Correlating the Interfacial Polar-Phase Structure to the Local Chemistry in Ferroelectric Polymer Nanocomposites by Combined Scanning Probe Microscopy
Corresponding Author: Qi Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 5
Abstract
Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases, which is commonly attributed to the critical role of the matrix–particle interfacial region. However, the structure–property correlation of the interface remains unestablished, and thus, the design of ferroelectric polymer nanocomposite has largely relied on the trial-and-error method. Here, a strategy that combines multi-mode scanning probe microscopy-based electrical characterization and nano-infrared spectroscopy is developed to unveil the local structure–property correlation of the interface in ferroelectric polymer nanocomposites. The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nanoparticles. The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer. It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength.
Highlights:
1 A strategy that combines multi-mode scanning probe microscopy-based electrical characterization and nano-infrared spectroscopy is developed.
2 A series of samples with different coupling agents and nanoparticles are characterized to unveil the local structure-property correlation of the interface in ferroelectric polymer nanocomposites.
3 The formation of hydrogen bond between the surface modifiers and the ferroelectric polymer enhances the β-phase content and reduces the domain size of the interface, and hence promotes the local piezoelectric effect and breakdown strength.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Bain, P. Chand, Ferroelectrics: principles and applications (Wiley, Hoboken, 2017), pp.135–141
- R. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992). https://doi.org/10.1038/358136a0
- M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977), pp.559–604
- K. Rabe, M. Dawber, C. Lichtensteiger, C. Ahn, J. Triscone, in Physics of Ferroelectrics: A Modern Perspective (Springer, Berlin-Heidelberg, 2007), pp.1–30
- A. Lovinger, Ferroelectric polymers. Science 220, 1115 (1983). https://doi.org/10.1126/science.220.4602.1115
- L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937 (2012). https://doi.org/10.1021/ma2024057
- B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334 (2006). https://doi.org/10.1126/science.1127798
- Z. Pan, L. Yao, J. Zhai, X. Yao, H. Chen, Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv. Mater. 30, 1705662 (2018). https://doi.org/10.1002/adma.201705662
- Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao et al., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017). https://doi.org/10.1002/adma.201601727
- Z. Dang, J. Yuan, S. Yao, R. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334 (2013). https://doi.org/10.1002/adma.201301752
- B. Xie, Y. Zhu, M.A. Marwat, S. Zhang, L. Zhang, Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. J. Mater. Chem. A 6, 20356–20364 (2018). https://doi.org/10.1039/C8TA07364C
- D. Singh, A. Choudhary, A. Garg, Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl. Mater. Interfaces 10, 2793 (2018). https://doi.org/10.1021/acsami.7b16973
- C. Jeong, C. Baek, A. Kingon, K. Park, S. Kim, Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 14, 1704022 (2018). https://doi.org/10.1002/smll.201704022
- Q. Li, G. Zhang, X. Zhang, S. Jiang, Y. Zeng et al., Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv. Mater. 27, 2236 (2015). https://doi.org/10.1002/adma.201405495
- G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han et al., Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv. Mater. 27, 1450 (2015). https://doi.org/10.1002/adma.201404591
- J. Qian, R. Peng, Z. Shen, J. Jiang, F. Xue et al., Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Adv. Mater. 31, 1801949 (2019). https://doi.org/10.1002/adma.201801949
- S. Mendes, C. Costa, C. Caparros, V. Sencadas, S. Lanceros-Méndez, Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J. Mater. Sci. 47, 1378 (2012). https://doi.org/10.1007/s10853-011-5916-7
- J. Li, Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys. Rev. Lett. 90, 217601 (2003). https://doi.org/10.1103/PhysRevLett.90.217601
- F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710 (2009). https://doi.org/10.1002/adma.200801758
- S. Chen, J. Hu, L. Gao, Y. Zhou, S. Peng et al., Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanops. RSC Adv. 6, 33599 (2016). https://doi.org/10.1039/C6RA01869F
- T. Zhou, J. Zha, R. Cui, B. Fan, J. Yuan et al., Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanops. ACS Appl. Mater. Interfaces 3, 2184 (2011). https://doi.org/10.1021/am200492q
- K. Li, H. Wang, F. Xiang, W. Liu, H. Yang, Surface functionalized Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) nanocomposites with significantly enhanced dielectric properties. Appl. Phys. Lett. 95, 202904 (2009). https://doi.org/10.1063/1.3257371
- S.K. Ghosh, W. Rahman, T. Middya, S. Sen, D. Mandal, Improved breakdown strength and electrical energy storage performance of γ-poly(vinylidene fluoride)/unmodified montmorillonite clay nano-dielectrics. Nanotechnology 27, 215401 (2016). https://doi.org/10.1088/0957-4484/27/21/215401
- B. Fan, J. Zha, D. Wang, J. Zhao, Z. Dang, Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films. Appl. Phys. Lett. 100, 012903 (2012). https://doi.org/10.1063/1.3673555
- H. Tang, H.A. Sodano, High energy density nanocomposite capacitors using non-ferroelectric nanowires. Appl. Phys. Lett. 102, 063901 (2013). https://doi.org/10.1063/1.4792513
- X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando et al., Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater. 23, 1824 (2013). https://doi.org/10.1002/adfm.201201824
- Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li et al., Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymermatrix. J. Mater. Chem. 22, 8063 (2012). https://doi.org/10.1039/C2JM32579A
- S. Fillery, H. Koerner, L. Drummy, E. Dunkerley, M. Durstock et al., Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl. Mater. Interfaces 4, 1388 (2012). https://doi.org/10.1021/am201650g
- C. Wu, X. Huang, X. Wu, L. Xie, K. Yang et al., Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847 (2013). https://doi.org/10.1039/C3NR00625E
- X. Zhang, B. Li, L. Dong, H. Liu, W. Chen et al., Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 5, 1800096 (2018). https://doi.org/10.1002/admi.201800096
- S. Cho, J. Lee, J. Jang, Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv. Mater. Interfaces 2, 1500098 (2015). https://doi.org/10.1002/admi.201500098
- U. Uyor, A. Popoola, O. Popoola, V. Aigbodion, Energy storage and loss capacity of graphene-reinforced poly(vinylidene fluoride) nanocomposites from electrical and dielectric properties perspective: a review. Adv. Polym. Technol. 37, 2838 (2018). https://doi.org/10.1002/adv.21956
- L. Shojaei, V. Goodarzi, M. Otadi, H. Khonakdar, S. Jafari et al., Temperature and frequency-dependent creep and recovery studies on PVDF-HFP/organo-modified layered double hydroxides nanocomposites. Appl. Polym. Sci. 135, 46352 (2018). https://doi.org/10.1002/app.46352
- D. Voylov, A. Holt, B. Doughty, V. Bocharova, H. Meyer et al., Unraveling the molecular weight dependence of interfacial interactions in poly(2-vinylpyridine)/silica nanocomposites. ACS Macro Lett. 6, 68 (2017). https://doi.org/10.1021/acsmacrolett.6b00915
- Y. Liu, J. Yin, X. Liu, D. Sun, M. Chen et al., Research of trap and electron density distributions in the interface of polyimide/Al2O3 nanocomposite films based on IDC and SAXS. Chin. Phys. Lett. 34, 048201 (2017). https://doi.org/10.1088/0256-307X/34/4/048201
- P. Klonos, G. Dapei, I. Sulym, S. Zidropoulos, D. Sternik et al., Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanops: effects of polymer molecular weight. Eur. Polym. J. 74, 64 (2016). https://doi.org/10.1016/j.eurpolymj.2015.11.010
- D. Zhao, S. Ge, E. Senses, P. Akcora, J. Jestin et al., Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites. Macromolecules 48, 5433 (2015). https://doi.org/10.1021/acs.macromol.5b00962
- N. Fuse, H. Sato, Y. Ohki, T. Tanaka, Effects of nanofiller loading on the molecular motion and carrier transport in polyamide. IEEE Trans. Dielectr. Electr. Insul. 16, 524 (2009). https://doi.org/10.1109/TDEI.2009.4815188
- Md.M. Saikh, N. Hoque, P. Biswas, W. Rahman, N. Das et al., Self-polarized ZrO2/poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite-based piezoelectric nanogenerator and single-electrode triboelectric nanogenerator for sustainable energy harvesting from human movements. Phys. Status Solidi A 218, 2000695 (2021). https://doi.org/10.1002/pssa.202000695
- H. Li, Y. Song, T. Kim, M. Lee, S. Lim, Fully printed flexible piezoelectric nanogenerators with triethoxyvinylsilane (TEVS) coated barium titanate (BTO) nanops for energy harvesting and self-powered sensing. Macromol. Mater. Eng. 307, 2200235 (2022). https://doi.org/10.1002/mame.202200235
- H. Ye, H. Chen, X. Zhang, Y. Chen, W. Shao et al., Electron structure in modified BaTiO3/poly(vinylidene fluoride) nanocomposite with high dielectric property and energy density. IET Nanodielectr. 2, 70 (2019). https://doi.org/10.1049/iet-nde.2018.0029
- G. Binning, C. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930
- S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local dielectric property detection of the interface between nanop and polymer in nanocomposite dielectrics. Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep38978
- M. Cadena, S. Sung, B. Boudouris, R. Reifenberger, A. Raman, Nanoscale mapping of dielectric properties of nanomaterials from kilohertz to megahertz using ultrasmall cantilevers. ACS Nano 10, 4062 (2016). https://doi.org/10.1021/acsnano.5b06893
- F. Li, D. Lin, Z. Chen, J. Wang, C. Li et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349 (2018). https://doi.org/10.1038/s41563-018-0034-4
- S. Peng, X. Yang, Y. Yang, S. Wang, Y. Zhou et al., Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 31, 1807722 (2019). https://doi.org/10.1002/adma.201807722
- J. Zhou, Y. Li, Y. Wu, B. Jia, L. Zhu et al., Tuned local surface potential of epoxy resin composites by inorganic core-shell microspheres: key roles of the interface. Langmuir 35, 12053 (2019). https://doi.org/10.1021/acs.langmuir.9b01216
- C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang et al., Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020). https://doi.org/10.1038/s41467-020-17760-x
- Y. Zhou, C. Yuan, S. Wang, Y. Zhu, S. Cheng et al., Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Stor. Mater. 28, 255 (2020). https://doi.org/10.1016/j.ensm.2020.03.017
- W. Melitz, J. Shen, A. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1 (2011). https://doi.org/10.1016/j.surfrep.2010.10.001
- A. Dazzi, C.B. Prater, AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146 (2017). https://doi.org/10.1021/acs.chemrev.6b00448
- Y. Liu, B. Zhang, W. Xu, A. Haibibu, Z. Han et al., Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169 (2020). https://doi.org/10.1038/s41563-020-0724-6
- L. Yu, P. Cebe, Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50, 2133 (2009). https://doi.org/10.1016/j.polymer.2009.03.003
- H. Ye, W. Shao, L. Zhen, Crystallization kinetics and phase transformation of poly(vinylidene fluoride) films incorporated with functionalized BaTiO3 nanops. J. Appl. Polym. Sci. 129, 2940 (2013). https://doi.org/10.1002/app.38949
- H. Luo, C. Chen, K. Zhou, X. Zhou, Z. Wu et al., Enhancement of dielectric properties and energy storage density in poly(vinylidene fluoride-co-hexafluoropropylene) by relaxor ferroelectric ceramics. RSC Adv. 5, 68515 (2015). https://doi.org/10.1039/C5RA11753D
- L. Wu, K. Wu, D. Liu, R. Huang, J. Huo et al., Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. J. Mater. Chem. A 6, 7573 (2018). https://doi.org/10.1039/C8TA01294F
- V. Nguyen, D. Rouxel, B. Vincent, L. Badie, F. Dos Santos et al., Influence of cluster size and surface functionalization of ZnO nanops on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films. Appl. Surf. Sci. 279, 204 (2013). https://doi.org/10.1016/j.apsusc.2013.04.070
- L. Gao, J. He, J. Hu, Y. Li, Large enhancement in polarization response and energy storage properties of poly(vinylidene fluoride) by improving the interface effect in nanocomposites. J. Phys. Chem. C 118, 831 (2014). https://doi.org/10.1021/jp409474k
- R. Wang, H. Xu, S. Cheng, J. Liang, B. Gou et al., Ultrahigh-energy-density dielectric materials from ferroelectric polymer/glucose all-organic composites with a cross-linking network of hydrogen bonds. Energy Stor. Mater. 49, 339 (2022). https://doi.org/10.1016/j.ensm.2022.04.028
- G. Xia, L. He, Q. Zhao, W. Chen, R. Song et al., In-site observation of the crystallization of nylon-6 mediated by the interfacial hydrogen bonds. Colloid Polym. Sci. 290, 1943 (2012). https://doi.org/10.1007/s00396-012-2815-7
- B. Adak, I. Chinya, S. Sen, Enhanced dielectric and energy storage performance of surface treated gallium ferrite/polyvinylidene fluoride nanocomposites. RSC Adv. 6, 105137 (2016). https://doi.org/10.1039/C6RA22939E
- N. An, S. Liu, C. Fang, R. Yu, X. Zhou et al., Preparation and properties of β-phase graphene oxide/PVDF composite films. J. Appl. Polym. Sci. 132, 41577 (2015). https://doi.org/10.1002/app.41577
- J. Simmons, M. Tam, Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys. Rev. B 7, 3706 (1973). https://doi.org/10.1103/PhysRevB.7.3706
References
A. Bain, P. Chand, Ferroelectrics: principles and applications (Wiley, Hoboken, 2017), pp.135–141
R. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992). https://doi.org/10.1038/358136a0
M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977), pp.559–604
K. Rabe, M. Dawber, C. Lichtensteiger, C. Ahn, J. Triscone, in Physics of Ferroelectrics: A Modern Perspective (Springer, Berlin-Heidelberg, 2007), pp.1–30
A. Lovinger, Ferroelectric polymers. Science 220, 1115 (1983). https://doi.org/10.1126/science.220.4602.1115
L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937 (2012). https://doi.org/10.1021/ma2024057
B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334 (2006). https://doi.org/10.1126/science.1127798
Z. Pan, L. Yao, J. Zhai, X. Yao, H. Chen, Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv. Mater. 30, 1705662 (2018). https://doi.org/10.1002/adma.201705662
Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao et al., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017). https://doi.org/10.1002/adma.201601727
Z. Dang, J. Yuan, S. Yao, R. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334 (2013). https://doi.org/10.1002/adma.201301752
B. Xie, Y. Zhu, M.A. Marwat, S. Zhang, L. Zhang, Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. J. Mater. Chem. A 6, 20356–20364 (2018). https://doi.org/10.1039/C8TA07364C
D. Singh, A. Choudhary, A. Garg, Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl. Mater. Interfaces 10, 2793 (2018). https://doi.org/10.1021/acsami.7b16973
C. Jeong, C. Baek, A. Kingon, K. Park, S. Kim, Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 14, 1704022 (2018). https://doi.org/10.1002/smll.201704022
Q. Li, G. Zhang, X. Zhang, S. Jiang, Y. Zeng et al., Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv. Mater. 27, 2236 (2015). https://doi.org/10.1002/adma.201405495
G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han et al., Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv. Mater. 27, 1450 (2015). https://doi.org/10.1002/adma.201404591
J. Qian, R. Peng, Z. Shen, J. Jiang, F. Xue et al., Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Adv. Mater. 31, 1801949 (2019). https://doi.org/10.1002/adma.201801949
S. Mendes, C. Costa, C. Caparros, V. Sencadas, S. Lanceros-Méndez, Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J. Mater. Sci. 47, 1378 (2012). https://doi.org/10.1007/s10853-011-5916-7
J. Li, Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys. Rev. Lett. 90, 217601 (2003). https://doi.org/10.1103/PhysRevLett.90.217601
F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710 (2009). https://doi.org/10.1002/adma.200801758
S. Chen, J. Hu, L. Gao, Y. Zhou, S. Peng et al., Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanops. RSC Adv. 6, 33599 (2016). https://doi.org/10.1039/C6RA01869F
T. Zhou, J. Zha, R. Cui, B. Fan, J. Yuan et al., Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanops. ACS Appl. Mater. Interfaces 3, 2184 (2011). https://doi.org/10.1021/am200492q
K. Li, H. Wang, F. Xiang, W. Liu, H. Yang, Surface functionalized Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) nanocomposites with significantly enhanced dielectric properties. Appl. Phys. Lett. 95, 202904 (2009). https://doi.org/10.1063/1.3257371
S.K. Ghosh, W. Rahman, T. Middya, S. Sen, D. Mandal, Improved breakdown strength and electrical energy storage performance of γ-poly(vinylidene fluoride)/unmodified montmorillonite clay nano-dielectrics. Nanotechnology 27, 215401 (2016). https://doi.org/10.1088/0957-4484/27/21/215401
B. Fan, J. Zha, D. Wang, J. Zhao, Z. Dang, Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films. Appl. Phys. Lett. 100, 012903 (2012). https://doi.org/10.1063/1.3673555
H. Tang, H.A. Sodano, High energy density nanocomposite capacitors using non-ferroelectric nanowires. Appl. Phys. Lett. 102, 063901 (2013). https://doi.org/10.1063/1.4792513
X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando et al., Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater. 23, 1824 (2013). https://doi.org/10.1002/adfm.201201824
Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li et al., Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymermatrix. J. Mater. Chem. 22, 8063 (2012). https://doi.org/10.1039/C2JM32579A
S. Fillery, H. Koerner, L. Drummy, E. Dunkerley, M. Durstock et al., Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl. Mater. Interfaces 4, 1388 (2012). https://doi.org/10.1021/am201650g
C. Wu, X. Huang, X. Wu, L. Xie, K. Yang et al., Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847 (2013). https://doi.org/10.1039/C3NR00625E
X. Zhang, B. Li, L. Dong, H. Liu, W. Chen et al., Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 5, 1800096 (2018). https://doi.org/10.1002/admi.201800096
S. Cho, J. Lee, J. Jang, Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv. Mater. Interfaces 2, 1500098 (2015). https://doi.org/10.1002/admi.201500098
U. Uyor, A. Popoola, O. Popoola, V. Aigbodion, Energy storage and loss capacity of graphene-reinforced poly(vinylidene fluoride) nanocomposites from electrical and dielectric properties perspective: a review. Adv. Polym. Technol. 37, 2838 (2018). https://doi.org/10.1002/adv.21956
L. Shojaei, V. Goodarzi, M. Otadi, H. Khonakdar, S. Jafari et al., Temperature and frequency-dependent creep and recovery studies on PVDF-HFP/organo-modified layered double hydroxides nanocomposites. Appl. Polym. Sci. 135, 46352 (2018). https://doi.org/10.1002/app.46352
D. Voylov, A. Holt, B. Doughty, V. Bocharova, H. Meyer et al., Unraveling the molecular weight dependence of interfacial interactions in poly(2-vinylpyridine)/silica nanocomposites. ACS Macro Lett. 6, 68 (2017). https://doi.org/10.1021/acsmacrolett.6b00915
Y. Liu, J. Yin, X. Liu, D. Sun, M. Chen et al., Research of trap and electron density distributions in the interface of polyimide/Al2O3 nanocomposite films based on IDC and SAXS. Chin. Phys. Lett. 34, 048201 (2017). https://doi.org/10.1088/0256-307X/34/4/048201
P. Klonos, G. Dapei, I. Sulym, S. Zidropoulos, D. Sternik et al., Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanops: effects of polymer molecular weight. Eur. Polym. J. 74, 64 (2016). https://doi.org/10.1016/j.eurpolymj.2015.11.010
D. Zhao, S. Ge, E. Senses, P. Akcora, J. Jestin et al., Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites. Macromolecules 48, 5433 (2015). https://doi.org/10.1021/acs.macromol.5b00962
N. Fuse, H. Sato, Y. Ohki, T. Tanaka, Effects of nanofiller loading on the molecular motion and carrier transport in polyamide. IEEE Trans. Dielectr. Electr. Insul. 16, 524 (2009). https://doi.org/10.1109/TDEI.2009.4815188
Md.M. Saikh, N. Hoque, P. Biswas, W. Rahman, N. Das et al., Self-polarized ZrO2/poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite-based piezoelectric nanogenerator and single-electrode triboelectric nanogenerator for sustainable energy harvesting from human movements. Phys. Status Solidi A 218, 2000695 (2021). https://doi.org/10.1002/pssa.202000695
H. Li, Y. Song, T. Kim, M. Lee, S. Lim, Fully printed flexible piezoelectric nanogenerators with triethoxyvinylsilane (TEVS) coated barium titanate (BTO) nanops for energy harvesting and self-powered sensing. Macromol. Mater. Eng. 307, 2200235 (2022). https://doi.org/10.1002/mame.202200235
H. Ye, H. Chen, X. Zhang, Y. Chen, W. Shao et al., Electron structure in modified BaTiO3/poly(vinylidene fluoride) nanocomposite with high dielectric property and energy density. IET Nanodielectr. 2, 70 (2019). https://doi.org/10.1049/iet-nde.2018.0029
G. Binning, C. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930
S. Peng, Q. Zeng, X. Yang, J. Hu, X. Qiu et al., Local dielectric property detection of the interface between nanop and polymer in nanocomposite dielectrics. Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep38978
M. Cadena, S. Sung, B. Boudouris, R. Reifenberger, A. Raman, Nanoscale mapping of dielectric properties of nanomaterials from kilohertz to megahertz using ultrasmall cantilevers. ACS Nano 10, 4062 (2016). https://doi.org/10.1021/acsnano.5b06893
F. Li, D. Lin, Z. Chen, J. Wang, C. Li et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349 (2018). https://doi.org/10.1038/s41563-018-0034-4
S. Peng, X. Yang, Y. Yang, S. Wang, Y. Zhou et al., Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 31, 1807722 (2019). https://doi.org/10.1002/adma.201807722
J. Zhou, Y. Li, Y. Wu, B. Jia, L. Zhu et al., Tuned local surface potential of epoxy resin composites by inorganic core-shell microspheres: key roles of the interface. Langmuir 35, 12053 (2019). https://doi.org/10.1021/acs.langmuir.9b01216
C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang et al., Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020). https://doi.org/10.1038/s41467-020-17760-x
Y. Zhou, C. Yuan, S. Wang, Y. Zhu, S. Cheng et al., Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Stor. Mater. 28, 255 (2020). https://doi.org/10.1016/j.ensm.2020.03.017
W. Melitz, J. Shen, A. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1 (2011). https://doi.org/10.1016/j.surfrep.2010.10.001
A. Dazzi, C.B. Prater, AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146 (2017). https://doi.org/10.1021/acs.chemrev.6b00448
Y. Liu, B. Zhang, W. Xu, A. Haibibu, Z. Han et al., Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169 (2020). https://doi.org/10.1038/s41563-020-0724-6
L. Yu, P. Cebe, Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50, 2133 (2009). https://doi.org/10.1016/j.polymer.2009.03.003
H. Ye, W. Shao, L. Zhen, Crystallization kinetics and phase transformation of poly(vinylidene fluoride) films incorporated with functionalized BaTiO3 nanops. J. Appl. Polym. Sci. 129, 2940 (2013). https://doi.org/10.1002/app.38949
H. Luo, C. Chen, K. Zhou, X. Zhou, Z. Wu et al., Enhancement of dielectric properties and energy storage density in poly(vinylidene fluoride-co-hexafluoropropylene) by relaxor ferroelectric ceramics. RSC Adv. 5, 68515 (2015). https://doi.org/10.1039/C5RA11753D
L. Wu, K. Wu, D. Liu, R. Huang, J. Huo et al., Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. J. Mater. Chem. A 6, 7573 (2018). https://doi.org/10.1039/C8TA01294F
V. Nguyen, D. Rouxel, B. Vincent, L. Badie, F. Dos Santos et al., Influence of cluster size and surface functionalization of ZnO nanops on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films. Appl. Surf. Sci. 279, 204 (2013). https://doi.org/10.1016/j.apsusc.2013.04.070
L. Gao, J. He, J. Hu, Y. Li, Large enhancement in polarization response and energy storage properties of poly(vinylidene fluoride) by improving the interface effect in nanocomposites. J. Phys. Chem. C 118, 831 (2014). https://doi.org/10.1021/jp409474k
R. Wang, H. Xu, S. Cheng, J. Liang, B. Gou et al., Ultrahigh-energy-density dielectric materials from ferroelectric polymer/glucose all-organic composites with a cross-linking network of hydrogen bonds. Energy Stor. Mater. 49, 339 (2022). https://doi.org/10.1016/j.ensm.2022.04.028
G. Xia, L. He, Q. Zhao, W. Chen, R. Song et al., In-site observation of the crystallization of nylon-6 mediated by the interfacial hydrogen bonds. Colloid Polym. Sci. 290, 1943 (2012). https://doi.org/10.1007/s00396-012-2815-7
B. Adak, I. Chinya, S. Sen, Enhanced dielectric and energy storage performance of surface treated gallium ferrite/polyvinylidene fluoride nanocomposites. RSC Adv. 6, 105137 (2016). https://doi.org/10.1039/C6RA22939E
N. An, S. Liu, C. Fang, R. Yu, X. Zhou et al., Preparation and properties of β-phase graphene oxide/PVDF composite films. J. Appl. Polym. Sci. 132, 41577 (2015). https://doi.org/10.1002/app.41577
J. Simmons, M. Tam, Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys. Rev. B 7, 3706 (1973). https://doi.org/10.1103/PhysRevB.7.3706