energy harvesting to nanoenergy and nanosystem. Ecomat 2(4), 12058 (2020)
- X.S. Zhang, M.D. Han, B. Kim et al., All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426 (2018). https://doi.org/10.1016/j.nanoen.2018.02.046
- O. Mishima, H.E. Stanley, The relationship between liquid, supercooled and glassy water. Nature 396(6709), 329–335 (1998). https://doi.org/10.1038/24540
- S. Radhakrishnan, N. Joseph, N.P. Vighnesh et al., Recent updates on triboelectric nanogenerator based advanced biomedical technologies: A short review. Results Engin. 16, 100782 (2022). https://doi.org/10.1016/j.rineng.2022.100782
- R. Wu, S. Liu, Z. Lin et al., Industrial fabrication of 3d braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv. Energy Mater. 12(31), 2201288 (2022). https://doi.org/10.1002/aenm.202201288
- A. Chen, Q. Zeng, L. Tan et al., A novel hybrid triboelectric nanogenerator based on the mutual boosting effect of electrostatic induction and electrostatic breakdown. Energy Environ. Sci. 16(8), 3486–3496 (2023). https://doi.org/10.1039/d3ee01658g
References
Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
H. Zhang, L.J. Yao, L.W. Quan et al., Theories for triboelectric nanogenerators: A comprehensive review. Nanotechnol. Rev. 9(1), 610–625 (2020). https://doi.org/10.1515/ntrev-2020-0049
T.H. Cheng, Q. Gao, Z.L. Wang, The current development and future outlook of triboelectric nanogenerators: A survey of literature. Adv. Mater. Technol. 4(3), 1800588 (2019)
T.X. Xiao, X. Liang, T. Jiang et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018). https://doi.org/10.1002/adfm.201802634
Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
Y.L. Nannan Wang, E. Ye, Z. Li, D. Wang, Contact electrification behaviors of solid–liquid interface: Regulation, mechanisms, and applications. Adv. Energy Sustain. (2023). https://doi.org/10.1002/aesr.202200186
W. Tang, B.D. Chen, Z.L. Wang, Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29(41), 1901069 (2019)
S. Lin, X. Chen, Z.L. Wang, Contact electrification at the liquid-solid interface. Chem. Rev. 122(5), 5209–5232 (2022). https://doi.org/10.1021/acs.chemrev.1c00176
Y. Lu, L. Jiang, Y. Yu et al., Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 13(1), 5316 (2022). https://doi.org/10.1038/s41467-022-33086-2
L. Sun, Z. Wang, C. Li et al., Probing contact electrification between gas and solid surface. Nanoenergy Adv. 3(1), 1–11 (2023). https://doi.org/10.3390/nanoenergyadv3010001
Y. Dong, S. Xu, C. Zhang et al., Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 8(48), eadd0464 (2022). https://doi.org/10.1126/sciadv.add0464
J. Tian, X. Chen, Z.L. Wang, Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 31(24), 242001 (2020). https://doi.org/10.1088/1361-6528/ab793e
H. Wang, L. Xu, Z. Wang, Advances of high-performance triboelectric nanogenerators for blue energy harvesting. Nanoenergy Adv. 1(1), 32–57 (2021). https://doi.org/10.3390/nanoenergyadv1010003
J.V. Vidal, V. Slabov, A.L. Kholkin et al., Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review. Nano-Micro Lett. 13(1), 199 (2021). https://doi.org/10.1007/s40820-021-00713-4
H. Shao, H. Wang, Y. Cao et al., Efficient conversion of sound noise into electric energy using electrospun polyacrylonitrile membranes. Nano Energy 75, 104956 (2020). https://doi.org/10.1016/j.nanoen.2020.104956
J. Shen, B. Li, Y. Yang et al., Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 216, 114595 (2022). https://doi.org/10.1016/j.bios.2022.114595
X. Wang, X. Chen, M. Iwamoto, Recent progress in the development of portable high voltage source based on triboelectric nanogenerator. Smart Mater. Medicine 1, 66–76 (2020). https://doi.org/10.1016/j.smaim.2020.07.002
C. Zhang, Z.L. Wang, Tribotronics-a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016). https://doi.org/10.1016/j.nantod.2016.07.004
A. Chen, C. Zhang, G. Zhu et al., Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. 7(14), 2000186 (2020). https://doi.org/10.1002/advs.202000186
M.P. Kim, C.W. Ahn, Y. Lee et al., Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy 82, 105697 (2021). https://doi.org/10.1016/j.nanoen.2020.105697
K. Parida, V. Kumar, W. Jiangxin et al., Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 29(37), 1702181 (2017). https://doi.org/10.1002/adma.201702181
T. Liu, M. Liu, S. Dou et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018). https://doi.org/10.1021/acsnano.8b00108
Y.H. Zhou, W.L. Deng, J. Xu et al., Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 1(8), 100142 (2020)
D. Zhao, X. Yu, J.L. Wang et al., A standard for normalizing the outputs of triboelectric nanogenerators in various modes. Energy Environ. Sci. 15(9), 3901–3911 (2022). https://doi.org/10.1039/d2ee01553f
C. Cai, B. Luo, Y. Liu et al., Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 52, 299–326 (2022). https://doi.org/10.1016/j.mattod.2021.10.034
Q. Lu, M. Sun, B. Huang et al., Electronic view of triboelectric nanogenerator for energy harvesting: Mechanisms and applications. Adv. Energy Sustain. Res. 2(4), 2000087 (2021). https://doi.org/10.1002/aesr.202000087
S. Pan, Z. Zhang, Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1), 2–17 (2018). https://doi.org/10.1007/s40544-018-0217-7
B. Sun, D. Xu, Z. Wang et al., Interfacial structure design for triboelectric nanogenerators. Battery Energy 1(3), 220001 (2022). https://doi.org/10.1002/bte2.20220001
W. Zhang, Y. Shi, Y. Li et al., A review: Contact electrification on special interfaces. Front. Mater. 9, 909746 (2022). https://doi.org/10.3389/fmats.2022.909746
Y. Zheng, H. Zhao, Y. Cai et al., Recent advances in one-dimensional micro/nanomotors: Fabrication, propulsion and application. Nano-Micro Lett. 15(1), 20 (2022). https://doi.org/10.1007/s40820-022-00988-1
S. Lin, L. Xu, A. Chi Wang et al., Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 11(1), 399 (2020). https://doi.org/10.1038/s41467-019-14278-9
Y.S. Zhou, S. Li, S. Niu et al., Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 9(12), 3705–3713 (2016). https://doi.org/10.1007/s12274-016-1241-4
Y.S. Zhou, Y. Liu, G. Zhu et al., In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771–2776 (2013). https://doi.org/10.1021/nl401006x
C. Xu, Y. Zi, A.C. Wang et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), e1706790 (2018). https://doi.org/10.1002/adma.201706790
C. Xu, B. Zhang, A.C. Wang et al., Contact-electrification between two identical materials: Curvature effect. ACS Nano 13(2), 2034–2041 (2019). https://doi.org/10.1021/acsnano.8b08533
S. Lin, X. Chen, Z.L. Wang, The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76, 105070 (2020). https://doi.org/10.1016/j.nanoen.2020.105070
W. Xu, X. Zhou, C. Hao et al., Slips-teng: Robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl. Sci. Rev. 6(3), 540–550 (2019). https://doi.org/10.1093/nsr/nwz025
W. Xu, H. Zheng, Y. Liu et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
F. Zhan, A.C. Wang, L. Xu et al., Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 14(12), 17565–17573 (2020). https://doi.org/10.1021/acsnano.0c08332
Z.H. Loh, G. Doumy, C. Arnold et al., Observation of the fastest chemical processes in the radiolysis of water. Science 367(6474), 179–182 (2020). https://doi.org/10.1126/science.aaz4740
Y.H. Wang, S. Zheng, W.M. Yang et al., In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021). https://doi.org/10.1038/s41586-021-04068-z
R. Zhang, H. Lin, Y. Pan et al., Liquid–liquid triboelectric nanogenerator for harvesting distributed energy. Adv. Funct. Mater. 32(51), 08393 (2022). https://doi.org/10.1002/adfm.202208393
S.A. Lone, K.C. Lim, K. Kaswan et al., Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 99, 107318 (2022). https://doi.org/10.1016/j.nanoen.2022.107318
Y.H. Liu, J.L. Mo, Q. Fu et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020)
W.Y. Qiao, Z.H. Zhao, L.L. Zhou et al., Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 32(46), 2208544 (2022)
Y. Yu, Q. Gao, D. Zhao et al., Influence of mechanical motions on the output characteristics of triboelectric nanogenerators. Mater. Today Phys. 25, 100701 (2022)
Z. Zhao, L. Zhou, S. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12(1), 4686 (2021). https://doi.org/10.1038/s41467-021-25046-z
S. Li, J. Nie, Y. Shi et al., Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 32(25), e2001307 (2020). https://doi.org/10.1002/adma.202001307
K.Y. Lee, H.J. Yoon, T. Jiang et al., Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6(11), 1502566 (2016). https://doi.org/10.1002/aenm.201502566
T. Jing, B. Xu, Y. Yang et al., Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators. Nano Energy 78, 105374 (2020). https://doi.org/10.1016/j.nanoen.2020.105374
W.T. Cao, H. Ouyang, W. Xin et al., A stretchable highoutput triboelectric nanogenerator improved by mxene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020)
R.M. Wen, B. Zhao, L.M. Fan et al., Controlling the output performance of triboelectric nanogenerator through filling isostructural metal-organic frameworks with varying functional groups. Adv. Mater. Technol. (2023). https://doi.org/10.1002/admt.202201330
Y. Wu, T.J. Cuthbert, Y. Luo et al., Cross-link-dependent ionogel-based triboelectric nanogenerators with slippery and antireflective properties. Small 19(24), e2301381 (2023). https://doi.org/10.1002/smll.202301381
X. Tao, S. Fu, S. Li et al., Large and tunable ranking shift in triboelectric series of polymers by introducing phthalazinone moieties. Small Methods 7(6), e2201593 (2023). https://doi.org/10.1002/smtd.202201593
F.R. Fan, L. Lin, G. Zhu et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012). https://doi.org/10.1021/nl300988z
X. Sun, Y. Liu, N. Luo et al., Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment. Nano Energy 102, 107691 (2022). https://doi.org/10.1016/j.nanoen.2022.107691
X. Tao, S. Li, Y. Shi et al., Triboelectric polymer with high thermal charge stability for harvesting energy from 200 °c flowing air. Adv. Funct. Mater. 31(49), 2106082 (2021). https://doi.org/10.1002/adfm.202106082
Z. Liu, Y. Huang, Y. Shi et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13(1), 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
Z.Q. Liu, Y.Z. Huang, Y.X. Shi et al., Creating ultrahigh and long-persistent triboelectric charge density on weak polar polymer via quenching polarization. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202302164
S.Y. Li, Y. Fan, H.Q. Chen et al., Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 13(3), 896–907 (2020). https://doi.org/10.1039/c9ee03307f
J. Wang, H.Y. Wu, S.K. Fu et al., Enhancement of output charge density of teng in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy 104, 107916 (2022)
L. Calzolai, C.M. Gorst, Z.H. Zhao et al., 1h NMR investigation of the electronic and molecular structure of the four-iron cluster ferredoxin from the hyperthermophile pyrococcus furiosus. Identification of asp 14 as a cluster ligand in each of the four redox states. Biochemistry 34(36), 11373–11384 (1995)
J.C. Maggiore, J.C. Burrell, K.D. Browne et al., Tissue engineered axon-based “living scaffolds” promote survival of spinal cord motor neurons following peripheral nerve repair. J. Tissue Eng. Regen. Med. 14(12), 1892–1907 (2020). https://doi.org/10.1002/term.3145
O. Verners, L. Lapčinskis, L. Ģermane et al., Smooth polymers charge negatively: Controlling contact electrification polarity in polymers. Nano Energy 104, 107914 (2022). https://doi.org/10.1016/j.nanoen.2022.107914
D. Guan, X. Cong, J. Li et al., Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy 87, 106186 (2021). https://doi.org/10.1016/j.nanoen.2021.106186
B. Cheng, Q. Xu, Y. Ding et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12(1), 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47(12), 2188–2207 (2008). https://doi.org/10.1002/anie.200701812
B.D. Chen, W. Tang, C. He et al., Ultrafine capillary-tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing. Adv. Mater. Technol. 3(1), 1700229 (2018). https://doi.org/10.1002/admt.201700229
J. Nie, Z. Ren, L. Xu et al., Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Adv. Mater. 32(2), e1905696 (2020). https://doi.org/10.1002/adma.201905696
L. Zhang, X. Li, Y. Zhang et al., Regulation and influence factors of triboelectricity at the solid-liquid interface. Nano Energy 78, 105370 (2020). https://doi.org/10.1016/j.nanoen.2020.105370
X. Li, L. Zhang, Y. Feng et al., Reversible temperature-sensitive liquid–solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing. Adv. Funct. Mater. 31(17), 2010220 (2021). https://doi.org/10.1002/adfm.202010220
H. Cho, J. Chung, G. Shin et al., Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy 56, 56–64 (2019). https://doi.org/10.1016/j.nanoen.2018.11.039
S. Lin, M. Zheng, J. Luo et al., Effects of surface functional groups on electron transfer at liquid-solid interfacial contact electrification. ACS Nano 14(8), 10733–10741 (2020). https://doi.org/10.1021/acsnano.0c06075
X.Y. Li, J. Tao, J. Zhu et al., A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. Apl. Mater. 5(7), 074104 (2017). https://doi.org/10.1063/1.4977216
A. Shahzad, K.R. Wijewardhana, J.-K. Song, Contact electrification efficiency dependence on surface energy at the water-solid interface. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5038605
G. Xue, Y. Xu, T. Ding et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
D.L. Vu, C.D. Le, C.P. Vo et al., Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator. Compos. B: Engin. 223, 109135 (2021). https://doi.org/10.1016/j.compositesb.2021.109135
Q. Zeng, A. Chen, X. Zhang et al., A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 35(7), e2208139 (2023). https://doi.org/10.1002/adma.202208139
M. Knobel, W.C. Nunes, L.M. Socolovsky et al., Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 8(6), 2836–2857 (2008). https://doi.org/10.1166/jnn.2008.15348
Y.H. Wu, Y. Luo, J.K. Qu et al., Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy 75, 105027 (2020)
C. Savin, C. Nejneru, C.A. Tugui et al., Analysis of contact angle for metallic materials in wastewater pumps. Rev. Chim-Bucharest 70(8), 2811–2817 (2019)
N.A. Kermani, I. Petrushina, A. Nikiforov et al., Corrosion behavior of construction materials for ionic liquid hydrogen compressor. Int. J. Hydrogen Energ. 41(38), 16688–16695 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.221
Y. Liu, W. Liu, Z. Wang et al., Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11(1), 1599 (2020). https://doi.org/10.1038/s41467-020-15368-9
J. Chung, H. Cho, H. Yong et al., Versatile surface for solid-solid/liquid-solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces. Sci. Technol. Adv. Mater. 21(1), 139–146 (2020). https://doi.org/10.1080/14686996.2020.1733920
L.P. Chen, X.J. Feng, Enhanced catalytic reaction at an air-liquid-solid triphase interface. Chem. Sci. 11(12), 3124–3131 (2020). https://doi.org/10.1039/c9sc06505a
Q. Tang, H.Y. Guo, P. Yan et al., Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. Ecomat 2(4), 12060 (2020)
P. Yang, Y.X. Shi, X.L. Tao et al., Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator. Matter 6(4), 1295–1311 (2023). https://doi.org/10.1016/j.matt.2023.02.006
W.J. Li, Y.Y. Xiang, W. Zhang et al., Ordered mesoporous SiO2 nanops as charge storage sites for enhanced triboelectric nanogenerators. Nano Energy 113, 108539 (2023). https://doi.org/10.1016/j.nanoen.2023.108539
B. Wang, Y. Wu, Y. Liu et al., New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting. ACS Appl. Mater. Interfaces 12(28), 31351–31359 (2020). https://doi.org/10.1021/acsami.0c03843
Y. Feng, L. Ling, J. Nie et al., Self-powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built-in triboelectric nanogenerators. ACS Nano 11(12), 12411–12418 (2017). https://doi.org/10.1021/acsnano.7b06451
J. Xiong, G. Thangavel, J. Wang et al., Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6(29), eabb4246 (2020). https://doi.org/10.1126/sciadv.abb4246
J. Nie, Z. Wang, Z. Ren et al., Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 10(1), 2264 (2019). https://doi.org/10.1038/s41467-019-10232-x
R. Zhang, H. Lin, Y. Pan et al., Liquid–liquid triboelectric nanogenerator for harvesting distributed energy. Adv. Funct. Mater. 32(51), 2270293 (2022). https://doi.org/10.1002/adfm.202270293
F. Wang, P. Yang, X.L. Tao et al., Study of contact electrification at liquid-gas interface. ACS Nano 15(11), 18206–18213 (2021). https://doi.org/10.1021/acsnano.1c07158
G. Yao, L. Kang, J. Li et al., Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9(1), 5349 (2018). https://doi.org/10.1038/s41467-018-07764-z
S. Du, N. Zhou, G. Xie et al., Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing. Nano Energy 85, 106004 (2021). https://doi.org/10.1016/j.nanoen.2021.106004
S. Gokhool, S. Bairagi, C. Kumar et al., Reflections on boosting wearable triboelectric nanogenerator performance via interface optimisation. Results Eng. 17, 100808 (2023). https://doi.org/10.1016/j.rineng.2022.100808
Y. Zhang, X. Gao, Y. Wu et al., Self-powered technology based on nanogenerators for biomedical applications. Exploration 1(1), 90–114 (2021). https://doi.org/10.1002/EXP.20210152
X. Cao, Y. Xiong, J. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
Z. Wu, H. Guo, W. Ding et al., A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13(2), 2349–2356 (2019). https://doi.org/10.1021/acsnano.8b09088
X. Qu, X. Ma, B. Shi et al., Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 31(5), 2006612 (2020). https://doi.org/10.1002/adfm.202006612
L. Xu, H. Wu, G. Yao et al., Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12(10), 10262–10271 (2018). https://doi.org/10.1021/acsnano.8b05359
Q. Zeng, Y. Luo, X. Zhang et al., A bistable triboelectric nanogenerator for low-grade thermal energy harvesting and solar thermal energy conversion. Small (2023). https://doi.org/10.1002/smll.202301952
M.L. Di Lorenzo, M.C. Righetti, Crystallization-induced formation of rigid amorphous fraction. Polym. Crystal. 1(2), e10023 (2018). https://doi.org/10.1002/pcr2.10023
I. Kim, H. Roh, W. Choi et al., Air-gap embedded triboelectric nanogenerator via surface modification of non-contact layer using sandpapers. Nanoscale 13(19), 8837–8847 (2021). https://doi.org/10.1039/d1nr01517f
S.-B. Jeon, M.-L. Seol, D. Kim et al., Self-powered ion concentration sensor with triboelectricity from liquid-solid contact electrification. Adv. Electron. Mater. 2(5), 1600006 (2016). https://doi.org/10.1002/aelm.201600006
A. Ibrahim, M. Jain, E. Salman et al., A smart knee implant using triboelectric energy harvesters. Smart Mater. Struct. 28(2), 025040 (2019). https://doi.org/10.1088/1361-665X/aaf3f1
S. Dong, F. Xu, Y. Sheng et al., Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for e-textile power sources. Nano Energy 78, 105327 (2020). https://doi.org/10.1016/j.nanoen.2020.105327
P.Y. Feng, Z. Xia, B. Sun et al., Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification. ACS Appl. Mater. Interfaces 13(14), 16916–16927 (2021). https://doi.org/10.1021/acsami.1c02815
G. Liu, H. Guo, S. Xu et al., Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900801
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
R. Lei, Y. Shi, Y. Ding et al., Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 13(7), 2178–2190 (2020). https://doi.org/10.1039/d0ee01236j
X. Dong, Q. Liu, S. Liu et al., Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv. Fiber Mater. 4(4), 885–893 (2022). https://doi.org/10.1007/s42765-022-00152-9
S. Hu, Z. Yuan, R. Li et al., Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines. Nano Lett. 22(13), 5584–5591 (2022). https://doi.org/10.1021/acs.nanolett.2c01912
S.-F. Leung, H.-C. Fu, M. Zhang et al., Blue energy fuels: Converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ. Sci. 13(5), 1300–1308 (2020). https://doi.org/10.1039/c9ee03566d
P.F. Chen, J. An, R.W. Cheng et al., Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy Environ. Sci. 14(8), 4523–4532 (2021). https://doi.org/10.1039/d1ee01382c
H. Ouyang, Z. Liu, N. Li et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
L. Atzori, A. Iera, G. Morabito, The internet of things: A survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010
S. Li, D. Liu, Z. Zhao et al., A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano 14(2), 2475–2482 (2020). https://doi.org/10.1021/acsnano.9b10142
J. Wang, C. Meng, Q. Gu et al., Normally transparent tribo-induced smart window. ACS Nano 14(3), 3630–3639 (2020). https://doi.org/10.1021/acsnano.0c00107
H. Xuan, Q. Guan, H. Tan et al., Light-controlled triple-shape-memory, high-permittivity dynamic elastomer for wearable multifunctional information encoding devices. ACS Nano 16(10), 16954–16965 (2022). https://doi.org/10.1021/acsnano.2c07004
Y. Luo, J. Sun, Q. Zeng et al., Programmable tactile feedback system for blindness assistance based on triboelectric nanogenerator and self-excited electrostatic actuator. Nano Energy 111, 108425 (2023). https://doi.org/10.1016/j.nanoen.2023.108425
S. Shen, J. Yi, Z. Sun et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
X. Pu, H. Guo, J. Chen et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
P. Yang, Y. Shi, X. Tao et al., Self-powered virtual olfactory generation system based on bionic fibrous membrane and electrostatic field accelerated evaporation. EcoMat 5(2), 12298 (2022). https://doi.org/10.1002/eom2.12298
Y. Shi, R. Lei, F. Li et al., Self-powered persistent phosphorescence for reliable optical display. ACS Energy Lett. 6(9), 3132–3140 (2021). https://doi.org/10.1021/acsenergylett.1c01508
Y. Shi, F. Wang, J. Tian et al., Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 7(6), abe2943 (2021). https://doi.org/10.1126/sciadv.abe2943
X. Qu, Z. Liu, P. Tan et al., Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8(31), eabq2521 (2022). https://doi.org/10.1126/sciadv.abq2521
P. Yang, Y. Shi, S. Li et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3), 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
T. Andreadou, D. Kontaxakis, K.V. Iakovou, Blue energy plants and preservation of local natural and cultural resources. Front Energy Res. 7, 00040 (2019)
X.J. Zhao, S.Y. Kuang, Z.L. Wang et al., Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12(5), 4280–4285 (2018). https://doi.org/10.1021/acsnano.7b08716
T. Jiang, H. Pang, J. An et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10(23), 2000064 (2020). https://doi.org/10.1002/aenm.202000064
X. Yan, W. Xu, Y. Deng et al., Bubble energy generator. Sci. Adv. 8(25), eabo7698 (2022). https://doi.org/10.1126/sciadv.abo7698
G. Zhu, Y. Su, P. Bai et al., Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014). https://doi.org/10.1021/nn5012732
X. Li, J. Tao, X. Wang et al., Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8(21), 1800705 (2018). https://doi.org/10.1002/aenm.201800705
Z. Ren, Y. Ding, J. Nie et al., Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators. ACS Appl. Mater. Interfaces 11(6), 6143–6153 (2019). https://doi.org/10.1021/acsami.8b21477
S. Hu, Z. Shi, R. Zheng et al., Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl. Mater. Interfaces 12(36), 40021–40030 (2020). https://doi.org/10.1021/acsami.0c10097
W. Sun, Y. Zheng, T. Li et al., Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 217, 119388 (2021). https://doi.org/10.1016/j.energy.2020.119388
G. Li, P.-Y.A. Chuang, Identifying the forefront of electrocatalytic oxygen evolution reaction: Electronic double layer. Appl. Catal. B Environ. 239, 425–432 (2018). https://doi.org/10.1016/j.apcatb.2018.08.037
S. Shen, J. Fu, J. Yi et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
J. Dong, S. Huang, J. Luo et al., Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer. Nano Energy 95, 106971 (2022). https://doi.org/10.1016/j.nanoen.2022.106971
K.S. Zhao, K.J. He, Dielectric relaxation of suspensions of nanoscale ps surrounded by a thick electric double layer. Phys. Rev. B 74(20), 205319 (2006). https://doi.org/10.1103/PhysRevB.74.205319
Z. Adamczyk, P. Warszynski, Role of electrostatic interactions in p adsorption. Adv. Colloid Interfaces 63, 41–149 (1996). https://doi.org/10.1016/0001-8686(95)00281-2
Z. Wang, A. Berbille, Y. Feng et al., Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 13(1), 130 (2022). https://doi.org/10.1038/s41467-021-27789-1
J. Fu, G. Xu, H. Wu et al., Liquid-interfaces-based triboelectric nanogenerator: An emerging power generation method from liquid-energy nexus. Adv. Energy Sustain. Res. 3(9), 2200051 (2022). https://doi.org/10.1002/aesr.202200051
P. Wang, S. Zhang, L. Zhang et al., Non-contact and liquid–liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing. Nano Energy 72, 104703 (2020). https://doi.org/10.1016/j.nanoen.2020.104703
C. Gong, X. Yuan, D. Xing et al., Fast sulfate formation initiated by the spin-forbidden excitation of SO(2) at the air-water interface. J. Am. Chem. Soc. 144(48), 22302–22308 (2022). https://doi.org/10.1021/jacs.2c10830
J.J. Chen, L.F. Yan, W.Y. Song et al., Interfacial characteristics of carbon nanotube-polymer composites: A review. Compos. Part A-Appl. Sci. Manufact. 114, 149–169 (2018). https://doi.org/10.1016/j.compositesa.2018.08.021
H. Ryu, H.M. Park, M.K. Kim et al., Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12(1), 4374 (2021). https://doi.org/10.1038/s41467-021-24417-w
M.T. Rahman, S.M.S. Rana, M. Salauddin et al., Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 10(12), 1903663 (2020). https://doi.org/10.1002/aenm.201903663
X. Wang, S. Niu, Y. Yin et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5(24), 1501467 (2015). https://doi.org/10.1002/aenm.201501467
Z. Lin, B. Zhang, H. Guo et al., Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019). https://doi.org/10.1016/j.nanoen.2019.103908
Y.C. Huang, D.X. Liu, X.Y. Gao et al., Flexible liquid-based continuous direct-current tribovoltaic generators enable self-powered multi-modal sensing. Adv. Funct. Mater. 33(1), 2209484 (2023). https://doi.org/10.1002/adfm.202209484
M. Xu, S. Wang, S.L. Zhang et al., A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 57, 574–580 (2019). https://doi.org/10.1016/j.nanoen.2018.12.041
J. Liu, Z. Wen, H. Lei et al., A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kpa(-1). Nano-Micro Lett. 14(1), 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
I.W. Tcho, W.G. Kim, Y.K. Choi, A self-powered character recognition device based on a triboelectric nanogenerator. Nano Energy 70, 104534 (2020)
D. Yang, Z. Liu, P. Yang et al., A curtain purification system based on a rabbit fur-based rotating triboelectric nanogenerator for efficient photocatalytic degradation of volatile organic compounds. Nanoscale 15(14), 6709–6721 (2023). https://doi.org/10.1039/d3nr00507k
D.W. Jiang, M.Y. Lian, M.J. Xu et al., Advances in triboelectric nanogenerator technology-applications in self-powered sensors, internet of things, biomedicine, and blue energy. Adv. Compos. Hybrid. Mater. 6(2), 57 (2023). https://doi.org/10.1007/s42114-023-00632-5
S. Tsukahara, Recent analytical methodologies on equilibrium, kinetics, and dynamics at liquid/liquid interface. Anal. Chim. Acta 556(1), 16–25 (2006). https://doi.org/10.1016/j.aca.2005.05.050
N. Divakaran, J.P. Das, P.V.A. Kumar et al., Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. J. Manuf. Syst. 62, 477–502 (2022). https://doi.org/10.1016/j.jmsy.2022.01.002
H. Xiang, Y. Zeng, X. Huang et al., From triboelectric nanogenerator to multifunctional triboelectric sensors: A chemical perspective toward the interface optimization and device integration. Small 18(43), e2107222 (2022). https://doi.org/10.1002/smll.202107222
J.X. Zhu, M.L. Zhu, Q.F. Shi et al., Progress in teng technology-a journey from energy harvesting to nanoenergy and nanosystem. Ecomat 2(4), 12058 (2020)
X.S. Zhang, M.D. Han, B. Kim et al., All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426 (2018). https://doi.org/10.1016/j.nanoen.2018.02.046
O. Mishima, H.E. Stanley, The relationship between liquid, supercooled and glassy water. Nature 396(6709), 329–335 (1998). https://doi.org/10.1038/24540
S. Radhakrishnan, N. Joseph, N.P. Vighnesh et al., Recent updates on triboelectric nanogenerator based advanced biomedical technologies: A short review. Results Engin. 16, 100782 (2022). https://doi.org/10.1016/j.rineng.2022.100782
R. Wu, S. Liu, Z. Lin et al., Industrial fabrication of 3d braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv. Energy Mater. 12(31), 2201288 (2022). https://doi.org/10.1002/aenm.202201288
A. Chen, Q. Zeng, L. Tan et al., A novel hybrid triboelectric nanogenerator based on the mutual boosting effect of electrostatic induction and electrostatic breakdown. Energy Environ. Sci. 16(8), 3486–3496 (2023). https://doi.org/10.1039/d3ee01658g