Thermochromic Silks for Temperature Management and Dynamic Textile Displays
Corresponding Author: Shengjie Ling
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 72
Abstract
Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m−3, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs.
Highlights:
1 Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays.
2 Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy.
3 The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ren, Y. Wang, Y. Yao, Y. Wang, X. Fei et al., Biological material interfaces as inspiration for mechanical and optical material designs. Chem. Rev. 119, 12279–12336 (2019). https://doi.org/10.1021/acs.chemrev.9b00416
- S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin et al., Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.004
- S.J. Vainker, Chinese Silk: A Cultural History (Rutgers University Press, New Brunswick, 2004)
- S. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
- M. Lewin, E.M. Pearce, Handbook of Fiber Chemistry, Revised and Expanded (CRC Press, Boca Raton, 1998)
- N. Ramos, M.S. Miranda, A.R. Franco, S.S. Silva, J. Azevedo et al., Toward spinning greener advanced silk fibers by feeding silkworms with nanomaterials. ACS Sustain. Chem. Eng. 8, 11872–11887 (2020). https://doi.org/10.1021/acssuschemeng.0c03874
- J. Ke, Y. Zhu, J. Zhang, J. Yang, H. Guo et al., Size-dependent uptake and distribution of agnps by silkworms. ACS Sustain. Chem. Eng. 8, 460–468 (2020). https://doi.org/10.1021/acssuschemeng.9b05799
- Q. Wang, C. Wang, M. Zhang, M. Jian, Y. Zhang, Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 16, 6695–6700 (2016). https://doi.org/10.1021/acs.nanolett.6b03597
- J.-T. Wang, L.-L. Li, M.-Y. Zhang, S.-L. Liu, L.-H. Jiang et al., Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater. Sci. Eng. C 34, 417–421 (2014). https://doi.org/10.1016/j.msec.2013.09.041
- X. Zhang, A.L. Licon, T.I. Harris, P.F. Oliveira, B.J. McFarland et al., Silkworms with spider silklike fibers using synthetic silkworm chow containing calcium lignosulfonate, carbon nanotubes, and graphene. ACS Omega 4, 4832–4838 (2019). https://doi.org/10.1021/acsomega.8b03566
- C. Nambajjwe, W.B. Musinguzi, S. Rwahwire, A. Kasedde, C. Namuga et al., Improving electricity from silk cocoons through feeding silkworms with silver nanoparticles. Mater. Today Proc. 28, 1221–1226 (2020). https://doi.org/10.1016/j.matpr.2020.01.518
- J.-T. Wang, L.-L. Li, L. Feng, J.-F. Li, L.-H. Jiang et al., Directly obtaining pristine magnetic silk fibers from silkworm. Int. J. Biol. Macromol. 63, 205–209 (2014). https://doi.org/10.1016/j.ijbiomac.2013.11.006
- L. Cai, H. Shao, X. Hu, Y. Zhang, Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng. 3, 2551–2557 (2015). https://doi.org/10.1021/acssuschemeng.5b00749
- G. Wu, P. Song, D. Zhang, Z. Liu, L. Li et al., Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int. J. Biol. Macromol. 104, 533–538 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.069
- Q. Zhan, S. Fan, D. Wang, X. Yao, H. Shao et al., Super-strong and uniform fluorescent composite silk from trace aie nanoparticle feeding. Compos. Commun. 21, 100414 (2020). https://doi.org/10.1016/j.coco.2020.100414
- O.J. Lee, M.T. Sultan, H. Hong, Y.J. Lee, J.S. Lee et al., Recent advances in fluorescent silk fibroin. Front. Mater. 7, 50 (2020). https://doi.org/10.3389/fmats.2020.00050
- N.C. Tansil, Y. Li, L.D. Koh, T.C. Peng, K.Y. Win et al., The use of molecular fluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model. Biomaterials 32, 9576–9583 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.081
- A. Nisal, K. Trivedy, H. Mohammad, S. Panneri, S. Sen Gupta et al., Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach. ACS Sustain. Chem. Eng. 2, 312–317 (2014). https://doi.org/10.1021/sc400355k
- H.-L. Dong, S.-X. Zhang, H. Tao, Z.-H. Chen, X. Li et al., Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Sci. Rep. 7, 10972 (2017). https://doi.org/10.1038/s41598-017-11592-4
- J. Ren, Y. Liu, D.L. Kaplan, S. Ling, Interplay of structure and mechanics in silk/carbon nanocomposites. MRS Bull. 44, 53–58 (2019). https://doi.org/10.1557/mrs.2018.320
- G.Q. Zhou, Z.Z. Shao, D.P. Knight, J.P. Yan, X. Chen, Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv. Mater. 21, 366–370 (2009). https://doi.org/10.1002/adma.200800582
- G. Fang, Z. Zheng, J. Yao, M. Chen, Y. Tang et al., Tough protein–carbon nanotube hybrid fibers comparable to natural spider silks. J. Mater. Chem. B 3, 3940–3947 (2015). https://doi.org/10.1039/C5TB00448A
- H. Zhou, Z.-Z. Shao, X. Chen, Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber. Chin. J. Polym. Sci. 32, 29–34 (2014). https://doi.org/10.1007/s10118-014-1368-2
- Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto et al., Design, fabrication, and function of silk-based nanomaterials. Adv. Funct. Mater. 28, 1805305 (2018). https://doi.org/10.1002/adfm.201805305
- S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.-Y. Park et al., Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 6, 7145 (2015). https://doi.org/10.1038/ncomms8145
- Q. Wang, M. Jian, C. Wang, Y. Zhang, Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27, 1605657 (2017). https://doi.org/10.1002/adfm.201605657
- C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28, 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
- S. Ling, Z. Qin, C. Li, W. Huang, D.L. Kaplan et al., Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 8, 1387 (2017). https://doi.org/10.1038/s41467-017-00613-5
- C. Ye, J. Ren, Y. Wang, W. Zhang, C. Qian et al., Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 1, 1411–1425 (2019). https://doi.org/10.1016/j.matt.2019.07.016
- S. Ling, Q. Wang, D. Zhang, Y. Zhang, X. Mu et al., Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28, 1705291 (2018). https://doi.org/10.1002/adfm.201705291
- T. Tamura, C. Thibert, C. Royer, T. Kanda, A. Eappen et al., Germline transformation of the silkworm Bombyx mori L. Using a piggybac transposon-derived vector. Nat. Biotechnol. 18, 81–84 (2000). https://doi.org/10.1038/71978
- M. Tomita, H. Munetsuna, T. Sato, T. Adachi, R. Hino et al., Transgenic silkworms produce recombinant human type iii procollagen in cocoons. Nat. Biotechnol. 21, 52–56 (2003). https://doi.org/10.1038/nbt771
- T. Iizuka, H. Sezutsu, K.-I. Tatematsu, I. Kobayashi, N. Yonemura et al., Colored fluorescent silk made by transgenic silkworms. Adv. Funct. Mater. 23, 5232–5239 (2013). https://doi.org/10.1002/adfm.201300365
- J.-M. Liu, W.C.C. David, D.T.-M. Ip, X.-H. Li, G.-L. Li et al., High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system. Mol. Bio. Rep. 36, 329–335 (2009). https://doi.org/10.1007/s11033-007-9183-2
- M. Yamao, N. Katayama, H. Nakazawa, M. Yamakawa, Y. Hayashi et al., Gene targeting in the silkworm by use of a baculovirus. Genes Dev. 13, 511–516 (1999). https://doi.org/10.1101/gad.13.5.511
- S.W. Kim, E.Y. Yun, K.-H. Choi, S.R. Kim, S.W. Park et al., Construction of fluorescent red silk using fibroin h-chain expression system. J. Sericul. Entomol. Sci. 50, 87–92 (2012). https://doi.org/10.7852/jses.2012.50.2.87
- M. Tomita, Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol. Lett. 33, 645–654 (2011). https://doi.org/10.1007/s10529-010-0498-z
- M.A. Chowdhury, B.S. Butola, M. Joshi, Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties. Color. Technol. 129, 232–237 (2013). https://doi.org/10.1111/cote.12015
- Y. Zhang, Z. Hu, H. Xiang, G. Zhai, M. Zhu, Fabrication of visual textile temperature indicators based on reversible thermochromic fibers. Dyes Pigm. 162, 705–711 (2019). https://doi.org/10.1016/j.dyepig.2018.11.007
- M. Yang, J. Pan, L. Luo, A. Xu, J. Huang et al., Cnt/cotton composite yarn for electro-thermochromic textiles. Smart Mater. Struct. 28, 085003 (2019). https://doi.org/10.1088/1361-665x/ab21ef
- X. Cao, P. Jin, H. Luo, 21-VO2-based Thermochromic Materials and Applications: Flexible Foils and Coated Glass for Energy Building Efficiency (Woodhead Publishing, Sawston, 2019), pp. 503–524
- M. Viková, M. Pechová, Study of adaptive thermochromic camouflage for combat uniform. Text. Res. J. 90, 2070–2084 (2020). https://doi.org/10.1177/0040517520910217
- Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh et al., Thermal camouflage based on the phase-changing material gst. Light Sci. Appl. 7, 26 (2018). https://doi.org/10.1038/s41377-018-0038-5
- Y. Jin, Y. Lin, A. Kiani, I.D. Joshipura, M. Ge et al., Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10, 4187 (2019). https://doi.org/10.1038/s41467-019-12161-1
- J. Chen, H. Wen, G. Zhang, F. Lei, Q. Feng et al., Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core–shell segmental configuration for wearable strain and temperature sensors. ACS Appl. Mater. Interfaces 12, 7565–7574 (2020). https://doi.org/10.1021/acsami.9b20612
- S. Shen, L. Feng, S. Qi, J. Cao, Y. Ge et al., Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy. Nano Lett. 20, 2137–2143 (2020). https://doi.org/10.1021/acs.nanolett.0c00147
- L. Landau, B. Levich, Dragging of a liquid by a moving plate. Dyn. Curv. Fronts (1988). https://doi.org/10.1016/B978-0-08-092523-3.50016-2
- D. James, The meniscus on the outside of a small circular cylinder. J. Fluid Mech. 63, 657–664 (1974). https://doi.org/10.1017/S0022112074002126
- P. Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena (Springer, Berlin, 2004). https://doi.org/10.1007/978-0-387-21656-0
- J.A.F. Plateau, Statique Expérimentale et Théorique des Liquides (Gauthier-Villars, Paris, 1873)
- D. Quéré, Fluid coating on a fiber. Ann. Rev. Fluid. Mech. 31, 347–384 (1999). https://doi.org/10.1146/annurev.fluid.31.1.347
- R. Mead-Hunter, A. King, B. Mullins, Plateau rayleigh instability simulation. Langmuir 28, 6731–6735 (2012). https://doi.org/10.1021/la300622h
- B. Mullins, G. Kasper et al., Comment on: “Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study” by frising et al. Chem. Eng. Sci. 61, 6223–6227 (2006). https://doi.org/10.1016/j.ces.2006.05.027
- J. Schanda, Colorimetry: Understanding the CIE System (Wiley, Hoboken, 2007), pp. 25–78. https://doi.org/10.1002/9780470175637.ch3
- W. Zhang, L. Fei, J. Zhang, K. Chen, Y. Yin et al., Durable and tunable temperature responsive silk fabricated with reactive thermochromic pigments. Prog. Org. Coat. 147, 105697 (2020). https://doi.org/10.1016/j.porgcoat.2020.105697
- S. Ling, C. Li, K. Jin, D.L. Kaplan, M.J. Buehler, Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv. Mater. 28, 7783–7790 (2016). https://doi.org/10.1002/adma.201601783
- D. Wu, C. Ye, Y. Liu, J. Ren, Y. Yao et al., Light, strong, and ductile architectures achieved by silk fiber “welding” processing. ACS Omega 5, 11955–11961 (2020). https://doi.org/10.1021/acsomega.9b04109
- S.J. Ling, Z.M. Qi, D.P. Knight, Z.Z. Shao, X. Chen, Synchrotron ftir microspectroscopy of single natural silk fibers. Biomacromol 12, 3344–3349 (2011). https://doi.org/10.1021/Bm2006032
- S.J. Ling, Z.M. Qi, D.P. Knight, Y.F. Huang, L. Huang et al., Insight into the structure of single antheraea pernyi silkworm fibers using synchrotron ftir microspectroscopy. Biomacromol 14, 1885–1892 (2013). https://doi.org/10.1021/bm400267m
- S.J. Ling, Z.M. Qi, D.P. Knight, Z.Z. Shao, X. Chen, Ftir imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends. Polym. Chem. 4, 5401–5406 (2013). https://doi.org/10.1039/c3py00508a
- C. Ye, S. Dong, J. Ren, S. Ling, Ultrastable and high-performance silk energy harvesting textiles. Nano-Micro Lett. 12, 12 (2019). https://doi.org/10.1007/s40820-019-0348-z
- J.F. Patrick, M.J. Robb, N.R. Sottos, J.S. Moore, S.R. White, Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016). https://doi.org/10.1038/nature21002
- N. Yang, W. Zhang, C. Ye, X. Chen, S. Ling, Nanobiopolymers fabrication and their life cycle assessments. Biotechnol. J. 14, 1700754 (2019). https://doi.org/10.1002/biot.201700754
References
J. Ren, Y. Wang, Y. Yao, Y. Wang, X. Fei et al., Biological material interfaces as inspiration for mechanical and optical material designs. Chem. Rev. 119, 12279–12336 (2019). https://doi.org/10.1021/acs.chemrev.9b00416
S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin et al., Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.004
S.J. Vainker, Chinese Silk: A Cultural History (Rutgers University Press, New Brunswick, 2004)
S. Ling, D.L. Kaplan, M.J. Buehler, Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018). https://doi.org/10.1038/natrevmats.2018.16
M. Lewin, E.M. Pearce, Handbook of Fiber Chemistry, Revised and Expanded (CRC Press, Boca Raton, 1998)
N. Ramos, M.S. Miranda, A.R. Franco, S.S. Silva, J. Azevedo et al., Toward spinning greener advanced silk fibers by feeding silkworms with nanomaterials. ACS Sustain. Chem. Eng. 8, 11872–11887 (2020). https://doi.org/10.1021/acssuschemeng.0c03874
J. Ke, Y. Zhu, J. Zhang, J. Yang, H. Guo et al., Size-dependent uptake and distribution of agnps by silkworms. ACS Sustain. Chem. Eng. 8, 460–468 (2020). https://doi.org/10.1021/acssuschemeng.9b05799
Q. Wang, C. Wang, M. Zhang, M. Jian, Y. Zhang, Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 16, 6695–6700 (2016). https://doi.org/10.1021/acs.nanolett.6b03597
J.-T. Wang, L.-L. Li, M.-Y. Zhang, S.-L. Liu, L.-H. Jiang et al., Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater. Sci. Eng. C 34, 417–421 (2014). https://doi.org/10.1016/j.msec.2013.09.041
X. Zhang, A.L. Licon, T.I. Harris, P.F. Oliveira, B.J. McFarland et al., Silkworms with spider silklike fibers using synthetic silkworm chow containing calcium lignosulfonate, carbon nanotubes, and graphene. ACS Omega 4, 4832–4838 (2019). https://doi.org/10.1021/acsomega.8b03566
C. Nambajjwe, W.B. Musinguzi, S. Rwahwire, A. Kasedde, C. Namuga et al., Improving electricity from silk cocoons through feeding silkworms with silver nanoparticles. Mater. Today Proc. 28, 1221–1226 (2020). https://doi.org/10.1016/j.matpr.2020.01.518
J.-T. Wang, L.-L. Li, L. Feng, J.-F. Li, L.-H. Jiang et al., Directly obtaining pristine magnetic silk fibers from silkworm. Int. J. Biol. Macromol. 63, 205–209 (2014). https://doi.org/10.1016/j.ijbiomac.2013.11.006
L. Cai, H. Shao, X. Hu, Y. Zhang, Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng. 3, 2551–2557 (2015). https://doi.org/10.1021/acssuschemeng.5b00749
G. Wu, P. Song, D. Zhang, Z. Liu, L. Li et al., Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int. J. Biol. Macromol. 104, 533–538 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.069
Q. Zhan, S. Fan, D. Wang, X. Yao, H. Shao et al., Super-strong and uniform fluorescent composite silk from trace aie nanoparticle feeding. Compos. Commun. 21, 100414 (2020). https://doi.org/10.1016/j.coco.2020.100414
O.J. Lee, M.T. Sultan, H. Hong, Y.J. Lee, J.S. Lee et al., Recent advances in fluorescent silk fibroin. Front. Mater. 7, 50 (2020). https://doi.org/10.3389/fmats.2020.00050
N.C. Tansil, Y. Li, L.D. Koh, T.C. Peng, K.Y. Win et al., The use of molecular fluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model. Biomaterials 32, 9576–9583 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.081
A. Nisal, K. Trivedy, H. Mohammad, S. Panneri, S. Sen Gupta et al., Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach. ACS Sustain. Chem. Eng. 2, 312–317 (2014). https://doi.org/10.1021/sc400355k
H.-L. Dong, S.-X. Zhang, H. Tao, Z.-H. Chen, X. Li et al., Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Sci. Rep. 7, 10972 (2017). https://doi.org/10.1038/s41598-017-11592-4
J. Ren, Y. Liu, D.L. Kaplan, S. Ling, Interplay of structure and mechanics in silk/carbon nanocomposites. MRS Bull. 44, 53–58 (2019). https://doi.org/10.1557/mrs.2018.320
G.Q. Zhou, Z.Z. Shao, D.P. Knight, J.P. Yan, X. Chen, Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv. Mater. 21, 366–370 (2009). https://doi.org/10.1002/adma.200800582
G. Fang, Z. Zheng, J. Yao, M. Chen, Y. Tang et al., Tough protein–carbon nanotube hybrid fibers comparable to natural spider silks. J. Mater. Chem. B 3, 3940–3947 (2015). https://doi.org/10.1039/C5TB00448A
H. Zhou, Z.-Z. Shao, X. Chen, Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber. Chin. J. Polym. Sci. 32, 29–34 (2014). https://doi.org/10.1007/s10118-014-1368-2
Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto et al., Design, fabrication, and function of silk-based nanomaterials. Adv. Funct. Mater. 28, 1805305 (2018). https://doi.org/10.1002/adfm.201805305
S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.-Y. Park et al., Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 6, 7145 (2015). https://doi.org/10.1038/ncomms8145
Q. Wang, M. Jian, C. Wang, Y. Zhang, Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27, 1605657 (2017). https://doi.org/10.1002/adfm.201605657
C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28, 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
S. Ling, Z. Qin, C. Li, W. Huang, D.L. Kaplan et al., Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 8, 1387 (2017). https://doi.org/10.1038/s41467-017-00613-5
C. Ye, J. Ren, Y. Wang, W. Zhang, C. Qian et al., Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 1, 1411–1425 (2019). https://doi.org/10.1016/j.matt.2019.07.016
S. Ling, Q. Wang, D. Zhang, Y. Zhang, X. Mu et al., Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater. 28, 1705291 (2018). https://doi.org/10.1002/adfm.201705291
T. Tamura, C. Thibert, C. Royer, T. Kanda, A. Eappen et al., Germline transformation of the silkworm Bombyx mori L. Using a piggybac transposon-derived vector. Nat. Biotechnol. 18, 81–84 (2000). https://doi.org/10.1038/71978
M. Tomita, H. Munetsuna, T. Sato, T. Adachi, R. Hino et al., Transgenic silkworms produce recombinant human type iii procollagen in cocoons. Nat. Biotechnol. 21, 52–56 (2003). https://doi.org/10.1038/nbt771
T. Iizuka, H. Sezutsu, K.-I. Tatematsu, I. Kobayashi, N. Yonemura et al., Colored fluorescent silk made by transgenic silkworms. Adv. Funct. Mater. 23, 5232–5239 (2013). https://doi.org/10.1002/adfm.201300365
J.-M. Liu, W.C.C. David, D.T.-M. Ip, X.-H. Li, G.-L. Li et al., High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system. Mol. Bio. Rep. 36, 329–335 (2009). https://doi.org/10.1007/s11033-007-9183-2
M. Yamao, N. Katayama, H. Nakazawa, M. Yamakawa, Y. Hayashi et al., Gene targeting in the silkworm by use of a baculovirus. Genes Dev. 13, 511–516 (1999). https://doi.org/10.1101/gad.13.5.511
S.W. Kim, E.Y. Yun, K.-H. Choi, S.R. Kim, S.W. Park et al., Construction of fluorescent red silk using fibroin h-chain expression system. J. Sericul. Entomol. Sci. 50, 87–92 (2012). https://doi.org/10.7852/jses.2012.50.2.87
M. Tomita, Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol. Lett. 33, 645–654 (2011). https://doi.org/10.1007/s10529-010-0498-z
M.A. Chowdhury, B.S. Butola, M. Joshi, Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties. Color. Technol. 129, 232–237 (2013). https://doi.org/10.1111/cote.12015
Y. Zhang, Z. Hu, H. Xiang, G. Zhai, M. Zhu, Fabrication of visual textile temperature indicators based on reversible thermochromic fibers. Dyes Pigm. 162, 705–711 (2019). https://doi.org/10.1016/j.dyepig.2018.11.007
M. Yang, J. Pan, L. Luo, A. Xu, J. Huang et al., Cnt/cotton composite yarn for electro-thermochromic textiles. Smart Mater. Struct. 28, 085003 (2019). https://doi.org/10.1088/1361-665x/ab21ef
X. Cao, P. Jin, H. Luo, 21-VO2-based Thermochromic Materials and Applications: Flexible Foils and Coated Glass for Energy Building Efficiency (Woodhead Publishing, Sawston, 2019), pp. 503–524
M. Viková, M. Pechová, Study of adaptive thermochromic camouflage for combat uniform. Text. Res. J. 90, 2070–2084 (2020). https://doi.org/10.1177/0040517520910217
Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh et al., Thermal camouflage based on the phase-changing material gst. Light Sci. Appl. 7, 26 (2018). https://doi.org/10.1038/s41377-018-0038-5
Y. Jin, Y. Lin, A. Kiani, I.D. Joshipura, M. Ge et al., Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10, 4187 (2019). https://doi.org/10.1038/s41467-019-12161-1
J. Chen, H. Wen, G. Zhang, F. Lei, Q. Feng et al., Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core–shell segmental configuration for wearable strain and temperature sensors. ACS Appl. Mater. Interfaces 12, 7565–7574 (2020). https://doi.org/10.1021/acsami.9b20612
S. Shen, L. Feng, S. Qi, J. Cao, Y. Ge et al., Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy. Nano Lett. 20, 2137–2143 (2020). https://doi.org/10.1021/acs.nanolett.0c00147
L. Landau, B. Levich, Dragging of a liquid by a moving plate. Dyn. Curv. Fronts (1988). https://doi.org/10.1016/B978-0-08-092523-3.50016-2
D. James, The meniscus on the outside of a small circular cylinder. J. Fluid Mech. 63, 657–664 (1974). https://doi.org/10.1017/S0022112074002126
P. Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena (Springer, Berlin, 2004). https://doi.org/10.1007/978-0-387-21656-0
J.A.F. Plateau, Statique Expérimentale et Théorique des Liquides (Gauthier-Villars, Paris, 1873)
D. Quéré, Fluid coating on a fiber. Ann. Rev. Fluid. Mech. 31, 347–384 (1999). https://doi.org/10.1146/annurev.fluid.31.1.347
R. Mead-Hunter, A. King, B. Mullins, Plateau rayleigh instability simulation. Langmuir 28, 6731–6735 (2012). https://doi.org/10.1021/la300622h
B. Mullins, G. Kasper et al., Comment on: “Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study” by frising et al. Chem. Eng. Sci. 61, 6223–6227 (2006). https://doi.org/10.1016/j.ces.2006.05.027
J. Schanda, Colorimetry: Understanding the CIE System (Wiley, Hoboken, 2007), pp. 25–78. https://doi.org/10.1002/9780470175637.ch3
W. Zhang, L. Fei, J. Zhang, K. Chen, Y. Yin et al., Durable and tunable temperature responsive silk fabricated with reactive thermochromic pigments. Prog. Org. Coat. 147, 105697 (2020). https://doi.org/10.1016/j.porgcoat.2020.105697
S. Ling, C. Li, K. Jin, D.L. Kaplan, M.J. Buehler, Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv. Mater. 28, 7783–7790 (2016). https://doi.org/10.1002/adma.201601783
D. Wu, C. Ye, Y. Liu, J. Ren, Y. Yao et al., Light, strong, and ductile architectures achieved by silk fiber “welding” processing. ACS Omega 5, 11955–11961 (2020). https://doi.org/10.1021/acsomega.9b04109
S.J. Ling, Z.M. Qi, D.P. Knight, Z.Z. Shao, X. Chen, Synchrotron ftir microspectroscopy of single natural silk fibers. Biomacromol 12, 3344–3349 (2011). https://doi.org/10.1021/Bm2006032
S.J. Ling, Z.M. Qi, D.P. Knight, Y.F. Huang, L. Huang et al., Insight into the structure of single antheraea pernyi silkworm fibers using synchrotron ftir microspectroscopy. Biomacromol 14, 1885–1892 (2013). https://doi.org/10.1021/bm400267m
S.J. Ling, Z.M. Qi, D.P. Knight, Z.Z. Shao, X. Chen, Ftir imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends. Polym. Chem. 4, 5401–5406 (2013). https://doi.org/10.1039/c3py00508a
C. Ye, S. Dong, J. Ren, S. Ling, Ultrastable and high-performance silk energy harvesting textiles. Nano-Micro Lett. 12, 12 (2019). https://doi.org/10.1007/s40820-019-0348-z
J.F. Patrick, M.J. Robb, N.R. Sottos, J.S. Moore, S.R. White, Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016). https://doi.org/10.1038/nature21002
N. Yang, W. Zhang, C. Ye, X. Chen, S. Ling, Nanobiopolymers fabrication and their life cycle assessments. Biotechnol. J. 14, 1700754 (2019). https://doi.org/10.1002/biot.201700754