Enhancing Low-Frequency Microwave Absorption Through Structural Polarization Modulation of MXenes
Corresponding Author: Yi Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 212
Abstract
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid- and high-frequency ranges, but face challenges in low-frequency absorption due to limited control over polarization response mechanisms and ambiguous resonance behavior. In this study, we propose a novel approach to enhance absorption efficiency in aligned three-dimensional (3D) MXene/CNF (cellulose nanofibers) cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture. This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band, leading to a remarkable reflection loss value of − 47.9 dB in the low-frequency range. Furthermore, our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties. The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation, while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
Highlights:
1 MXene-based structural microwave-absorbing materials achieve an impressive reflection loss of − 47.9 dB in the low-frequency S-band, without the presence of magnetic materials and with low density.
2 The elucidation of the mechanism behind the shift of the absorption band from high to low frequencies is attributed to the coupling of controlled multilevel polarization with induced electric field interactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wu, Y. Xie, Y. Ma, B. Zhang, B. Xia et al., Aqueous MXene/xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 18, e2107087 (2022). https://doi.org/10.1002/smll.202107087
- X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
- J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16, 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- W. Luo, M. Wang, K. Wang, P. Yan, J. Huang et al., A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 9, e2104163 (2022). https://doi.org/10.1002/advs.202104163
- F. Yang, J. Yao, L. Jin, W. Huyan, J. Zhou et al., Multifunctional Ti3C2Tx MXene/aramid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos. Part B Eng. 243, 110161 (2022). https://doi.org/10.1016/j.compositesb.2022.110161
- M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022). https://doi.org/10.1002/advs.202105553
- J. Wang, T. Song, W. Ming, M. Yele, L. Chen et al., High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Res. 17, 2061–2069 (2024). https://doi.org/10.1007/s12274-023-6232-y
- Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: a systematic review and bibliometric approach. ChemPhysMater 2, 197–206 (2023). https://doi.org/10.1016/j.chphma.2022.10.002
- Y. Akinay, A.O. Kizilcay, Computation and modeling of microwave absorbing CuO/graphene nanocomposites. Polym. Compos. 41, 227–232 (2020). https://doi.org/10.1002/pc.25363
- J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F– regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
- X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3, 2200102 (2022). https://doi.org/10.1002/sstr.202200102
- B. Ulas, T. Çetin, Ş Kaya, Y. Akinay, H. Kivrak, Novel Ti3C2X2 MXene supported BaMnO3 nanops as hydrazine electrooxidation catalysts. Int. J. Hydrog. Energy 58, 726–736 (2024). https://doi.org/10.1016/j.ijhydene.2024.01.280
- Y. Karataş, T. Çetin, İN. Akkuş, Y. Akinay, M. Gülcan, Rh (0) nanops impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis. Int. J. Energy Res. 46, 11411–11423 (2022). https://doi.org/10.1002/er.7938
- Y. Karataş, T. Çetin, Y. Akinay, M. Gülcan, Synthesis and characterization of Pd doped MXene for hydrogen production from the hydrolysis of methylamine borane: effect of cryogenic treatment. J. Energy Inst. 109, 101310 (2023). https://doi.org/10.1016/j.joei.2023.101310
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
- F. Wang, X. Li, Z. Chen, W. Yu, K.P. Loh et al., Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 405, 126676 (2021). https://doi.org/10.1016/j.cej.2020.126676
- H. Guo, X. Wang, F. Pan, Y. Shi, H. Jiang et al., State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: a review. Nano Res. 16, 10287–10325 (2023). https://doi.org/10.1007/s12274-023-5509-1
- P. Liu, Y. Li, H. Xu, L. Shi, J. Kong et al., Hierarchical Fe–Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption. ACS Nano 18, 560–570 (2024). https://doi.org/10.1021/acsnano.3c08569
- Z. He, R. Sun, H. Xu, W. Geng, P. Liu, Metal–organic-frameworks derived hollow carbon derivatives: controllable configurations and optimized microwave absorption. Carbon 219, 118853 (2024). https://doi.org/10.1016/j.carbon.2024.118853
- C. Liu, S. Liu, X. Feng, K. Zhu, G. Lin et al., Phthalocyanine-mediated interfacial self-assembly of magnetic graphene nanocomposites toward low-frequency electromagnetic wave absorption. Chem. Eng. J. 452, 139483 (2023). https://doi.org/10.1016/j.cej.2022.139483
- J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defect-engineered graphene/Si3N4 Multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm.202200141
- J.-C. Shu, M.-S. Cao, Y.-L. Zhang, Y.-Z. Wang, Q.-L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33, 2212379 (2023). https://doi.org/10.1002/adfm.202212379
- H. Xu, Z. He, Y. Wang, X. Ren, P. Liu, Metal–phenolic coordination crystals derived magnetic hollow carbon spheres for ultrahigh electromagnetic wave absorption. Nano Res. 17, 1616–1624 (2024). https://doi.org/10.1007/s12274-023-6132-x
- Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloys Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
- Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5, 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
- R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
- R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, Evaluation of the size and medium effects on the microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanops. J. Alloys Compd. 848, 156453 (2020). https://doi.org/10.1016/j.jallcom.2020.156453
- R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020). https://doi.org/10.1016/j.cej.2020.126089
- Y. Wu, L. Chen, Y. Han, P. Liu, H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023). https://doi.org/10.1007/s12274-023-5522-4
- G. Li, S. Ma, Z. Li, Y. Zhang, Y. Cao et al., Temperature-induced self-decomposition doping of Fe3GeTe2 to achieve ultra-high Tc of 496 K for multispectral compatible strong electromagnetic wave absorption. Adv. Funct. Mater. 33, 2210578 (2023). https://doi.org/10.1002/adfm.202210578
- F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
- M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 12, 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
- B. Shan, L. Xia, S. Ma, Z. Yin, X. Liu et al., Achieving multiband compatible and mechanical tuning absorber using edge topological defect-induced graphene plasmon. Carbon 192, 1–13 (2022). https://doi.org/10.1016/j.carbon.2022.02.038
- X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene-based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17, 8420–8432 (2023). https://doi.org/10.1021/acsnano.3c00338
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu et al., Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 47, 512–518 (2018). https://doi.org/10.1016/j.nanoen.2018.03.022
- V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019
- X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
- N. Sethulakshmi, A. Mishra, P.M. Ajayan, Y. Kawazoe, A.K. Roy et al., Magnetism in two-dimensional materials beyond graphene. Mater. Today 27, 107–122 (2019). https://doi.org/10.1016/j.mattod.2019.03.015
- R.R. Nair, I.L. Tsai, M. Sepioni, O. Lehtinen, J. Keinonen et al., Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013). https://doi.org/10.1038/ncomms3010
- J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11, 2003025 (2021). https://doi.org/10.1002/aenm.202003025
- Z.-Z. Pan, H. Nishihara, S. Iwamura, T. Sekiguchi, A. Sato et al., Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 10, 10689–10697 (2016). https://doi.org/10.1021/acsnano.6b05808
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14, 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- E. Kontturi, P. Laaksonen, M.B. Linder, Nonappa, A.H. Gröschel et al., Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, 1703779 (2018). https://doi.org/10.1002/adma.201703779
- A. Hajian, S.B. Lindström, T. Pettersson, M.M. Hamedi, L. Wågberg, Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett. 17, 1439–1447 (2017). https://doi.org/10.1021/acs.nanolett.6b04405
- R. Xiong, K. Hu, S. Zhang, C. Lu, V.V. Tsukruk, Ultrastrong freestanding graphene oxide nanomembranes with surface-enhanced Raman scattering functionality by solvent-assisted single-component layer-by-layer assembly. ACS Nano 10, 6702–6715 (2016). https://doi.org/10.1021/acsnano.6b02012
- C. Olivier, C. Moreau, P. Bertoncini, H. Bizot, O. Chauvet et al., Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 28, 12463–12471 (2012). https://doi.org/10.1021/la302077a
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- X. Hui, X. Ge, R. Zhao, Z. Li, L. Yin, Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
- Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang et al., Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070
- H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7, 1801318 (2019). https://doi.org/10.1002/adom.201801318
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30, 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- Y. Wang, Z. Qu, W. Wang, H. Qian, X. Song et al., Multidimensional nanomaterials synergistic polyimide nanofiber/MXene/NiFe2O4 hybrid aerogel for high-performance microwave absorption. Chem. Eng. J. 470, 144435 (2023). https://doi.org/10.1016/j.cej.2023.144435
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces 10, 24816–24828 (2018). https://doi.org/10.1021/acsami.8b06673
- J. Xiang, Z. Hou, X. Zhang, L. Gong, Z. Wu et al., Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers. J. Alloys Compd. 737, 412–420 (2018). https://doi.org/10.1016/j.jallcom.2017.12.047
- R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
- M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- J.K. El-Demellawi, S. Lopatin, J. Yin, O.F. Mohammed, H.N. Alshareef, Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano 12, 8485–8493 (2018). https://doi.org/10.1021/acsnano.8b04029
- D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin et al., MXenes for plasmonic photodetection. Adv. Mater. 31, 1807658 (2019). https://doi.org/10.1002/adma.201807658
- L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanops-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 12, 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, e1906668 (2020). https://doi.org/10.1002/smll.201906668
- X. Wang, Y. Yuan, X. Sun, R. Qiang, Y. Xu et al., Lightweight, flexible, and thermal insulating carbon/SiO2@CNTs composite aerogel for high-efficiency microwave absorption. Small (2024). https://doi.org/10.1002/smll.202311657
- S.M. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50, 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257
- S. Sheykhmoradi, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans. 53, 4222–4236 (2024). https://doi.org/10.1039/D3DT04228F
- R. Peymanfar, P. Mousivand, A. Mirkhan, Fabrication of ZnS/g-C3N4/gypsum plaster nanocomposite toward refining electromagnetic pollution and saving energy. Energy Technol. 12, 2300684 (2024). https://doi.org/10.1002/ente.202300684
- L. Yao, W. Cao, J. Zhao, Q. Zheng, Y. Wang et al., Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol. 127, 48–60 (2022). https://doi.org/10.1016/j.jmst.2022.04.010
- S. Fang, D. Huang, R. Lv, Y. Bai, Z.-H. Huang et al., Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2–4 GHz). RSC Adv. 7, 25773–25779 (2017). https://doi.org/10.1039/C7RA03215C
- T. Zhang, D. Zhao, L. Wang, R. Meng, H. Zhao et al., A facile precursor pyrolysis route to bio-carbon/ferrite porous architecture with enhanced electromagnetic wave absorption in S-band. J. Alloys Compd. 819, 153269 (2020). https://doi.org/10.1016/j.jallcom.2019.153269
- L. Wu, S. Shi, J. Liu, X. Liu, P. Mou et al., Multicolored microwave absorbers with dynamic frequency modulation. Nano Energy 118, 108938 (2023). https://doi.org/10.1016/j.nanoen.2023.108938
- C. Jiang, Y. Wang, Z. Zhao, Z. Ma, Y. Liu, Multifunctional three-dimensional porous MOFs derived Fe/C/carbon foam for microwave absorption, thermal insulation and infrared stealth. Ceram. Int. 49, 18861–18869 (2023). https://doi.org/10.1016/j.ceramint.2023.03.008
- Y. Xu, J. Luo, W. Yao, J. Xu, T. Li, Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. J. Alloys Compd. 636, 310–316 (2015). https://doi.org/10.1016/j.jallcom.2015.02.196
- M. Shahidul Islam, M. Samsuzzaman, G.K. Beng, N. Misran, N. Amin et al., A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access 8, 68239–68253 (2020). https://doi.org/10.1109/ACCESS.2020.2985845
- Z. Yin, J. Guo, W. Fang, Q. Wang, G. Tian et al., Binary metal ions modulating MOF-derived sponge-structured nanocomposites for controlled electromagnetic wave absorption from S-band to Ku-band. Appl. Surf. Sci. 617, 156590 (2023). https://doi.org/10.1016/j.apsusc.2023.156590
- Y. Qu, Z. Liu, X. Li, Y. Si, R. Xu et al., Ultrafine well-dispersed Co nanocrystals onto crumpled sphere-like rGO for superior low-frequency microwave absorption. Carbon 213, 118280 (2023). https://doi.org/10.1016/j.carbon.2023.118280
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
References
H. Wu, Y. Xie, Y. Ma, B. Zhang, B. Xia et al., Aqueous MXene/xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 18, e2107087 (2022). https://doi.org/10.1002/smll.202107087
X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16, 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
W. Luo, M. Wang, K. Wang, P. Yan, J. Huang et al., A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 9, e2104163 (2022). https://doi.org/10.1002/advs.202104163
F. Yang, J. Yao, L. Jin, W. Huyan, J. Zhou et al., Multifunctional Ti3C2Tx MXene/aramid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos. Part B Eng. 243, 110161 (2022). https://doi.org/10.1016/j.compositesb.2022.110161
M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022). https://doi.org/10.1002/advs.202105553
J. Wang, T. Song, W. Ming, M. Yele, L. Chen et al., High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Res. 17, 2061–2069 (2024). https://doi.org/10.1007/s12274-023-6232-y
Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: a systematic review and bibliometric approach. ChemPhysMater 2, 197–206 (2023). https://doi.org/10.1016/j.chphma.2022.10.002
Y. Akinay, A.O. Kizilcay, Computation and modeling of microwave absorbing CuO/graphene nanocomposites. Polym. Compos. 41, 227–232 (2020). https://doi.org/10.1002/pc.25363
J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F– regulation engineering. Adv. Funct. Mater. 32, 2110496 (2022). https://doi.org/10.1002/adfm.202110496
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3, 2200102 (2022). https://doi.org/10.1002/sstr.202200102
B. Ulas, T. Çetin, Ş Kaya, Y. Akinay, H. Kivrak, Novel Ti3C2X2 MXene supported BaMnO3 nanops as hydrazine electrooxidation catalysts. Int. J. Hydrog. Energy 58, 726–736 (2024). https://doi.org/10.1016/j.ijhydene.2024.01.280
Y. Karataş, T. Çetin, İN. Akkuş, Y. Akinay, M. Gülcan, Rh (0) nanops impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis. Int. J. Energy Res. 46, 11411–11423 (2022). https://doi.org/10.1002/er.7938
Y. Karataş, T. Çetin, Y. Akinay, M. Gülcan, Synthesis and characterization of Pd doped MXene for hydrogen production from the hydrolysis of methylamine borane: effect of cryogenic treatment. J. Energy Inst. 109, 101310 (2023). https://doi.org/10.1016/j.joei.2023.101310
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-based microwave absorption materials. Carbon 174, 484–499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
F. Wang, X. Li, Z. Chen, W. Yu, K.P. Loh et al., Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 405, 126676 (2021). https://doi.org/10.1016/j.cej.2020.126676
H. Guo, X. Wang, F. Pan, Y. Shi, H. Jiang et al., State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: a review. Nano Res. 16, 10287–10325 (2023). https://doi.org/10.1007/s12274-023-5509-1
P. Liu, Y. Li, H. Xu, L. Shi, J. Kong et al., Hierarchical Fe–Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption. ACS Nano 18, 560–570 (2024). https://doi.org/10.1021/acsnano.3c08569
Z. He, R. Sun, H. Xu, W. Geng, P. Liu, Metal–organic-frameworks derived hollow carbon derivatives: controllable configurations and optimized microwave absorption. Carbon 219, 118853 (2024). https://doi.org/10.1016/j.carbon.2024.118853
C. Liu, S. Liu, X. Feng, K. Zhu, G. Lin et al., Phthalocyanine-mediated interfacial self-assembly of magnetic graphene nanocomposites toward low-frequency electromagnetic wave absorption. Chem. Eng. J. 452, 139483 (2023). https://doi.org/10.1016/j.cej.2022.139483
J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defect-engineered graphene/Si3N4 Multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm.202200141
J.-C. Shu, M.-S. Cao, Y.-L. Zhang, Y.-Z. Wang, Q.-L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33, 2212379 (2023). https://doi.org/10.1002/adfm.202212379
H. Xu, Z. He, Y. Wang, X. Ren, P. Liu, Metal–phenolic coordination crystals derived magnetic hollow carbon spheres for ultrahigh electromagnetic wave absorption. Nano Res. 17, 1616–1624 (2024). https://doi.org/10.1007/s12274-023-6132-x
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022). https://doi.org/10.1002/adfm.202108194
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloys Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5, 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, Evaluation of the size and medium effects on the microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanops. J. Alloys Compd. 848, 156453 (2020). https://doi.org/10.1016/j.jallcom.2020.156453
R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020). https://doi.org/10.1016/j.cej.2020.126089
Y. Wu, L. Chen, Y. Han, P. Liu, H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023). https://doi.org/10.1007/s12274-023-5522-4
G. Li, S. Ma, Z. Li, Y. Zhang, Y. Cao et al., Temperature-induced self-decomposition doping of Fe3GeTe2 to achieve ultra-high Tc of 496 K for multispectral compatible strong electromagnetic wave absorption. Adv. Funct. Mater. 33, 2210578 (2023). https://doi.org/10.1002/adfm.202210578
F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 12, 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
B. Shan, L. Xia, S. Ma, Z. Yin, X. Liu et al., Achieving multiband compatible and mechanical tuning absorber using edge topological defect-induced graphene plasmon. Carbon 192, 1–13 (2022). https://doi.org/10.1016/j.carbon.2022.02.038
X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene-based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17, 8420–8432 (2023). https://doi.org/10.1021/acsnano.3c00338
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu et al., Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 47, 512–518 (2018). https://doi.org/10.1016/j.nanoen.2018.03.022
V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019
X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
N. Sethulakshmi, A. Mishra, P.M. Ajayan, Y. Kawazoe, A.K. Roy et al., Magnetism in two-dimensional materials beyond graphene. Mater. Today 27, 107–122 (2019). https://doi.org/10.1016/j.mattod.2019.03.015
R.R. Nair, I.L. Tsai, M. Sepioni, O. Lehtinen, J. Keinonen et al., Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013). https://doi.org/10.1038/ncomms3010
J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11, 2003025 (2021). https://doi.org/10.1002/aenm.202003025
Z.-Z. Pan, H. Nishihara, S. Iwamura, T. Sekiguchi, A. Sato et al., Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 10, 10689–10697 (2016). https://doi.org/10.1021/acsnano.6b05808
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14, 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
E. Kontturi, P. Laaksonen, M.B. Linder, Nonappa, A.H. Gröschel et al., Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, 1703779 (2018). https://doi.org/10.1002/adma.201703779
A. Hajian, S.B. Lindström, T. Pettersson, M.M. Hamedi, L. Wågberg, Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett. 17, 1439–1447 (2017). https://doi.org/10.1021/acs.nanolett.6b04405
R. Xiong, K. Hu, S. Zhang, C. Lu, V.V. Tsukruk, Ultrastrong freestanding graphene oxide nanomembranes with surface-enhanced Raman scattering functionality by solvent-assisted single-component layer-by-layer assembly. ACS Nano 10, 6702–6715 (2016). https://doi.org/10.1021/acsnano.6b02012
C. Olivier, C. Moreau, P. Bertoncini, H. Bizot, O. Chauvet et al., Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 28, 12463–12471 (2012). https://doi.org/10.1021/la302077a
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
X. Hui, X. Ge, R. Zhao, Z. Li, L. Yin, Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang et al., Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070
H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7, 1801318 (2019). https://doi.org/10.1002/adom.201801318
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30, 2000475 (2020). https://doi.org/10.1002/adfm.202000475
Y. Wang, Z. Qu, W. Wang, H. Qian, X. Song et al., Multidimensional nanomaterials synergistic polyimide nanofiber/MXene/NiFe2O4 hybrid aerogel for high-performance microwave absorption. Chem. Eng. J. 470, 144435 (2023). https://doi.org/10.1016/j.cej.2023.144435
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces 10, 24816–24828 (2018). https://doi.org/10.1021/acsami.8b06673
J. Xiang, Z. Hou, X. Zhang, L. Gong, Z. Wu et al., Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers. J. Alloys Compd. 737, 412–420 (2018). https://doi.org/10.1016/j.jallcom.2017.12.047
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
J.K. El-Demellawi, S. Lopatin, J. Yin, O.F. Mohammed, H.N. Alshareef, Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano 12, 8485–8493 (2018). https://doi.org/10.1021/acsnano.8b04029
D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin et al., MXenes for plasmonic photodetection. Adv. Mater. 31, 1807658 (2019). https://doi.org/10.1002/adma.201807658
L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanops-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 12, 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019). https://doi.org/10.1002/adfm.201903960
S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, e1906668 (2020). https://doi.org/10.1002/smll.201906668
X. Wang, Y. Yuan, X. Sun, R. Qiang, Y. Xu et al., Lightweight, flexible, and thermal insulating carbon/SiO2@CNTs composite aerogel for high-efficiency microwave absorption. Small (2024). https://doi.org/10.1002/smll.202311657
S.M. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50, 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257
S. Sheykhmoradi, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans. 53, 4222–4236 (2024). https://doi.org/10.1039/D3DT04228F
R. Peymanfar, P. Mousivand, A. Mirkhan, Fabrication of ZnS/g-C3N4/gypsum plaster nanocomposite toward refining electromagnetic pollution and saving energy. Energy Technol. 12, 2300684 (2024). https://doi.org/10.1002/ente.202300684
L. Yao, W. Cao, J. Zhao, Q. Zheng, Y. Wang et al., Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol. 127, 48–60 (2022). https://doi.org/10.1016/j.jmst.2022.04.010
S. Fang, D. Huang, R. Lv, Y. Bai, Z.-H. Huang et al., Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2–4 GHz). RSC Adv. 7, 25773–25779 (2017). https://doi.org/10.1039/C7RA03215C
T. Zhang, D. Zhao, L. Wang, R. Meng, H. Zhao et al., A facile precursor pyrolysis route to bio-carbon/ferrite porous architecture with enhanced electromagnetic wave absorption in S-band. J. Alloys Compd. 819, 153269 (2020). https://doi.org/10.1016/j.jallcom.2019.153269
L. Wu, S. Shi, J. Liu, X. Liu, P. Mou et al., Multicolored microwave absorbers with dynamic frequency modulation. Nano Energy 118, 108938 (2023). https://doi.org/10.1016/j.nanoen.2023.108938
C. Jiang, Y. Wang, Z. Zhao, Z. Ma, Y. Liu, Multifunctional three-dimensional porous MOFs derived Fe/C/carbon foam for microwave absorption, thermal insulation and infrared stealth. Ceram. Int. 49, 18861–18869 (2023). https://doi.org/10.1016/j.ceramint.2023.03.008
Y. Xu, J. Luo, W. Yao, J. Xu, T. Li, Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. J. Alloys Compd. 636, 310–316 (2015). https://doi.org/10.1016/j.jallcom.2015.02.196
M. Shahidul Islam, M. Samsuzzaman, G.K. Beng, N. Misran, N. Amin et al., A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access 8, 68239–68253 (2020). https://doi.org/10.1109/ACCESS.2020.2985845
Z. Yin, J. Guo, W. Fang, Q. Wang, G. Tian et al., Binary metal ions modulating MOF-derived sponge-structured nanocomposites for controlled electromagnetic wave absorption from S-band to Ku-band. Appl. Surf. Sci. 617, 156590 (2023). https://doi.org/10.1016/j.apsusc.2023.156590
Y. Qu, Z. Liu, X. Li, Y. Si, R. Xu et al., Ultrafine well-dispersed Co nanocrystals onto crumpled sphere-like rGO for superior low-frequency microwave absorption. Carbon 213, 118280 (2023). https://doi.org/10.1016/j.carbon.2023.118280
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544