Isotype Heterojunction-Boosted CO2 Photoreduction to CO
Corresponding Author: Xiaoyuan Zhou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 74
Abstract
Photocatalytic conversion of CO2 to high-value products plays a crucial role in the global pursuit of carbon–neutral economy. Junction photocatalysts, such as the isotype heterojunctions, offer an ideal paradigm to navigate the photocatalytic CO2 reduction reaction (CRR). Herein, we elucidate the behaviors of isotype heterojunctions toward photocatalytic CRR over a representative photocatalyst, g-C3N4. Impressively, the isotype heterojunctions possess a significantly higher efficiency for the spatial separation and transfer of photogenerated carriers than the single components. Along with the intrinsically outstanding stability, the isotype heterojunctions exhibit an exceptional and stable activity toward the CO2 photoreduction to CO. More importantly, by combining quantitative in situ technique with the first-principles modeling, we elucidate that the enhanced photoinduced charge dynamics promotes the production of key intermediates and thus the whole reaction kinetics.
Highlights:
1 The g-C3N4 isotype heterojunction was synthesized for photocatalytic CO2 reduction, which exhibits an impressive activity and outstanding stability.
2 The isotype heterojunction presents more favorable charge separation and transfer performance than the single components.
3 The enhanced photogenerated charge dynamics in isotype heterojunction facilitates the production of key intermediates and thus the whole reaction kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Artz, T.E. Muller, K. Thenert, J. Kleinekorte, R. Meys et al., Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118(2), 434–504 (2018). https://doi.org/10.1021/acs.chemrev.7b00435
- Y.F. Zhao, G.I.N. Waterhouse, G.B. Chen, X.Y. Xiong, L.Z. Wu et al., Two-dimensional-related catalytic materials for solar-driven conversion of cox into valuable chemical feedstocks. Chem. Soc. Rev. 48(7), 1972–2010 (2019). https://doi.org/10.1039/C8CS00607E
- J.P. Ma, J. Ren, Y.M. Jia, Z. Wu, L. Chen et al., High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 62, 376–383 (2019). https://doi.org/10.1016/j.nanoen.2019.05.058
- H. Liu, S.H. Cao, L. Chen, K. Zhao, C.B. Wang et al., Electron acceptor design for 2D/2D iodinene/carbon nitride heterojunction boosting charge transfer and CO2 photoreduction. Chem. Eng. J. 433, 133594 (2021). https://doi.org/10.1016/j.cej.2021.133594
- T. Fan, H.L. Liu, S.X. Shao, Y.J. Gong, G.D. Li et al., Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: recent progress and perspective. J. Phys. Chem. Lett. 12, 10486–10496 (2021). https://doi.org/10.1021/acs.jpclett.1c03043
- S.Y. Jiang, J.X. Liu, K. Zhao, D.D. Cui, P.R. Liu et al., Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Res. 15(2), 1061–1068 (2022). https://doi.org/10.1007/s12274-021-3599-1
- Y.J. Feng, Y. Wang, K.W. Wang, J.P. Ma, Y.Y. Duan et al., Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 41(2), 385–395 (2022). https://doi.org/10.1007/s12598-021-01815-z
- X.F. An, K. Zhao, W.Y. Pang, W.P. Zhang, L.M. Wang et al., Balancing the CO2 adsorption properties and the regeneration energy consumption via the functional molecular engineering hierarchical pore-interface structure. Chem. Eng. J. 431, 133877 (2022). https://doi.org/10.1016/j.cej.2021.133877
- X.F. Zhang, H.T. Liu, P.F. An, Y.A. Shi, J.Y. Han et al., Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO2 cycloaddition. Sci. Adv. 6, eaaz4824 (2020). https://doi.org/10.1126/sciadv.aaz4824
- J.Z. Meng, Y.Y. Duan, S.J. Jing, J.P. Ma, K.W. Wang et al., Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 92, 106671 (2022). https://doi.org/10.1016/j.nanoen.2021.106671
- J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503
- J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
- H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014). https://doi.org/10.1039/C4CS00126E
- W.H. Zhang, A.R. Mohamed, W.J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew. Chem. Int. Ed. 59(51), 22894–22915 (2020). https://doi.org/10.1002/anie.201914925
- R. Wang, C.Z. He, W.Z. Chen, C.Z. Zhao, J.Z. Huo, Rich B active centers in penta-B2C as high-performance photocatalyst for nitrogen reduction. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.05.024
- F. Dong, Z.W. Zhao, T. Xiong, Z.L. Ni, W.D. Zhang et al., In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 5(21), 11392–11401 (2013). https://doi.org/10.1021/am403653a
- F.Y. Xu, K. Meng, B. Cheng, S.Y. Wang, J.S. Xu et al., Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-020-18350-7
- J.S. Zhang, M.W. Zhang, R.Q. Sun, X.C. Wang, A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 51(40), 10145–10149 (2012). https://doi.org/10.1002/anie.201205333
- D.M. Zhao, Y.Q. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6(4), 388–397 (2021). https://doi.org/10.1038/s41560-021-00795-9
- L.B. Jiang, X.Z. Yuan, G.M. Zeng, J. Liang, Z.B. Wu et al., A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation. Environ. Sci. Nano 5(11), 2604–2617 (2018). https://doi.org/10.1039/C8EN00807H
- Y.L. Chen, X.Q. Liu, L. Hou, X.R. Guo, R.W. Fu et al., Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 383, 123132 (2020). https://doi.org/10.1016/j.cej.2019.123132
- Q.G. Liang, X.J. Liu, J.J. Wang, Y. Liu, Z.F. Liu et al., In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: experiments and theories. J. Hazard. Mater. 401, 123355 (2021). https://doi.org/10.1016/j.jhazmat.2020.123355
- V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Highly visible light active TiO2−xNx heterojunction photocatalysts. Chem. Mater. 22(13), 3843–3853 (2010). https://doi.org/10.1021/cm903260f
- J. Zhang, Q. Xu, Z.C. Feng, M.J. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 120(9), 1790–1793 (2008). https://doi.org/10.1002/ange.200704788
- B. Baral, K.H. Reddy, K.M. Parida, Construction of M-BiVO4/T-BiVO4 isotype heterojunction for enhanced photocatalytic degradation of norfloxacine and oxygen evolution reaction. J. Colloid Interface Sci. 554, 278–295 (2019). https://doi.org/10.1016/j.jcis.2019.07.007
- J.Y. Han, P.F. An, S.H. Liu, X.F. Zhang, D.W. Wang et al., Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem. Int. Ed. 58(36), 12711–12716 (2019). https://doi.org/10.1002/anie.201907399
- A. Wagner, C.D. Sahm, E. Reisner, Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3(10), 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x
- D. Voiry, H.S. Shin, K.P. Loh, M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2(1), 1–17 (2018). https://doi.org/10.1038/s41570-017-0105
- Y. Huang, X.N. Mao, G.T. Yuan, D. Zhang, B.B. Pan et al., Size-dependent selectivity of electrochemical CO2 reduction on converted In2O3 nanocrystals. Angew. Chem. Int. Ed. 60(29), 15844–15848 (2021). https://doi.org/10.1002/ange.202105256
- D.P. Xue, H.C. Xia, W.F. Yan, J.N. Zhang, S.C. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 1–23 (2021). https://doi.org/10.1007/s40820-020-00538-7
- H.B. Yang, S.F. Hung, S. Liu, K.D. Yuan, S. Miao et al., Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3(2), 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- Z.B. Pan, E.S. Han, J.G. Zheng, J. Lu, X.L. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12(1), 1–13 (2020). https://doi.org/10.1007/s40820-019-0354-1
- J.R. Ran, M. Jaroniec, S.Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30(7), 1704649 (2018). https://doi.org/10.1002/adma.201704649
- J.J. Li, S.U. Abbas, H.Q. Wang, Z.C. Zhang, W.P. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 1–35 (2021). https://doi.org/10.1007/s40820-021-00738-9
- G.B. Chen, G.I.N. Waterhouse, R. Shi, J.Q. Zhao, Z.H. Li et al., From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem. Int. Ed. 58(49), 17528–17551 (2019). https://doi.org/10.1002/anie.201814313
- M. Humayun, H. Ullah, L. Shu, X. Ao, A.A. Tahir et al., Plasmon assisted highly efficient visible light catalytic CO2 reduction over the noble metal decorated Sr-incorporated g-C3N4. Nano-Micro Lett. 13(1), 1–18 (2021). https://doi.org/10.1007/s40820-021-00736-x
- Z.F. Jiang, W.M. Wan, H.M. Li, S.Q. Yuan, H.J. Zhao et al., A hierarchical Z-scheme alpha-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 30(10), 1706108 (2018). https://doi.org/10.1002/adma.201706108
- S.F. Ji, Y. Qu, T. Wang, Y.J. Chen, G.F. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59(26), 10651–10657 (2020). https://doi.org/10.1002/ange.202003623
- Y.Y. Duan, Y. Wang, L.Y. Gan, J.Z. Meng, Y.J. Feng et al., Amorphous carbon nitride with three coordinate nitrogen (N3C)vacancies for exceptional NOx abatement in visible light. Adv. Energy Mater. 11(19), 2004001 (2021). https://doi.org/10.1002/aenm.202004001
- Y.Y. Duan, X.F. Li, K.L. Lv, L. Zhao, Y. Liu, Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Appl. Surf. Sci. 492, 166–176 (2019). https://doi.org/10.1016/j.apsusc.2019.06.125
- S.E. Guo, Z.P. Deng, M.X. Li, B.J. Jiang, C.G. Tian et al., Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(5), 1830–1834 (2016). https://doi.org/10.1002/ange.201508505
- X.W. Li, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li et al., One-step synthesis of honeycomb-like carbon nitride isotype heterojunction as low-cost, high-performance photocatalyst for removal of NO. ACS Sustain. Chem. Eng. 6(8), 11063–11070 (2018). https://doi.org/10.1021/acssuschemeng.8b02536
- L.Q. Yang, J.F. Huang, L. Shi, L.Y. Cao, Q. Yu et al., A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B 204, 335–345 (2017). https://doi.org/10.1016/j.apcatb.2016.11.047
- H.H. Liu, D.L. Chen, Z.Q. Wang, H.J. Jing, R. Zhang, Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B 203, 300–313 (2017). https://doi.org/10.1016/j.apcatb.2016.10.014
- S.D. Sun, J. Li, P. Song, J. Cui, Q. Yang et al., Facile constructing of isotype g-C3N4(bulk)/g-C3N4(nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: an efficient charge separation system for photocatalytic hydrogen production. Appl. Surf. Sci. 500, 143985 (2020). https://doi.org/10.1016/j.apsusc.2019.143985
- C. Yang, S.S. Zhang, Y. Huang, K.L. Lv, S. Fang et al., Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds. Appl. Surf. Sci. 505, 144654 (2020). https://doi.org/10.1016/j.apsusc.2019.144654
- Y.H. Li, M.L. Gu, X.M. Zhang, J.J. Fan, K.L. Lv et al., 2D g-C3N4 for advancement of photo-generated carrier dynamics: status and challenges. Mater. Today 41, 270–303 (2020). https://doi.org/10.1016/j.mattod.2020.09.004
- D. Qu, J. Liu, X. Miao, M.M. Han, H.C. Zhang et al., Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B 227, 418–424 (2018). https://doi.org/10.1016/j.apcatb.2018.01.030
- K. Tvrdy, P.A. Frantsuzov, P.V. Kamat, Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanops. Proc. Natl. Acad. Sci. USA 108(1), 29–34 (2011). https://doi.org/10.1073/pnas.1011972107
- D.K. Wang, P. Ye, K.L. Li, H. Zeng, Y.C. Nie et al., Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Appl. Catal. B 260, 118182 (2020). https://doi.org/10.1016/j.apcatb.2019.118182
- Q. Liu, C.C. Chen, K.J. Yuan, C.D. Sewell, Z.G. Zhang et al., Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy 77, 105104 (2020). https://doi.org/10.1016/j.nanoen.2020.105104
- H.J. Yu, J.Y. Li, Y.H. Zhang, S.Q. Yang, K.L. Han et al., Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. Int. Ed. 58(12), 3880–3884 (2019). https://doi.org/10.1002/anie.201813967
- X.D. Li, Y.F. Sun, J.Q. Xu, Y.J. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4(8), 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
- L. Cheng, H. Yin, C. Cai, J.J. Fan, Q.J. Xiang, Single Ni atoms anchored on porous few-layer g-C3N4 for photocatalytic CO2 reduction: the Role of Edge Confinement. Small 16(28), 2002411 (2020). https://doi.org/10.1002/smll.202002411
- P.J. Chen, G.F. Zhao, X.R. Shi, J. Zhu, J. Ding et al., Nano-intermetallic InNi3C0.5 compound discovered as a superior catalyst for CO2 reutilization. iScience 17, 315–324 (2019). https://doi.org/10.1016/j.isci.2019.07.006
- Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S.Z. Qiao, Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 139(49), 18093–18100 (2017). https://doi.org/10.1021/jacs.7b10817
- J. Wang, T. Heil, B.C. Zhu, C.W. Tung, J.G. Yu et al., A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2 reduction. ACS Nano 14(7), 8584–8593 (2020). https://doi.org/10.1021/acsnano.0c02940
- L.C. Buelens, V.V. Galvita, H. Poelman, C. Detavernier, G.B. Marin, Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354(6311), 449–452 (2016). https://doi.org/10.1126/science.aah7161
- M. Lucking, Y.Y. Sun, D. West, S.B. Zhang, A nucleus-coupled electron transfer mechanism for TiO2-catalyzed water splitting. Phys. Chem. Chem. Phys. 17(26), 16779–16783 (2015). https://doi.org/10.1039/C5CP01202C
- P. Chen, B. Lei, X.A. Dong, H. Wang, J.P. Sheng et al., Rare-earth single-atom La–N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 14(11), 15841–15852 (2020). https://doi.org/10.1021/acsnano.0c07083
References
J. Artz, T.E. Muller, K. Thenert, J. Kleinekorte, R. Meys et al., Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118(2), 434–504 (2018). https://doi.org/10.1021/acs.chemrev.7b00435
Y.F. Zhao, G.I.N. Waterhouse, G.B. Chen, X.Y. Xiong, L.Z. Wu et al., Two-dimensional-related catalytic materials for solar-driven conversion of cox into valuable chemical feedstocks. Chem. Soc. Rev. 48(7), 1972–2010 (2019). https://doi.org/10.1039/C8CS00607E
J.P. Ma, J. Ren, Y.M. Jia, Z. Wu, L. Chen et al., High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 62, 376–383 (2019). https://doi.org/10.1016/j.nanoen.2019.05.058
H. Liu, S.H. Cao, L. Chen, K. Zhao, C.B. Wang et al., Electron acceptor design for 2D/2D iodinene/carbon nitride heterojunction boosting charge transfer and CO2 photoreduction. Chem. Eng. J. 433, 133594 (2021). https://doi.org/10.1016/j.cej.2021.133594
T. Fan, H.L. Liu, S.X. Shao, Y.J. Gong, G.D. Li et al., Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: recent progress and perspective. J. Phys. Chem. Lett. 12, 10486–10496 (2021). https://doi.org/10.1021/acs.jpclett.1c03043
S.Y. Jiang, J.X. Liu, K. Zhao, D.D. Cui, P.R. Liu et al., Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Res. 15(2), 1061–1068 (2022). https://doi.org/10.1007/s12274-021-3599-1
Y.J. Feng, Y. Wang, K.W. Wang, J.P. Ma, Y.Y. Duan et al., Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 41(2), 385–395 (2022). https://doi.org/10.1007/s12598-021-01815-z
X.F. An, K. Zhao, W.Y. Pang, W.P. Zhang, L.M. Wang et al., Balancing the CO2 adsorption properties and the regeneration energy consumption via the functional molecular engineering hierarchical pore-interface structure. Chem. Eng. J. 431, 133877 (2022). https://doi.org/10.1016/j.cej.2021.133877
X.F. Zhang, H.T. Liu, P.F. An, Y.A. Shi, J.Y. Han et al., Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO2 cycloaddition. Sci. Adv. 6, eaaz4824 (2020). https://doi.org/10.1126/sciadv.aaz4824
J.Z. Meng, Y.Y. Duan, S.J. Jing, J.P. Ma, K.W. Wang et al., Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 92, 106671 (2022). https://doi.org/10.1016/j.nanoen.2021.106671
J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503
J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014). https://doi.org/10.1039/C4CS00126E
W.H. Zhang, A.R. Mohamed, W.J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew. Chem. Int. Ed. 59(51), 22894–22915 (2020). https://doi.org/10.1002/anie.201914925
R. Wang, C.Z. He, W.Z. Chen, C.Z. Zhao, J.Z. Huo, Rich B active centers in penta-B2C as high-performance photocatalyst for nitrogen reduction. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.05.024
F. Dong, Z.W. Zhao, T. Xiong, Z.L. Ni, W.D. Zhang et al., In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 5(21), 11392–11401 (2013). https://doi.org/10.1021/am403653a
F.Y. Xu, K. Meng, B. Cheng, S.Y. Wang, J.S. Xu et al., Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-020-18350-7
J.S. Zhang, M.W. Zhang, R.Q. Sun, X.C. Wang, A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 51(40), 10145–10149 (2012). https://doi.org/10.1002/anie.201205333
D.M. Zhao, Y.Q. Wang, C.L. Dong, Y.C. Huang, J. Chen et al., Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6(4), 388–397 (2021). https://doi.org/10.1038/s41560-021-00795-9
L.B. Jiang, X.Z. Yuan, G.M. Zeng, J. Liang, Z.B. Wu et al., A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation. Environ. Sci. Nano 5(11), 2604–2617 (2018). https://doi.org/10.1039/C8EN00807H
Y.L. Chen, X.Q. Liu, L. Hou, X.R. Guo, R.W. Fu et al., Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 383, 123132 (2020). https://doi.org/10.1016/j.cej.2019.123132
Q.G. Liang, X.J. Liu, J.J. Wang, Y. Liu, Z.F. Liu et al., In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: experiments and theories. J. Hazard. Mater. 401, 123355 (2021). https://doi.org/10.1016/j.jhazmat.2020.123355
V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Highly visible light active TiO2−xNx heterojunction photocatalysts. Chem. Mater. 22(13), 3843–3853 (2010). https://doi.org/10.1021/cm903260f
J. Zhang, Q. Xu, Z.C. Feng, M.J. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 120(9), 1790–1793 (2008). https://doi.org/10.1002/ange.200704788
B. Baral, K.H. Reddy, K.M. Parida, Construction of M-BiVO4/T-BiVO4 isotype heterojunction for enhanced photocatalytic degradation of norfloxacine and oxygen evolution reaction. J. Colloid Interface Sci. 554, 278–295 (2019). https://doi.org/10.1016/j.jcis.2019.07.007
J.Y. Han, P.F. An, S.H. Liu, X.F. Zhang, D.W. Wang et al., Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem. Int. Ed. 58(36), 12711–12716 (2019). https://doi.org/10.1002/anie.201907399
A. Wagner, C.D. Sahm, E. Reisner, Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3(10), 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x
D. Voiry, H.S. Shin, K.P. Loh, M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2(1), 1–17 (2018). https://doi.org/10.1038/s41570-017-0105
Y. Huang, X.N. Mao, G.T. Yuan, D. Zhang, B.B. Pan et al., Size-dependent selectivity of electrochemical CO2 reduction on converted In2O3 nanocrystals. Angew. Chem. Int. Ed. 60(29), 15844–15848 (2021). https://doi.org/10.1002/ange.202105256
D.P. Xue, H.C. Xia, W.F. Yan, J.N. Zhang, S.C. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 1–23 (2021). https://doi.org/10.1007/s40820-020-00538-7
H.B. Yang, S.F. Hung, S. Liu, K.D. Yuan, S. Miao et al., Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3(2), 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
Z.B. Pan, E.S. Han, J.G. Zheng, J. Lu, X.L. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12(1), 1–13 (2020). https://doi.org/10.1007/s40820-019-0354-1
J.R. Ran, M. Jaroniec, S.Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30(7), 1704649 (2018). https://doi.org/10.1002/adma.201704649
J.J. Li, S.U. Abbas, H.Q. Wang, Z.C. Zhang, W.P. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 1–35 (2021). https://doi.org/10.1007/s40820-021-00738-9
G.B. Chen, G.I.N. Waterhouse, R. Shi, J.Q. Zhao, Z.H. Li et al., From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem. Int. Ed. 58(49), 17528–17551 (2019). https://doi.org/10.1002/anie.201814313
M. Humayun, H. Ullah, L. Shu, X. Ao, A.A. Tahir et al., Plasmon assisted highly efficient visible light catalytic CO2 reduction over the noble metal decorated Sr-incorporated g-C3N4. Nano-Micro Lett. 13(1), 1–18 (2021). https://doi.org/10.1007/s40820-021-00736-x
Z.F. Jiang, W.M. Wan, H.M. Li, S.Q. Yuan, H.J. Zhao et al., A hierarchical Z-scheme alpha-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 30(10), 1706108 (2018). https://doi.org/10.1002/adma.201706108
S.F. Ji, Y. Qu, T. Wang, Y.J. Chen, G.F. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59(26), 10651–10657 (2020). https://doi.org/10.1002/ange.202003623
Y.Y. Duan, Y. Wang, L.Y. Gan, J.Z. Meng, Y.J. Feng et al., Amorphous carbon nitride with three coordinate nitrogen (N3C)vacancies for exceptional NOx abatement in visible light. Adv. Energy Mater. 11(19), 2004001 (2021). https://doi.org/10.1002/aenm.202004001
Y.Y. Duan, X.F. Li, K.L. Lv, L. Zhao, Y. Liu, Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Appl. Surf. Sci. 492, 166–176 (2019). https://doi.org/10.1016/j.apsusc.2019.06.125
S.E. Guo, Z.P. Deng, M.X. Li, B.J. Jiang, C.G. Tian et al., Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(5), 1830–1834 (2016). https://doi.org/10.1002/ange.201508505
X.W. Li, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li et al., One-step synthesis of honeycomb-like carbon nitride isotype heterojunction as low-cost, high-performance photocatalyst for removal of NO. ACS Sustain. Chem. Eng. 6(8), 11063–11070 (2018). https://doi.org/10.1021/acssuschemeng.8b02536
L.Q. Yang, J.F. Huang, L. Shi, L.Y. Cao, Q. Yu et al., A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B 204, 335–345 (2017). https://doi.org/10.1016/j.apcatb.2016.11.047
H.H. Liu, D.L. Chen, Z.Q. Wang, H.J. Jing, R. Zhang, Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B 203, 300–313 (2017). https://doi.org/10.1016/j.apcatb.2016.10.014
S.D. Sun, J. Li, P. Song, J. Cui, Q. Yang et al., Facile constructing of isotype g-C3N4(bulk)/g-C3N4(nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: an efficient charge separation system for photocatalytic hydrogen production. Appl. Surf. Sci. 500, 143985 (2020). https://doi.org/10.1016/j.apsusc.2019.143985
C. Yang, S.S. Zhang, Y. Huang, K.L. Lv, S. Fang et al., Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds. Appl. Surf. Sci. 505, 144654 (2020). https://doi.org/10.1016/j.apsusc.2019.144654
Y.H. Li, M.L. Gu, X.M. Zhang, J.J. Fan, K.L. Lv et al., 2D g-C3N4 for advancement of photo-generated carrier dynamics: status and challenges. Mater. Today 41, 270–303 (2020). https://doi.org/10.1016/j.mattod.2020.09.004
D. Qu, J. Liu, X. Miao, M.M. Han, H.C. Zhang et al., Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B 227, 418–424 (2018). https://doi.org/10.1016/j.apcatb.2018.01.030
K. Tvrdy, P.A. Frantsuzov, P.V. Kamat, Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanops. Proc. Natl. Acad. Sci. USA 108(1), 29–34 (2011). https://doi.org/10.1073/pnas.1011972107
D.K. Wang, P. Ye, K.L. Li, H. Zeng, Y.C. Nie et al., Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Appl. Catal. B 260, 118182 (2020). https://doi.org/10.1016/j.apcatb.2019.118182
Q. Liu, C.C. Chen, K.J. Yuan, C.D. Sewell, Z.G. Zhang et al., Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy 77, 105104 (2020). https://doi.org/10.1016/j.nanoen.2020.105104
H.J. Yu, J.Y. Li, Y.H. Zhang, S.Q. Yang, K.L. Han et al., Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. Int. Ed. 58(12), 3880–3884 (2019). https://doi.org/10.1002/anie.201813967
X.D. Li, Y.F. Sun, J.Q. Xu, Y.J. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4(8), 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
L. Cheng, H. Yin, C. Cai, J.J. Fan, Q.J. Xiang, Single Ni atoms anchored on porous few-layer g-C3N4 for photocatalytic CO2 reduction: the Role of Edge Confinement. Small 16(28), 2002411 (2020). https://doi.org/10.1002/smll.202002411
P.J. Chen, G.F. Zhao, X.R. Shi, J. Zhu, J. Ding et al., Nano-intermetallic InNi3C0.5 compound discovered as a superior catalyst for CO2 reutilization. iScience 17, 315–324 (2019). https://doi.org/10.1016/j.isci.2019.07.006
Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S.Z. Qiao, Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 139(49), 18093–18100 (2017). https://doi.org/10.1021/jacs.7b10817
J. Wang, T. Heil, B.C. Zhu, C.W. Tung, J.G. Yu et al., A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2 reduction. ACS Nano 14(7), 8584–8593 (2020). https://doi.org/10.1021/acsnano.0c02940
L.C. Buelens, V.V. Galvita, H. Poelman, C. Detavernier, G.B. Marin, Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354(6311), 449–452 (2016). https://doi.org/10.1126/science.aah7161
M. Lucking, Y.Y. Sun, D. West, S.B. Zhang, A nucleus-coupled electron transfer mechanism for TiO2-catalyzed water splitting. Phys. Chem. Chem. Phys. 17(26), 16779–16783 (2015). https://doi.org/10.1039/C5CP01202C
P. Chen, B. Lei, X.A. Dong, H. Wang, J.P. Sheng et al., Rare-earth single-atom La–N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 14(11), 15841–15852 (2020). https://doi.org/10.1021/acsnano.0c07083