A Review on Metal–Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials
Corresponding Author: Yi Huang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 56
Abstract
The development of microwave absorption materials (MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health. And MAMs are also used in radar stealth for protecting the weapons from being detected. Many nanomaterials were studied as MAMs, but not all of them have the satisfactory performance. Recently, metal–organic frameworks (MOFs) have attracted tremendous attention owing to their tunable chemical structures, diverse properties, large specific surface area and uniform pore distribution. MOF can transform to porous carbon (PC) which is decorated with metal species at appropriate pyrolysis temperature. However, the loss mechanism of pure MOF-derived PC is often relatively simple. In order to further improve the MA performance, the MOFs coupled with other loss materials are a widely studied method. In this review, we summarize the theories of MA, the progress of different MOF-derived PC‑based MAMs, tunable chemical structures incorporated with dielectric loss or magnetic loss materials. The different MA performance and mechanisms are discussed in detail. Finally, the shortcomings, challenges and perspectives of MOF-derived PC‑based MAMs are also presented. We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.
Highlights:
1 The theoretical knowledge in the field of microwave absorption is summarized in detail.
2 The recent progress of metal–organic frameworks-derived porous carbon-based nanocomposites as microwave absorption materials is reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
- H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces. 7(18), 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654
- S. Xie, Z. Ji, L. Zhu, J. Zhang, Y. Cao et al., Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 27, 100963 (2020). https://doi.org/10.1016/j.jobe.2019.100963
- L. Heng, Z. Zhang, X. Chen, S. Wang, Z. Wu et al., Fe/nanoporous carbon hybrid derived from metal-organic framework for highly effective microwave absorption. Appl. Organomet. Chem. 33(8), e4991 (2019). https://doi.org/10.1002/aoc.4991
- S.U. Rehman, J. Wang, Q. Luo, M. Sun, L. Jiang et al., Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019). https://doi.org/10.1016/j.cej.2019.05.040
- M. Qiao, X. Lei, Y. Ma, L. Tian, X. He et al., Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
- B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces. 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
- J.L. Liu, H.S. Liang, Y. Zhang, G.L. Wu, H.J. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B Eng. 176, 12 (2019). https://doi.org/10.1016/j.compositesb.2019.107240
- X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019). https://doi.org/10.1016/j.carbon.2019.06.080
- P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces. 8(8), 5536–5546 (2016). https://doi.org/10.1021/acsami.5b10511
- M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu et al., Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces. 7(34), 19408–19415 (2015). https://doi.org/10.1021/acsami.5b05595
- D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
- L.W. Zhu, N. Liu, X.H. Jiang, L.M. Yu, X. Li, Four novel 3D RE-MOFs based on maleic hydrazide: syntheses, structural diversity, efficient electromagnetic wave absorption and antibacterial activity properties. Inorg. Chim. Acta 501, 119291 (2020). https://doi.org/10.1016/j.ica.2019.119291
- Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
- P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh et al., High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5(10), 4330–4336 (2013). https://doi.org/10.1039/c3nr00634d
- L. Huang, J. Li, Z. Wang, Y. Li, X. He et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042
- Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma et al., Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces. 11(4), 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201
- X.-X. Wang, T. Ma, J.-C. Shu, M.-S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018). https://doi.org/10.1016/j.cej.2017.09.101
- Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou et al., Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 29(20), 17122–17136 (2018). https://doi.org/10.1007/s10854-018-9909-z
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11(1), 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
- S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das et al., An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 344, 138–154 (2018). https://doi.org/10.1016/j.cej.2018.03.039
- K. Srogi, Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination. Anal. Lett. 40(2), 199–232 (2007). https://doi.org/10.1080/00032710600867713
- X. Zhang, J. Qiao, F. Wang, L. Lv, D. Xu et al., Tailoring electromagnetic absorption performances of TiO2/Co/carbon nanofibers through tuning graphitization degrees. Ceram. Int. 46(4), 4754–4761 (2020). https://doi.org/10.1016/j.ceramint.2019.10.207
- B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie et al., Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3(19), 10345–10352 (2015). https://doi.org/10.1039/c5ta00086f
- A. Munir, Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: a review. Adv. Polym. Tech. 36(3), 362–370 (2017). https://doi.org/10.1002/adv.21617
- M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi et al., A review on metal-organic frameworks: synthesis and applications. Trac-Trends Anal. Chem. 118, 401–425 (2019). https://doi.org/10.1016/j.trac.2019.06.007
- X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces. 11(14), 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
- Y. Wang, X. Gao, C. Lin, L. Shi, X. Li et al., Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 785, 765–773 (2019). https://doi.org/10.1016/j.jallcom.2019.01.271
- Y. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou et al., Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 141(9), 4130–4136 (2019). https://doi.org/10.1021/jacs.9b00232
- H. Zhang, X. Liu, Y. Wu, C. Guan, A.K. Cheetham et al., MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54(42), 5268–5288 (2018). https://doi.org/10.1039/c8cc00789f
- Z.-X. Cai, Z.-L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 31(11), 1804903 (2019). https://doi.org/10.1002/adma.201804903
- Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. (2018). https://doi.org/10.1002/adma.201702891
- X. Wei, Y. Li, H. Peng, M. Zhou, Y. Ou et al., Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chem. Eng. J. 341, 618–627 (2018). https://doi.org/10.1016/j.cej.2018.02.032
- J. Li, W. Huang, M. Wang, S. Xi, J. Meng et al., Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 4(1), 285–292 (2019). https://doi.org/10.1021/acsenergylett.8b02345
- B. Zhu, R. Zou, Q. Xu, Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801193
- R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019). https://doi.org/10.1016/j.ccr.2017.09.027
- X. Jiang, S. Li, Y. Bai, L. Shao, Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation. J. Mater. Chem. A 7(18), 10898–10904 (2019). https://doi.org/10.1039/c8ta11748a
- J. Chang, X. Wang, J. Wang, H. Li, F. Li, Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal. Chem. 91(5), 3604–3610 (2019). https://doi.org/10.1021/acs.analchem.8b05599
- Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, X. Sun, Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuat. B Chem. 278, 126–132 (2019). https://doi.org/10.1016/j.snb.2018.09.076
- W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces. 10(37), 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
- H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
- Y. Zhang, S. Gao, H. Xing, H. Li, In situ carbon nanotubes encapsulated metal Nickel as high-performance microwave absorber from Ni-Zn metal-organic framework derivative. J. Alloys Compd. 801, 609–618 (2019). https://doi.org/10.1016/j.jallcom.2019.06.164
- X. Zhang, J. Qao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces. 11(39), 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
- W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
- W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces. 10(10), 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
- Q. Wu, H. Jin, W. Chen, S. Huo, X. Chen et al., Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 5(6), 065602 (2018). https://doi.org/10.1088/2053-1591/aac67e
- F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260–277 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
- R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan et al., Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem. Eng. J. 384, 123266 (2020). https://doi.org/10.1016/j.cej.2019.123266
- Y. Wu, R. Shu, X. Shan, J. Zhang, J. Shi et al., Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. J. Alloys Compd. 817, 152766 (2020). https://doi.org/10.1016/j.jallcom.2019.152766
- J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019). https://doi.org/10.1016/j.carbon.2019.06.064
- Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
- N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6(9), 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097
- M. Zeng, Q. Cao, J. Liu, B. Guo, X. Hao et al., Hierarchical cobalt selenides as highly efficient microwave absorbers with tunable frequency response. ACS Appl. Mater. Interfaces. 12(1), 1222–1231 (2020). https://doi.org/10.1021/acsami.9b15172
- L.J. Yang, H.L. Lv, M. Li, Y. Zhang, J.C. Liu et al., Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. 392, 10 (2020). https://doi.org/10.1016/j.cej.2019.123666
- Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
- K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965
- R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang et al., Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018). https://doi.org/10.1016/j.cej.2017.12.106
- Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang et al., Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070
- J. Zhang, R. Shu, Y. Wu, Z. Wan, M. Zheng, Facile fabrication and enhanced microwave absorption properties of reduced graphene oxide/tin dioxide binary nanocomposites in the X-band. Synth. Met. 257, 116157 (2019). https://doi.org/10.1016/j.synthmet.2019.116157
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- G. Shao, J. Liang, W. Zhao, B. Zhao, W. Liu et al., Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. J. Alloys Compd. 813(15), 152007 (2020). https://doi.org/10.1016/j.jallcom.2019.152007
- S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588
- X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
- S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062
- L. Liu, S. Yang, H. Hu, T. Zhang, Y. Yuan et al., Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustain. Chem. Eng. 7(1), 1228–1238 (2019). https://doi.org/10.1021/acssuschemeng.8b04907
- H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces. 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
- J. Kuang, P. Jiang, F. Ran, W. Cao, Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers. J. Alloys Compd. 687, 227–231 (2016). https://doi.org/10.1016/j.jallcom.2016.06.168
- X. Qi, Y. Yang, W. Zhong, C. Qin, Y. Deng et al., Simultaneous synthesis of carbon nanobelts and carbon/Fe–Cu hybrids for microwave absorption. Carbon 48(12), 3512–3522 (2010). https://doi.org/10.1016/j.carbon.2010.05.047
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces. 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- C.G. Jayalakshmi, A. Inamdar, A. Anand, B. Kandasubramanian, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.47241
- J. Jiang, D. Li, D. Geng, J. An, J. He et al., Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 6(8), 3967–3971 (2014). https://doi.org/10.1039/c3nr04087a
- P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4(26), 6362–6370 (2016). https://doi.org/10.1039/c6tc01718e
- W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil et al., A review of absorption properties in silicon-based polymer derived ceramics. J. Eur. Ceram. Soc. 36(15), 3681–3689 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.002
- W. Zhou, R.-M. Yin, L. Long, H. Luo, W.-D. Hu et al., Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 44(11), 12301–12307 (2018). https://doi.org/10.1016/j.ceramint.2018.04.017
- H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang et al., Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces. 7(8), 4744–4750 (2015). https://doi.org/10.1021/am508438s
- B. Quan, X. Lang, G. Ji, J. Ma, P. Ouyang et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces. 9(11), 9964–9974 (2017). https://doi.org/10.1021/acsami.6b15788
- C. Zhou, X. Wang, H. Luo, L. Deng, S. Wang et al., Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540–550 (2019). https://doi.org/10.1016/j.apsusc.2019.07.208
- N. Li, X. Xie, H. Lu, B. Fan, X. Wang et al., Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 45(17), 22880–22888 (2019). https://doi.org/10.1016/j.ceramint.2019.07.331
- Z. Lou, C. Yuan, Y. Zhang, Y. Li, J. Cai et al., Synthesis of porous carbon matrix with inlaid Fe3C/Fe3O4 micro-particles as an effective electromagnetic wave absorber from natural wood shavings. J. Alloys Compd. 775, 800–809 (2019). https://doi.org/10.1016/j.jallcom.2018.10.213
- T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao et al., Facile hydrothermal synthesis of fe3o4/c core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces. 8(11), 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264
- M.A. Almessiere, Y. Slimani, H. Güngüneş, V.G. Kostishyn, S.V. Trukhanov et al., Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.01.132
- D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. Bezborodov, S.A. Gudkova et al., Measurement of permittivity and permeability of barium hexaferrite. J. Magn. Magn. Mater. 465, 290–294 (2018). https://doi.org/10.1016/j.jmmm.2018.05.054
- D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov et al., Electromagnetic properties of BaFe12O19: Ti at centimeter wavelengths. J. Alloys Compd. 755, 177–183 (2018). https://doi.org/10.1016/j.jallcom.2018.04.315
- A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani et al., Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J. Alloys Compd. 788, 1193–1202 (2019). https://doi.org/10.1016/j.jallcom.2019.02.303
- L.Y. Matzui, A.V. Trukhanov, O.S. Yakovenko, L.L. Vovchenko, V.V. Zagorodnii et al., Functional magnetic composites based on hexaferrites: correlation of the composition. Magnetic and high-frequency properties. Nanomaterials 9(12), 1720 (2019). https://doi.org/10.3390/nano9121720
- O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich et al., Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mater. Sci. 52(9), 5345–5358 (2017). https://doi.org/10.1007/s10853-017-0776-4
- Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015). https://doi.org/10.1016/j.carbon.2015.01.002
- O. Khani, M.Z. Shoushtari, K. Ackland, P. Stamenov, The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers. J. Magn. Magn. Mater. 428, 28–35 (2017). https://doi.org/10.1016/j.jmmm.2016.12.010
- S. Yan, C. Cao, J. He, L. He, Z. Qu, Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci.: Mater. Electron. 30(7), 6537–6543 (2019). https://doi.org/10.1007/s10854-019-00959-0
- Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. (2019). https://doi.org/10.1002/advs.201801057
- C. Fu, D. He, Y. Wang, X. Zhao, Enhanced microwave absorption performance of RGO-modified Co@C nanorods. Synth. Met. 257, 116187 (2019). https://doi.org/10.1016/j.synthmet.2019.116187
- Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han et al., Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- H.-B. Zhao, J.-B. Cheng, J.-Y. Zhu, Y.-Z. Wang, Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 7(2), 441–448 (2019). https://doi.org/10.1039/c8tc05239e
- H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B Eng. 167, 690–699 (2019). https://doi.org/10.1016/j.compositesb.2019.03.055
- B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications (Funct. Mater, Adv, 2019). https://doi.org/10.1002/adfm.201901236
- H. Lv, H. Zhang, G. Ji, Z.J. Xu, Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces. 8(10), 6529–6538 (2016). https://doi.org/10.1021/acsami.5b12662
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- X. Liang, B. Quan, Z. Man, B. Cao, N. Li et al., Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl. Mater. Interfaces. 11(33), 30228–30233 (2019). https://doi.org/10.1021/acsami.9b08365
- Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
- N. Li, G.-W. Huang, Y.-Q. Li, H.-M. Xiao, Q.-P. Feng et al., Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces. 9(3), 2973–2983 (2017). https://doi.org/10.1021/acsami.6b13142
- Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- Y. Yang, L. Xia, T. Zhang, B. Shi, L. Huang et al., Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352, 510–518 (2018). https://doi.org/10.1016/j.cej.2018.07.064
- N. Zhang, Y. Huang, M. Zong, X. Ding, S. Li et al., Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J. 308, 214–221 (2017). https://doi.org/10.1016/j.cej.2016.09.065
- H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces. 9(6), 5660–5668 (2017). https://doi.org/10.1021/acsami.6b16223
- Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J. 334, 1740–1748 (2018). https://doi.org/10.1016/j.cej.2017.11.150
- T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid-Zeitschrift 171(1), 23–31 (1960). https://doi.org/10.1007/BF01520320
- J.B. Goodenough, Summary of losses in magnetic materials. IEEE Trans. Magn. 38(5), 3398–3408 (2002). https://doi.org/10.1109/TMAG.2002.802741
- M.-S. Cao, J.-C. Shu, X.-X. Wang, X. Wang, M. Zhang et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
- B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl. Mater. Interfaces. 7(23), 12951–12960 (2015). https://doi.org/10.1021/acsami.5b02716
- J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109(8), 083921 (2011). https://doi.org/10.1063/1.3551582
- C.-L. Zhu, M.-L. Zhang, Y.-J. Qiao, G. Xiao, F. Zhang et al., Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114(39), 16229–16235 (2010). https://doi.org/10.1021/jp104445m
- D. Xu, X. Xiong, P. Chen, Q. Yu, H. Chu et al., Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties. J. Magn. Magn. Mater. 469, 428–436 (2019). https://doi.org/10.1016/j.jmmm.2018.09.019
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- R. Shu, Y. Wu, Z. Li, J. Zhang, Z. Wan et al., Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 184, 107839 (2019). https://doi.org/10.1016/j.compscitech.2019.107839
- Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun et al., Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017). https://doi.org/10.1016/j.carbon.2017.01.036
- Y. Wu, R. Shu, J. Zhang, Z. Wan, J. Shi et al., Oxygen vacancies regulated microwave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/cerium oxide ternary nanocomposite. J. Alloys Compd. 819, 152944 (2020). https://doi.org/10.1016/j.jallcom.2019.152944
- X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal-organic frameworks for separation. Adv. Mater. (2018). https://doi.org/10.1002/adma.201705189
- R. Zhao, Z. Liang, R. Zou, Q. Xu, Metal-organic frameworks for batteries. Joule 2(11), 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019
- Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7(24), 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
- J. Li, P. Miao, K.-J. Chen, J.-W. Cao, J. Liang et al., Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal-organic framework. Compos. Part B Eng. 182, 107613 (2020). https://doi.org/10.1016/j.compositesb.2019.107613
- B.-Y. Zhu, P. Miao, J. Kong, X.-L. Zhang, G.-Y. Wang et al., Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption. Cryst. Growth Des. 19(3), 1518–1524 (2019). https://doi.org/10.1021/acs.cgd.9b00064
- H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces. 9(48), 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
- R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang et al., Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384–393 (2016). https://doi.org/10.1016/j.jallcom.2016.04.225
- K. Zhang, A. Xie, M. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.026
- H. Qiu, X. Zhu, P. Chen, S. Yang, X. Guo et al., Magnetic dodecahedral CoC-decoratedreduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater. 49(2), 1204–1214 (2020). https://doi.org/10.1007/s11664-019-07837-9
- J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin et al., Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 228, 32–40 (2017). https://doi.org/10.1016/j.synthmet.2017.03.020
- K. Zhang, F. Wu, J. Li, M. Sun, A. Xie et al., Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. Mater. Chem. Phys. 208, 198–206 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.008
- Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
- X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. Part B Eng. 152, 316–323 (2018). https://doi.org/10.1016/j.compositesb.2018.08.109
- S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan et al., Great enhancement of electromagnetic wave absorption of MWCNTs@ carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019). https://doi.org/10.1016/j.apsusc.2019.03.018
- H. Chen, R. Hong, Q. Liu, S. Li, F. Huang et al., CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 752, 115–122 (2018). https://doi.org/10.1016/j.jallcom.2018.04.142
- X. Sun, X. Lv, M. Sui, X. Weng, X. Li et al., Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials 11(5), 781–793 (2018). https://doi.org/10.3390/ma11050781
- X. Liu, L.-S. Wang, Y. Ma, Y. Qiu, Q. Xie et al., Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni-C/RGO composite materials. Chem. Eng. J. 333, 92–100 (2018). https://doi.org/10.1016/j.cej.2017.09.139
- S. Kang, W. Zhang, Z. Hu, J. Yu, Y. Wang et al., Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber. J. Alloys Compd. 818, 152932 (2020). https://doi.org/10.1016/j.jallcom.2019.152932
- C. Zhou, C. Wu, D. Liu, M. Yan, Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber. Chem. Eur. J. 25(9), 2234–2241 (2019). https://doi.org/10.1002/chem.201805565
- M. Liu, R. Tian, H. Chen, S. Li, F. Huang et al., One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289
- R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang et al., Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020). https://doi.org/10.1016/j.carbon.2019.09.063
- K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces. 9(38), 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
- R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces. 12(4), 4689–4698 (2020). https://doi.org/10.1021/acsami.9b16134
- N. Yang, Z.-X. Luo, G.-R. Zhu, S.-C. Chen, X.-L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces. 11(39), 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
- Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
- Z. Zhang, Q. Zhu, X. Chen, Z. Wu, Y. He et al., Ni@C composites derived from Ni-based metal organic frameworks with a lightweight, ultrathin, broadband and highly efficient microwave absorbing properties. Appl. Phys. Express 12(1), 011001 (2019). https://doi.org/10.7567/1882-0786/aaeedc
- B. Quan, G. Xu, H. Yi, Z. Yang, J. Xiang et al., Enhanced electromagnetic wave response of nickel nanoparticles encapsulated in nanoporous carbon. J. Alloys Compd. 769, 961–968 (2018). https://doi.org/10.1016/j.jallcom.2018.08.069
- Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2(12), 7888–7897 (2019). https://doi.org/10.1021/acsanm.9b01881
- J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces. 11(43), 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
- R. Yang, J. Yuan, C. Yu, K. Yan, Y. Fu et al., Efficient electromagnetic wave absorption by SiC/Ni/NiO/C nanocomposites. J. Alloys Compd. 816, 152519 (2020). https://doi.org/10.1016/j.jallcom.2019.152519
- X. Liang, B. Quan, Y. Sun, G. Ji, Y. Zhang et al., Multiple interfaces structure derived from metal-organic frameworks for excellent electromagnetic wave absorption. Part. Part. Syst. Char. 34(5), 1700006 (2017). https://doi.org/10.1002/ppsc.201700006
- Z. Zhang, Y. Lv, X. Chen, Z. Wu, Y. He et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption. J. Magn. Magn. Mater. 487, 165334 (2019). https://doi.org/10.1016/j.jmmm.2019.165334
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
- S. Peng, S. Wang, G. Hao, C. Zhu, Y. Zhang et al., Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 487, 165306 (2019). https://doi.org/10.1016/j.jmmm.2019.165306
- P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban et al., Tunable Electromagnetic Wave Absorption Of Supramolecular Isomer-Derived Nanocomposites With Different Morphology. Adv. Mater. Interfaces 7(4), 1901820 (2020). https://doi.org/10.1002/admi.201901820
- Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang et al., Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth. Met. 228, 18–24 (2017). https://doi.org/10.1016/j.synthmet.2017.04.009
- Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
- X. Liang, B. Quan, G. Ji, W. Liu, H. Zhao et al., Tunable dielectric performance derived from the metal-organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain. Chem. Eng. 5(11), 10570–10579 (2017). https://doi.org/10.1021/acssuschemeng.7b02565
- W. Gu, J. Lv, B. Quan, X. Liang, B. Zhang et al., Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 806, 983–991 (2019). https://doi.org/10.1016/j.jallcom.2019.07.334
- Y. Jiao, J. Li, A. Xie, F. Wu, K. Zhang et al., Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos. Sci. Technol. 174, 232–240 (2019). https://doi.org/10.1016/j.compscitech.2019.03.003
- J. Ma, W. Liu, X. Liang, B. Quan, Y. Cheng et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 728, 138–144 (2017). https://doi.org/10.1016/j.jallcom.2017.08.274
- L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. Part B Eng. 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081
- X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7(2), 385–393 (2020). https://doi.org/10.1039/c9qi01259a
- J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
- Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang et al., Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019). https://doi.org/10.1016/j.jallcom.2019.151837
- C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu et al., Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 43(42), 16546–16554 (2019). https://doi.org/10.1039/c9nj04115j
- D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
- W. Liu, S. Tan, Z. Yang, G. Ji, Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138, 143–153 (2018). https://doi.org/10.1016/j.carbon.2018.06.009
- J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces. 11(42), 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
- F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater. 2(12), 7827–7838 (2019). https://doi.org/10.1021/acsanm.9b01842
- S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11(1), 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
- X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In Situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces. 11(39), 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
- Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
- R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang et al., Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Compos. Part B Engn. 178, 107518 (2019). https://doi.org/10.1016/j.compositesb.2019.107518
- S. Wang, X. Ke, S. Zhong, Y. Lai, D. Qian, Y. Wang, Q. Wang, W. Jiang, Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: the role of calcining temperature. RSC Adv. 7(73), 46436–46444 (2017). https://doi.org/10.1039/c7ra08882e
- X. Qi, J. Xu, Q. Hu, Y. Deng, R. Xie et al., Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310–28310 (2016). https://doi.org/10.1038/srep28310
- C. Wang, X. Han, P. Xu, X. Zhang, Y. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011). https://doi.org/10.1063/1.3555436
- H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
- S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces. 10(29), 24816–24828 (2018). https://doi.org/10.1021/acsami.8b06673
- A. Xie, F. Wu, M. Sun, X. Dai, Z. Xu et al., Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Appl. Phys. Lett. 106(22), 222902 (2015). https://doi.org/10.1063/1.4921180
- P. Zhang, X. Han, L. Kang, R. Qiang, W. Liu et al., Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 3(31), 12694–12701 (2013). https://doi.org/10.1039/C3RA40973B
- M. Cai, A. Shui, X. Wang, C. He, J. Qian et al., A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloys Compd. 842, 155638 (2020). https://doi.org/10.1016/j.jallcom.2020.155638
- M. Green, Z. Liu, R. Smedley, H. Nawaz, X. Li et al., Graphitic carbon nitride nanosheets for microwave absorption. Mater. Today Phys. 5, 78–86 (2018). https://doi.org/10.1016/j.mtphys.2018.06.005
- C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces. 9(35), 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
- R.B. Yang, W.F. Liang, C.W. Lou, J.H. Lin, Electromagnetic and microwave absorption properties of magnetic stainless steel powder in 2–18 GHz. J. Appl. Phys. 111(7), 07A338 (2012). https://doi.org/10.1063/1.3693764
- F. Wang, C. Long, T. Wu, W. Li, Z. Chen et al., Enhancement of low-frequency magnetic permeability and absorption by texturing flaky carbonyl iron particles. J. Alloys Compd. 823, 153827 (2020). https://doi.org/10.1016/j.jallcom.2020.153827
References
N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces. 7(18), 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654
S. Xie, Z. Ji, L. Zhu, J. Zhang, Y. Cao et al., Recent progress in electromagnetic wave absorption building materials. J. Build. Eng. 27, 100963 (2020). https://doi.org/10.1016/j.jobe.2019.100963
L. Heng, Z. Zhang, X. Chen, S. Wang, Z. Wu et al., Fe/nanoporous carbon hybrid derived from metal-organic framework for highly effective microwave absorption. Appl. Organomet. Chem. 33(8), e4991 (2019). https://doi.org/10.1002/aoc.4991
S.U. Rehman, J. Wang, Q. Luo, M. Sun, L. Jiang et al., Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019). https://doi.org/10.1016/j.cej.2019.05.040
M. Qiao, X. Lei, Y. Ma, L. Tian, X. He et al., Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces. 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
J.L. Liu, H.S. Liang, Y. Zhang, G.L. Wu, H.J. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B Eng. 176, 12 (2019). https://doi.org/10.1016/j.compositesb.2019.107240
X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019). https://doi.org/10.1016/j.carbon.2019.06.080
P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces. 8(8), 5536–5546 (2016). https://doi.org/10.1021/acsami.5b10511
M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu et al., Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces. 7(34), 19408–19415 (2015). https://doi.org/10.1021/acsami.5b05595
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
L.W. Zhu, N. Liu, X.H. Jiang, L.M. Yu, X. Li, Four novel 3D RE-MOFs based on maleic hydrazide: syntheses, structural diversity, efficient electromagnetic wave absorption and antibacterial activity properties. Inorg. Chim. Acta 501, 119291 (2020). https://doi.org/10.1016/j.ica.2019.119291
Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
P. Saini, M. Arora, G. Gupta, B.K. Gupta, V.N. Singh et al., High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 5(10), 4330–4336 (2013). https://doi.org/10.1039/c3nr00634d
L. Huang, J. Li, Z. Wang, Y. Li, X. He et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042
Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma et al., Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces. 11(4), 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201
X.-X. Wang, T. Ma, J.-C. Shu, M.-S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018). https://doi.org/10.1016/j.cej.2017.09.101
Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou et al., Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 29(20), 17122–17136 (2018). https://doi.org/10.1007/s10854-018-9909-z
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11(1), 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
S. Ghosh, S. Remanan, S. Mondal, S. Ganguly, P. Das et al., An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 344, 138–154 (2018). https://doi.org/10.1016/j.cej.2018.03.039
K. Srogi, Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination. Anal. Lett. 40(2), 199–232 (2007). https://doi.org/10.1080/00032710600867713
X. Zhang, J. Qiao, F. Wang, L. Lv, D. Xu et al., Tailoring electromagnetic absorption performances of TiO2/Co/carbon nanofibers through tuning graphitization degrees. Ceram. Int. 46(4), 4754–4761 (2020). https://doi.org/10.1016/j.ceramint.2019.10.207
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie et al., Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3(19), 10345–10352 (2015). https://doi.org/10.1039/c5ta00086f
A. Munir, Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: a review. Adv. Polym. Tech. 36(3), 362–370 (2017). https://doi.org/10.1002/adv.21617
M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi et al., A review on metal-organic frameworks: synthesis and applications. Trac-Trends Anal. Chem. 118, 401–425 (2019). https://doi.org/10.1016/j.trac.2019.06.007
X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces. 11(14), 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
Y. Wang, X. Gao, C. Lin, L. Shi, X. Li et al., Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 785, 765–773 (2019). https://doi.org/10.1016/j.jallcom.2019.01.271
Y. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou et al., Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 141(9), 4130–4136 (2019). https://doi.org/10.1021/jacs.9b00232
H. Zhang, X. Liu, Y. Wu, C. Guan, A.K. Cheetham et al., MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54(42), 5268–5288 (2018). https://doi.org/10.1039/c8cc00789f
Z.-X. Cai, Z.-L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 31(11), 1804903 (2019). https://doi.org/10.1002/adma.201804903
Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. (2018). https://doi.org/10.1002/adma.201702891
X. Wei, Y. Li, H. Peng, M. Zhou, Y. Ou et al., Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chem. Eng. J. 341, 618–627 (2018). https://doi.org/10.1016/j.cej.2018.02.032
J. Li, W. Huang, M. Wang, S. Xi, J. Meng et al., Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 4(1), 285–292 (2019). https://doi.org/10.1021/acsenergylett.8b02345
B. Zhu, R. Zou, Q. Xu, Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801193
R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019). https://doi.org/10.1016/j.ccr.2017.09.027
X. Jiang, S. Li, Y. Bai, L. Shao, Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation. J. Mater. Chem. A 7(18), 10898–10904 (2019). https://doi.org/10.1039/c8ta11748a
J. Chang, X. Wang, J. Wang, H. Li, F. Li, Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal. Chem. 91(5), 3604–3610 (2019). https://doi.org/10.1021/acs.analchem.8b05599
Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, X. Sun, Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuat. B Chem. 278, 126–132 (2019). https://doi.org/10.1016/j.snb.2018.09.076
W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces. 10(37), 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
Y. Zhang, S. Gao, H. Xing, H. Li, In situ carbon nanotubes encapsulated metal Nickel as high-performance microwave absorber from Ni-Zn metal-organic framework derivative. J. Alloys Compd. 801, 609–618 (2019). https://doi.org/10.1016/j.jallcom.2019.06.164
X. Zhang, J. Qao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces. 11(39), 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces. 10(10), 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
Q. Wu, H. Jin, W. Chen, S. Huo, X. Chen et al., Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 5(6), 065602 (2018). https://doi.org/10.1088/2053-1591/aac67e
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260–277 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan et al., Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem. Eng. J. 384, 123266 (2020). https://doi.org/10.1016/j.cej.2019.123266
Y. Wu, R. Shu, X. Shan, J. Zhang, J. Shi et al., Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. J. Alloys Compd. 817, 152766 (2020). https://doi.org/10.1016/j.jallcom.2019.152766
J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019). https://doi.org/10.1016/j.carbon.2019.06.064
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6(9), 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097
M. Zeng, Q. Cao, J. Liu, B. Guo, X. Hao et al., Hierarchical cobalt selenides as highly efficient microwave absorbers with tunable frequency response. ACS Appl. Mater. Interfaces. 12(1), 1222–1231 (2020). https://doi.org/10.1021/acsami.9b15172
L.J. Yang, H.L. Lv, M. Li, Y. Zhang, J.C. Liu et al., Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. 392, 10 (2020). https://doi.org/10.1016/j.cej.2019.123666
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965
R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang et al., Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018). https://doi.org/10.1016/j.cej.2017.12.106
Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang et al., Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070
J. Zhang, R. Shu, Y. Wu, Z. Wan, M. Zheng, Facile fabrication and enhanced microwave absorption properties of reduced graphene oxide/tin dioxide binary nanocomposites in the X-band. Synth. Met. 257, 116157 (2019). https://doi.org/10.1016/j.synthmet.2019.116157
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
G. Shao, J. Liang, W. Zhao, B. Zhao, W. Liu et al., Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. J. Alloys Compd. 813(15), 152007 (2020). https://doi.org/10.1016/j.jallcom.2019.152007
S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062
L. Liu, S. Yang, H. Hu, T. Zhang, Y. Yuan et al., Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustain. Chem. Eng. 7(1), 1228–1238 (2019). https://doi.org/10.1021/acssuschemeng.8b04907
H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces. 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
J. Kuang, P. Jiang, F. Ran, W. Cao, Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers. J. Alloys Compd. 687, 227–231 (2016). https://doi.org/10.1016/j.jallcom.2016.06.168
X. Qi, Y. Yang, W. Zhong, C. Qin, Y. Deng et al., Simultaneous synthesis of carbon nanobelts and carbon/Fe–Cu hybrids for microwave absorption. Carbon 48(12), 3512–3522 (2010). https://doi.org/10.1016/j.carbon.2010.05.047
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces. 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
C.G. Jayalakshmi, A. Inamdar, A. Anand, B. Kandasubramanian, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.47241
J. Jiang, D. Li, D. Geng, J. An, J. He et al., Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 6(8), 3967–3971 (2014). https://doi.org/10.1039/c3nr04087a
P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4(26), 6362–6370 (2016). https://doi.org/10.1039/c6tc01718e
W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil et al., A review of absorption properties in silicon-based polymer derived ceramics. J. Eur. Ceram. Soc. 36(15), 3681–3689 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.002
W. Zhou, R.-M. Yin, L. Long, H. Luo, W.-D. Hu et al., Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 44(11), 12301–12307 (2018). https://doi.org/10.1016/j.ceramint.2018.04.017
H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang et al., Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces. 7(8), 4744–4750 (2015). https://doi.org/10.1021/am508438s
B. Quan, X. Lang, G. Ji, J. Ma, P. Ouyang et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces. 9(11), 9964–9974 (2017). https://doi.org/10.1021/acsami.6b15788
C. Zhou, X. Wang, H. Luo, L. Deng, S. Wang et al., Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540–550 (2019). https://doi.org/10.1016/j.apsusc.2019.07.208
N. Li, X. Xie, H. Lu, B. Fan, X. Wang et al., Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 45(17), 22880–22888 (2019). https://doi.org/10.1016/j.ceramint.2019.07.331
Z. Lou, C. Yuan, Y. Zhang, Y. Li, J. Cai et al., Synthesis of porous carbon matrix with inlaid Fe3C/Fe3O4 micro-particles as an effective electromagnetic wave absorber from natural wood shavings. J. Alloys Compd. 775, 800–809 (2019). https://doi.org/10.1016/j.jallcom.2018.10.213
T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao et al., Facile hydrothermal synthesis of fe3o4/c core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces. 8(11), 7370–7380 (2016). https://doi.org/10.1021/acsami.6b00264
M.A. Almessiere, Y. Slimani, H. Güngüneş, V.G. Kostishyn, S.V. Trukhanov et al., Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.01.132
D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. Bezborodov, S.A. Gudkova et al., Measurement of permittivity and permeability of barium hexaferrite. J. Magn. Magn. Mater. 465, 290–294 (2018). https://doi.org/10.1016/j.jmmm.2018.05.054
D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov et al., Electromagnetic properties of BaFe12O19: Ti at centimeter wavelengths. J. Alloys Compd. 755, 177–183 (2018). https://doi.org/10.1016/j.jallcom.2018.04.315
A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani et al., Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J. Alloys Compd. 788, 1193–1202 (2019). https://doi.org/10.1016/j.jallcom.2019.02.303
L.Y. Matzui, A.V. Trukhanov, O.S. Yakovenko, L.L. Vovchenko, V.V. Zagorodnii et al., Functional magnetic composites based on hexaferrites: correlation of the composition. Magnetic and high-frequency properties. Nanomaterials 9(12), 1720 (2019). https://doi.org/10.3390/nano9121720
O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich et al., Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J. Mater. Sci. 52(9), 5345–5358 (2017). https://doi.org/10.1007/s10853-017-0776-4
Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015). https://doi.org/10.1016/j.carbon.2015.01.002
O. Khani, M.Z. Shoushtari, K. Ackland, P. Stamenov, The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers. J. Magn. Magn. Mater. 428, 28–35 (2017). https://doi.org/10.1016/j.jmmm.2016.12.010
S. Yan, C. Cao, J. He, L. He, Z. Qu, Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci.: Mater. Electron. 30(7), 6537–6543 (2019). https://doi.org/10.1007/s10854-019-00959-0
Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. (2019). https://doi.org/10.1002/advs.201801057
C. Fu, D. He, Y. Wang, X. Zhao, Enhanced microwave absorption performance of RGO-modified Co@C nanorods. Synth. Met. 257, 116187 (2019). https://doi.org/10.1016/j.synthmet.2019.116187
Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han et al., Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
H.-B. Zhao, J.-B. Cheng, J.-Y. Zhu, Y.-Z. Wang, Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 7(2), 441–448 (2019). https://doi.org/10.1039/c8tc05239e
H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B Eng. 167, 690–699 (2019). https://doi.org/10.1016/j.compositesb.2019.03.055
B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications (Funct. Mater, Adv, 2019). https://doi.org/10.1002/adfm.201901236
H. Lv, H. Zhang, G. Ji, Z.J. Xu, Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces. 8(10), 6529–6538 (2016). https://doi.org/10.1021/acsami.5b12662
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
X. Liang, B. Quan, Z. Man, B. Cao, N. Li et al., Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl. Mater. Interfaces. 11(33), 30228–30233 (2019). https://doi.org/10.1021/acsami.9b08365
Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
N. Li, G.-W. Huang, Y.-Q. Li, H.-M. Xiao, Q.-P. Feng et al., Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces. 9(3), 2973–2983 (2017). https://doi.org/10.1021/acsami.6b13142
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
Y. Yang, L. Xia, T. Zhang, B. Shi, L. Huang et al., Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352, 510–518 (2018). https://doi.org/10.1016/j.cej.2018.07.064
N. Zhang, Y. Huang, M. Zong, X. Ding, S. Li et al., Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J. 308, 214–221 (2017). https://doi.org/10.1016/j.cej.2016.09.065
H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces. 9(6), 5660–5668 (2017). https://doi.org/10.1021/acsami.6b16223
Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J. 334, 1740–1748 (2018). https://doi.org/10.1016/j.cej.2017.11.150
T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid-Zeitschrift 171(1), 23–31 (1960). https://doi.org/10.1007/BF01520320
J.B. Goodenough, Summary of losses in magnetic materials. IEEE Trans. Magn. 38(5), 3398–3408 (2002). https://doi.org/10.1109/TMAG.2002.802741
M.-S. Cao, J.-C. Shu, X.-X. Wang, X. Wang, M. Zhang et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl. Mater. Interfaces. 7(23), 12951–12960 (2015). https://doi.org/10.1021/acsami.5b02716
J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109(8), 083921 (2011). https://doi.org/10.1063/1.3551582
C.-L. Zhu, M.-L. Zhang, Y.-J. Qiao, G. Xiao, F. Zhang et al., Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114(39), 16229–16235 (2010). https://doi.org/10.1021/jp104445m
D. Xu, X. Xiong, P. Chen, Q. Yu, H. Chu et al., Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties. J. Magn. Magn. Mater. 469, 428–436 (2019). https://doi.org/10.1016/j.jmmm.2018.09.019
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
R. Shu, Y. Wu, Z. Li, J. Zhang, Z. Wan et al., Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 184, 107839 (2019). https://doi.org/10.1016/j.compscitech.2019.107839
Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun et al., Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017). https://doi.org/10.1016/j.carbon.2017.01.036
Y. Wu, R. Shu, J. Zhang, Z. Wan, J. Shi et al., Oxygen vacancies regulated microwave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/cerium oxide ternary nanocomposite. J. Alloys Compd. 819, 152944 (2020). https://doi.org/10.1016/j.jallcom.2019.152944
X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal-organic frameworks for separation. Adv. Mater. (2018). https://doi.org/10.1002/adma.201705189
R. Zhao, Z. Liang, R. Zou, Q. Xu, Metal-organic frameworks for batteries. Joule 2(11), 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019
Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7(24), 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
J. Li, P. Miao, K.-J. Chen, J.-W. Cao, J. Liang et al., Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal-organic framework. Compos. Part B Eng. 182, 107613 (2020). https://doi.org/10.1016/j.compositesb.2019.107613
B.-Y. Zhu, P. Miao, J. Kong, X.-L. Zhang, G.-Y. Wang et al., Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption. Cryst. Growth Des. 19(3), 1518–1524 (2019). https://doi.org/10.1021/acs.cgd.9b00064
H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces. 9(48), 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang et al., Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384–393 (2016). https://doi.org/10.1016/j.jallcom.2016.04.225
K. Zhang, A. Xie, M. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.026
H. Qiu, X. Zhu, P. Chen, S. Yang, X. Guo et al., Magnetic dodecahedral CoC-decoratedreduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater. 49(2), 1204–1214 (2020). https://doi.org/10.1007/s11664-019-07837-9
J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin et al., Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 228, 32–40 (2017). https://doi.org/10.1016/j.synthmet.2017.03.020
K. Zhang, F. Wu, J. Li, M. Sun, A. Xie et al., Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. Mater. Chem. Phys. 208, 198–206 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.008
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. Part B Eng. 152, 316–323 (2018). https://doi.org/10.1016/j.compositesb.2018.08.109
S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan et al., Great enhancement of electromagnetic wave absorption of MWCNTs@ carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019). https://doi.org/10.1016/j.apsusc.2019.03.018
H. Chen, R. Hong, Q. Liu, S. Li, F. Huang et al., CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 752, 115–122 (2018). https://doi.org/10.1016/j.jallcom.2018.04.142
X. Sun, X. Lv, M. Sui, X. Weng, X. Li et al., Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials 11(5), 781–793 (2018). https://doi.org/10.3390/ma11050781
X. Liu, L.-S. Wang, Y. Ma, Y. Qiu, Q. Xie et al., Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni-C/RGO composite materials. Chem. Eng. J. 333, 92–100 (2018). https://doi.org/10.1016/j.cej.2017.09.139
S. Kang, W. Zhang, Z. Hu, J. Yu, Y. Wang et al., Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber. J. Alloys Compd. 818, 152932 (2020). https://doi.org/10.1016/j.jallcom.2019.152932
C. Zhou, C. Wu, D. Liu, M. Yan, Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber. Chem. Eur. J. 25(9), 2234–2241 (2019). https://doi.org/10.1002/chem.201805565
M. Liu, R. Tian, H. Chen, S. Li, F. Huang et al., One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289
R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang et al., Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020). https://doi.org/10.1016/j.carbon.2019.09.063
K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces. 9(38), 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces. 12(4), 4689–4698 (2020). https://doi.org/10.1021/acsami.9b16134
N. Yang, Z.-X. Luo, G.-R. Zhu, S.-C. Chen, X.-L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces. 11(39), 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
Z. Zhang, Q. Zhu, X. Chen, Z. Wu, Y. He et al., Ni@C composites derived from Ni-based metal organic frameworks with a lightweight, ultrathin, broadband and highly efficient microwave absorbing properties. Appl. Phys. Express 12(1), 011001 (2019). https://doi.org/10.7567/1882-0786/aaeedc
B. Quan, G. Xu, H. Yi, Z. Yang, J. Xiang et al., Enhanced electromagnetic wave response of nickel nanoparticles encapsulated in nanoporous carbon. J. Alloys Compd. 769, 961–968 (2018). https://doi.org/10.1016/j.jallcom.2018.08.069
Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2(12), 7888–7897 (2019). https://doi.org/10.1021/acsanm.9b01881
J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces. 11(43), 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
R. Yang, J. Yuan, C. Yu, K. Yan, Y. Fu et al., Efficient electromagnetic wave absorption by SiC/Ni/NiO/C nanocomposites. J. Alloys Compd. 816, 152519 (2020). https://doi.org/10.1016/j.jallcom.2019.152519
X. Liang, B. Quan, Y. Sun, G. Ji, Y. Zhang et al., Multiple interfaces structure derived from metal-organic frameworks for excellent electromagnetic wave absorption. Part. Part. Syst. Char. 34(5), 1700006 (2017). https://doi.org/10.1002/ppsc.201700006
Z. Zhang, Y. Lv, X. Chen, Z. Wu, Y. He et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption. J. Magn. Magn. Mater. 487, 165334 (2019). https://doi.org/10.1016/j.jmmm.2019.165334
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
S. Peng, S. Wang, G. Hao, C. Zhu, Y. Zhang et al., Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 487, 165306 (2019). https://doi.org/10.1016/j.jmmm.2019.165306
P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban et al., Tunable Electromagnetic Wave Absorption Of Supramolecular Isomer-Derived Nanocomposites With Different Morphology. Adv. Mater. Interfaces 7(4), 1901820 (2020). https://doi.org/10.1002/admi.201901820
Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang et al., Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth. Met. 228, 18–24 (2017). https://doi.org/10.1016/j.synthmet.2017.04.009
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
X. Liang, B. Quan, G. Ji, W. Liu, H. Zhao et al., Tunable dielectric performance derived from the metal-organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain. Chem. Eng. 5(11), 10570–10579 (2017). https://doi.org/10.1021/acssuschemeng.7b02565
W. Gu, J. Lv, B. Quan, X. Liang, B. Zhang et al., Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 806, 983–991 (2019). https://doi.org/10.1016/j.jallcom.2019.07.334
Y. Jiao, J. Li, A. Xie, F. Wu, K. Zhang et al., Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos. Sci. Technol. 174, 232–240 (2019). https://doi.org/10.1016/j.compscitech.2019.03.003
J. Ma, W. Liu, X. Liang, B. Quan, Y. Cheng et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 728, 138–144 (2017). https://doi.org/10.1016/j.jallcom.2017.08.274
L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. Part B Eng. 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081
X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7(2), 385–393 (2020). https://doi.org/10.1039/c9qi01259a
J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang et al., Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019). https://doi.org/10.1016/j.jallcom.2019.151837
C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu et al., Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 43(42), 16546–16554 (2019). https://doi.org/10.1039/c9nj04115j
D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
W. Liu, S. Tan, Z. Yang, G. Ji, Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138, 143–153 (2018). https://doi.org/10.1016/j.carbon.2018.06.009
J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces. 11(42), 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater. 2(12), 7827–7838 (2019). https://doi.org/10.1021/acsanm.9b01842
S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11(1), 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In Situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces. 11(39), 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang et al., Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Compos. Part B Engn. 178, 107518 (2019). https://doi.org/10.1016/j.compositesb.2019.107518
S. Wang, X. Ke, S. Zhong, Y. Lai, D. Qian, Y. Wang, Q. Wang, W. Jiang, Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: the role of calcining temperature. RSC Adv. 7(73), 46436–46444 (2017). https://doi.org/10.1039/c7ra08882e
X. Qi, J. Xu, Q. Hu, Y. Deng, R. Xie et al., Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310–28310 (2016). https://doi.org/10.1038/srep28310
C. Wang, X. Han, P. Xu, X. Zhang, Y. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011). https://doi.org/10.1063/1.3555436
H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces. 10(29), 24816–24828 (2018). https://doi.org/10.1021/acsami.8b06673
A. Xie, F. Wu, M. Sun, X. Dai, Z. Xu et al., Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Appl. Phys. Lett. 106(22), 222902 (2015). https://doi.org/10.1063/1.4921180
P. Zhang, X. Han, L. Kang, R. Qiang, W. Liu et al., Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 3(31), 12694–12701 (2013). https://doi.org/10.1039/C3RA40973B
M. Cai, A. Shui, X. Wang, C. He, J. Qian et al., A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloys Compd. 842, 155638 (2020). https://doi.org/10.1016/j.jallcom.2020.155638
M. Green, Z. Liu, R. Smedley, H. Nawaz, X. Li et al., Graphitic carbon nitride nanosheets for microwave absorption. Mater. Today Phys. 5, 78–86 (2018). https://doi.org/10.1016/j.mtphys.2018.06.005
C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces. 9(35), 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
R.B. Yang, W.F. Liang, C.W. Lou, J.H. Lin, Electromagnetic and microwave absorption properties of magnetic stainless steel powder in 2–18 GHz. J. Appl. Phys. 111(7), 07A338 (2012). https://doi.org/10.1063/1.3693764
F. Wang, C. Long, T. Wu, W. Li, Z. Chen et al., Enhancement of low-frequency magnetic permeability and absorption by texturing flaky carbonyl iron particles. J. Alloys Compd. 823, 153827 (2020). https://doi.org/10.1016/j.jallcom.2020.153827