Interfacial Electronic Modulation of Dual-Monodispersed Pt–Ni3S2 as Efficacious Bi-Functional Electrocatalysts for Concurrent H2 Evolution and Methanol Selective Oxidation
Corresponding Author: Jing‑Li Luo
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 80
Abstract
Constructing the efficacious and applicable bi-functional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction (OER) are critical to the development of electrochemically-driven technologies for efficient hydrogen production and avoid CO2 emission. Herein, the hetero-nanocrystals between monodispersed Pt (~ 2 nm) and Ni3S2 (~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H2 generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni3S2 could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH3OH to formate is accomplished at very low potentials (1.45 V) to attain 100 mA cm−2 with high electronic utilization rate (~ 98%) and without CO2 emission. Meanwhile, the Pt–Ni3S2 can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction (HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction (MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 mA cm−2 with good reusability.
Highlights:
1 The well-conceived Pt–Ni3S2 heteronanocrystals with dual-monodispersed characteristics are synthesized through interfacial electronic modulation.
2 The asymmetrical charge distribution at Pt–Ni3S2 hetero-interface results in the formation of high-valent Ni sites and negatively-charged Ptδ−.
3 It eventually accelerates water dissociation and achieves the steady concurrent generation of value-added formate and hydrogen.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
- L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001). https://doi.org/10.1038/35104634
- R.M. Navarro, M.A. Peña, J.L.G. Fierro, Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 107, 3952–3991 (2007). https://doi.org/10.1021/cr0501994
- B.M. Hunter, H.B. Gray, A.M. Müller, Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016). https://doi.org/10.1021/acs.chemrev.6b00398
- M. Zhou, X. Jiang, W. Kong, H. Li, F. Lu et al., Synergistic effect of dual-doped carbon on Mo2C nanocrystals facilitates alkaline hydrogen evolution. Nano-Micro Lett. 15, 166 (2023). https://doi.org/10.1007/s40820-023-01135-0
- H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
- C. Costentin, J.-M. Savéant, Towards an intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 0087 (2017). https://doi.org/10.1038/s41570-017-0087
- G. Li, G. Han, L. Wang, X. Cui, N.K. Moehring et al., Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper–silver electrocatalyst. Nat. Commun. 14, 525 (2023). https://doi.org/10.1038/s41467-023-36142-7
- H. Guanqun, L. Guodong, S. Yujie, Electrocatalytic dual hydrogenation of organic substrates with a faradaic efficiency approaching 200%. Nat. Catal. 6, 224–233 (2023). https://doi.org/10.1038/s41929-023-00923-6
- W. Zhu, X. Zhang, F. Yao, R. Huang, Y. Chen et al., A hydrazine-nitrate flow battery catalyzed by a bimetallic RuCo precatalyst for wastewater purification along with simultaneous generation of ammonia and electricity. Angew. Chem. Int. Ed. 62, e202300390 (2023). https://doi.org/10.1002/anie.202300390
- Y. Hu, T. Chao, Y. Li, P. Liu, T. Zhao et al., Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. Int. Ed. 62, e202308800 (2023). https://doi.org/10.1002/anie.202308800
- M. Yang, Y. Li, C.-L. Dong, S. Li, L. Xu et al., Correlating the valence state with the adsorption behavior of a Cu-based electrocatalyst for furfural oxidation with anodic hydrogen production reaction. Adv. Mater. 35, 2304203 (2023). https://doi.org/10.1002/adma.202304203
- J. Li, K. Ji, B. Li, M. Xu, Y. Wang et al., Rechargeable biomass battery for electricity storage/generation and concurrent valuable chemicals production. Angew. Chem. Int. Ed. 62, e202304852 (2023). https://doi.org/10.1002/anie.202304852
- L.K. Xiong, Z.T. Sun, X. Zhang, L. Zhao, P. Huang et al., Octahedral gold–silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect. Nat. Commun. 10, 3782 (2019). https://doi.org/10.1038/s41467-019-11766-w
- S.L. Li, R.G. Ma, J.C. Hu, Z.C. Li, L.J. Liu et al., Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 13, 2916 (2022). https://doi.org/10.1038/s41467-022-30670-4
- A.R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong, X. Tan et al., A single-Pt-atom-on-Ru-nanop electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 5, 231–237 (2022). https://doi.org/10.1038/s41929-022-00756-9
- Z.Q. Zhang, J.P. Liu, J. Wang, Q. Wang, Y.H. Wang et al., Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 12, 5235 (2021). https://doi.org/10.1038/s41467-021-25562-y
- L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15, 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
- P.P. Yang, X.L. Yuan, H.C. Hu, Y.L. Liu, H.W. Zheng et al., Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 28, 1704774 (2018). https://doi.org/10.1002/adfm.201704774
- K. Xiang, D. Wu, X.H. Deng, M. Li, S.Y. Chen et al., Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 30, 1909610 (2020). https://doi.org/10.1002/adfm.201909610
- J. Yang, R. Hubner, J.W. Zhang, H. Wan, Y.Y. Zheng et al., A robust PtNi nanoframe/N-doped graphene aerogel electrocatalyst with both high activity and stability. Angew. Chem. Int. Ed. 60, 9590–9597 (2021). https://doi.org/10.1002/anie.202015679
- X. Duan, F. Cao, R. Ding, X.K. Li, Q.B. Li et al., Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading PEMFC cathode. Adv. Energy Mater. 12, 2103144 (2022). https://doi.org/10.1002/aenm.202103144
- Y.B. Qi, Y. Zhang, L. Yang, Y.H. Zhao, Y.H. Zhu et al., Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 13, 4602 (2022). https://doi.org/10.1038/s41467-022-32443-5
- J.-X. Wu, W.-X. Chen, C.-T. He, K. Zheng, L.-L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 (2023). https://doi.org/10.1007/s40820-023-01080-y
- H. Liu, J.N. Cheng, W.J. He, Y. Li, J. Mao et al., Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with au nanops boosts overall water splitting. Appl. Catal. B Environ. 304, 120935 (2022). https://doi.org/10.1016/j.apcatb.2021.120935
- C. Panda, P.W. Menezes, S. Yao, J. Schmidt, C. Walter et al., Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor. J. Am. Chem. Soc. 141, 13306–13310 (2019). https://doi.org/10.1021/jacs.9b06530
- K.L. Zhou, C.B. Han, Z. Wang, X. Ke, C. Wang et al., Atomically dispersed platinum modulated by sulfide as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Sci. 8, 2100347 (2021). https://doi.org/10.1002/advs.202100347
- J.B. Ding, L.Z. Bu, S.J. Guo, Z.P. Zhao, E.B. Zhu et al., Morphology and phase controlled construction of Pt–Ni nanostructures for efficient electrocatalysis. Nano Lett. 16, 2762–2767 (2016). https://doi.org/10.1021/acs.nanolett.6b00471
- X. Xu, X. Zhang, H. Sun, Y. Yang, X. Dai et al., Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 53, 12522–12527 (2014). https://doi.org/10.1002/anie.201406497
- J.X. Zhu, L.X. Xia, R.H. Yu, R.H. Lu, J.T. Li et al., Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 144, 15529–15538 (2022). https://doi.org/10.1021/jacs.2c03982
- Y.C. Wu, W. Wei, R.H. Yu, L.X. Xia, X.F. Hong et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32, 2110910 (2022). https://doi.org/10.1002/adfm.202110910
- L.H. Sun, Q.Y. Li, S.N. Zhang, D. Xu, Z.H. Xue et al., Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanops for efficient hydrogen atom dissociation and gas evolution. Angew. Chem. Int. Ed. 60, 25766–25770 (2021). https://doi.org/10.1002/anie.202111920
- L.Y. Zeng, Z.L. Zhao, F. Lv, Z.H. Xia, S.Y. Lu et al., Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 13, 3822 (2022). https://doi.org/10.1038/s41467-022-31406-0
- W.W. Yang, P. Cheng, Z. Li, Y.X. Lin, M.Y. Li et al., Tuning the cobalt-platinum alloy regulating single-atom platinum for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 32, 2205920 (2022). https://doi.org/10.1002/adfm.202205920
- K.L. Zhou, Z.L. Wang, C.B. Han, X.X. Ke, C.H. Wang et al., Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12, 3783 (2021). https://doi.org/10.1038/s41467-021-24079-8
- F. Xu, S.B. Cai, B.F. Lin, L. Yang, H.F. Le et al., Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability. Small 18, 2107387 (2022). https://doi.org/10.1002/smll.202107387
- T.Y. Yoo, J.M. Yoo, A.K. Sinha, M.S. Bootharaju, E. Jung et al., Direct synthesis of intermetallic platinum-alloy nanops highly loaded on carbon supports for efficient electrocatalysis. J. Am. Chem. Soc. 142, 14190–14200 (2020). https://doi.org/10.1021/jacs.0c05140
- S.F. Xue, W.T. Deng, F. Yang, J.L. Yang, I.S. Amiinu et al., Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 8, 7578–7584 (2018). https://doi.org/10.1021/acscatal.8b00366
- M. Qiqi, M. Xu, D. Kai, Y. Hongjie, W. Ziqiang et al., Multisite synergism-induced electron regulation of high-entropy alloy metallene for boosting alkaline hydrogen evolution reaction. Adv. Funct. Mater. 33, 2304963 (2023). https://doi.org/10.1002/adfm.202304963
- M. Qiqi, W. Wenxin, D. Kai, Y. Hongjie, W. Ziqiang et al., Low-content Pt-triggered the optimized d-band center of Rh metallene for energy-saving hydrogen production coupled with hydrazine degradation. J. Energy Chem. 85, 58–66 (2023). https://doi.org/10.1016/j.jechem.2023.06.005
- L. Xu, X.Y. Zhai, W.G. Lin, X. Chen, F. Li et al., Monodispersed platinum nanops embedded in Ni3S2-containing hollow carbon spheres with ultralow Pt loading and high alkaline hydrogen evolution activity. Electrochim. Acta 318, 590–596 (2019). https://doi.org/10.1016/j.electacta.2019.06.116
- L. Yang, G.Q. Li, R.P. Ma, S. Hou, J.F. Chang et al., Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 14, 2853–2860 (2021). https://doi.org/10.1007/s12274-021-3300-8
- M. Qiao, F.Y. Meng, H. Wu, Y. Wei, X.F. Zeng et al., PtCuRu nanoflowers with Ru-rich edge for efficient fuel-cell electrocatalysis. Small 18, 2204720 (2022). https://doi.org/10.1002/smll.202204720
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002). https://doi.org/10.1088/0953-8984/14/11/301
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- R. Li, X. Zhang, H. Dong, Q. Li, Z. Shuai et al., Gibbs–Curie–Wulff theorem in organic materials: a case study on the relationship between surface energy and crystal growth. Adv. Mater. 28, 1697–1702 (2015). https://doi.org/10.1002/adma.201504370
- X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher et al., Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000). https://doi.org/10.1038/35003535
- B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanops. Chem. Rev. 104, 3893–3946 (2004). https://doi.org/10.1021/cr030027b
- K.A. Fichthorn, Theory of anisotropic metal nanostructures. Chem. Rev. 123, 4146–4183 (2023). https://doi.org/10.1021/acs.chemrev.2c00831
- B. Zhao, J.W. Liu, C.Y. Xu, R.F. Feng, P.F. Sui et al., Interfacial engineering of Cu2Se/Co3Se4 multivalent hetero-nanocrystals for energy-efficient electrocatalytic co-generation of value-added chemicals and hydrogen. Appl. Catal. B Environ. 285, 119800 (2021). https://doi.org/10.1016/j.apcatb.2020.119800
- B. Zhao, J.W. Liu, R.F. Feng, L. Wang, J.J. Zhang et al., Less-energy consumed hydrogen evolution coupled with electrocatalytic removal of ethanolamine pollutant in saline water over Ni@Ni3S2/CNT nano-heterostructured electrocatalysts. Small Methods 6, 2101195 (2022). https://doi.org/10.1002/smtd.202101195
- H.J. Yin, S.L. Zhao, K. Zhao, A. Muqsit, H.J. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
- K. Xiang, Z.X. Song, D. Wu, X.H. Deng, X.W. Wang et al., Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 9, 6316–6324 (2021). https://doi.org/10.1039/d0ta10501e
- J. Hao, J.W. Liu, D. Wu, M.X. Chen, Y. Liang et al., In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B Environ. 281, 119580 (2020). https://doi.org/10.1016/j.apcatb.2020.119510
- L. Hui, Y.R. Xue, C.Y. Xing, Y.X. Liu, Y.C. Du et al., Atomic alloys of nickel-platinum on carbon network for methanol oxidation. Nano Energy 95, 106984 (2022). https://doi.org/10.1016/j.nanoen.2022.106984
- Z.W. Wei, H.J. Wang, C. Zhang, K. Xu, X.L. Lu et al., Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem. Int. Ed. 60, 16622–16627 (2021). https://doi.org/10.1002/anie.202104856
- Y.C. Yao, X.K. Gu, D.S. He, Z.J. Li, W. Liu et al., Engineering electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts hydrogen evolution reaction. J. Am. Chem. Soc. 141, 19964–19968 (2019). https://doi.org/10.1021/jacs.9b09391
- D. Kobayashi, H. Kobayashi, D.S. Wu, S. Okazoe, K. Kusada et al., Significant enhancement of hydrogen evolution reaction activity by negatively charged Pt through light doping of W. J. Am. Chem. Soc. 142, 17250–17254 (2020). https://doi.org/10.1021/jacs.0c07143
- M. Xu, S. He, H. Chen, G.Q. Cui, L.R. Zheng et al., TiO2–x-modified Ni nanocatalyst with tunable metal–support interaction for water–gas shift reaction. ACS Catal. 7, 7600–7609 (2017). https://doi.org/10.1021/acscatal.7b01951
- H. Tan, B. Tang, Y. Lu, Q.Q. Ji, L.Y. Lv et al., Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat. Commun. 13, 2024 (2022). https://doi.org/10.1038/s41467-022-29710-w
- M.F. Li, K.N. Duanmu, C.Z. Wan, T. Cheng, L. Zhang et al., Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6
- C.L. Yang, L.N. Wang, P. Yin, J.Y. Liu, M.X. Chen et al., Sulfur-anchoring synthesis of platinum intermetallic nanop catalysts for fuel cells. Science 374, 459–464 (2021). https://doi.org/10.1126/science.abj9980
- P.F. Hu, H.S. Yang, S.L. Chen, Y.F. Xue, Q.A. Zhu et al., Hybrid lamellar superlattices with monoatomic platinum layers and programmable organic ligands. J. Am. Chem. Soc. 145, 717–724 (2022). https://doi.org/10.1021/jacs.2c11928
- T.Y. Xia, K. Zhao, Y.Q. Zhu, X.Y. Bai, H. Gao et al., Mixed-dimensional Pt–Ni alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cells. Adv. Mater. 35, 2206508 (2023). https://doi.org/10.1002/adma.202206508
- Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). https://doi.org/10.1038/nmat3087
- B. Zhao, J.W. Liu, X.W. Wang, C.Y. Xu, P.F. Sui et al., CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 80, 105530 (2021). https://doi.org/10.1016/j.nanoen.2020.105530
- Y.K. Bai, Y. Wu, X.C. Zhou, Y.F. Ye, K.Q. Nie et al., Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 13, 6094 (2022). https://doi.org/10.1038/s41467-022-33846-0
- B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui et al., Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 31, 2008812 (2021). https://doi.org/10.1002/adfm.202008812
- D.Y. Kuo, H. Paik, J. Kloppenburg, B. Faeth, K.M. Shen et al., Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): a discussion of the sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 140, 17597–17605 (2018). https://doi.org/10.1021/jacs.8b09657
- M. Han, N. Wang, B. Zhang, Y.J. Xia, J. Li et al., High-valent nickel promoted by atomically embedded copper for efficient water oxidation. ACS Catal. 10, 9725–9734 (2020). https://doi.org/10.1021/acscatal.0c01733
- Z. Ren, Y.S. Yang, S. Wang, X.L. Li, H.S. Feng et al., Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Appl. Catal. B Environ. 295, 120290 (2021). https://doi.org/10.1016/j.apcatb.2021.120290
- Q.L. Wen, J.Y. Duan, W.B. Wang, D.J. Huang, Y.W. Liu et al., Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem. Int. Ed. 61, e202206077 (2022). https://doi.org/10.1002/anie.202206077
- R.X. Ge, Y. Wang, Z.Z. Li, M. Xu, S.M. Xu et al., Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. Int. Ed. 61, e202200211 (2022). https://doi.org/10.1002/anie.202200211
References
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001). https://doi.org/10.1038/35104634
R.M. Navarro, M.A. Peña, J.L.G. Fierro, Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 107, 3952–3991 (2007). https://doi.org/10.1021/cr0501994
B.M. Hunter, H.B. Gray, A.M. Müller, Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016). https://doi.org/10.1021/acs.chemrev.6b00398
M. Zhou, X. Jiang, W. Kong, H. Li, F. Lu et al., Synergistic effect of dual-doped carbon on Mo2C nanocrystals facilitates alkaline hydrogen evolution. Nano-Micro Lett. 15, 166 (2023). https://doi.org/10.1007/s40820-023-01135-0
H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
C. Costentin, J.-M. Savéant, Towards an intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 0087 (2017). https://doi.org/10.1038/s41570-017-0087
G. Li, G. Han, L. Wang, X. Cui, N.K. Moehring et al., Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper–silver electrocatalyst. Nat. Commun. 14, 525 (2023). https://doi.org/10.1038/s41467-023-36142-7
H. Guanqun, L. Guodong, S. Yujie, Electrocatalytic dual hydrogenation of organic substrates with a faradaic efficiency approaching 200%. Nat. Catal. 6, 224–233 (2023). https://doi.org/10.1038/s41929-023-00923-6
W. Zhu, X. Zhang, F. Yao, R. Huang, Y. Chen et al., A hydrazine-nitrate flow battery catalyzed by a bimetallic RuCo precatalyst for wastewater purification along with simultaneous generation of ammonia and electricity. Angew. Chem. Int. Ed. 62, e202300390 (2023). https://doi.org/10.1002/anie.202300390
Y. Hu, T. Chao, Y. Li, P. Liu, T. Zhao et al., Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. Int. Ed. 62, e202308800 (2023). https://doi.org/10.1002/anie.202308800
M. Yang, Y. Li, C.-L. Dong, S. Li, L. Xu et al., Correlating the valence state with the adsorption behavior of a Cu-based electrocatalyst for furfural oxidation with anodic hydrogen production reaction. Adv. Mater. 35, 2304203 (2023). https://doi.org/10.1002/adma.202304203
J. Li, K. Ji, B. Li, M. Xu, Y. Wang et al., Rechargeable biomass battery for electricity storage/generation and concurrent valuable chemicals production. Angew. Chem. Int. Ed. 62, e202304852 (2023). https://doi.org/10.1002/anie.202304852
L.K. Xiong, Z.T. Sun, X. Zhang, L. Zhao, P. Huang et al., Octahedral gold–silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect. Nat. Commun. 10, 3782 (2019). https://doi.org/10.1038/s41467-019-11766-w
S.L. Li, R.G. Ma, J.C. Hu, Z.C. Li, L.J. Liu et al., Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 13, 2916 (2022). https://doi.org/10.1038/s41467-022-30670-4
A.R. Poerwoprajitno, L. Gloag, J. Watt, S. Cheong, X. Tan et al., A single-Pt-atom-on-Ru-nanop electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 5, 231–237 (2022). https://doi.org/10.1038/s41929-022-00756-9
Z.Q. Zhang, J.P. Liu, J. Wang, Q. Wang, Y.H. Wang et al., Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 12, 5235 (2021). https://doi.org/10.1038/s41467-021-25562-y
L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15, 144 (2023). https://doi.org/10.1007/s40820-023-01117-2
P.P. Yang, X.L. Yuan, H.C. Hu, Y.L. Liu, H.W. Zheng et al., Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 28, 1704774 (2018). https://doi.org/10.1002/adfm.201704774
K. Xiang, D. Wu, X.H. Deng, M. Li, S.Y. Chen et al., Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 30, 1909610 (2020). https://doi.org/10.1002/adfm.201909610
J. Yang, R. Hubner, J.W. Zhang, H. Wan, Y.Y. Zheng et al., A robust PtNi nanoframe/N-doped graphene aerogel electrocatalyst with both high activity and stability. Angew. Chem. Int. Ed. 60, 9590–9597 (2021). https://doi.org/10.1002/anie.202015679
X. Duan, F. Cao, R. Ding, X.K. Li, Q.B. Li et al., Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading PEMFC cathode. Adv. Energy Mater. 12, 2103144 (2022). https://doi.org/10.1002/aenm.202103144
Y.B. Qi, Y. Zhang, L. Yang, Y.H. Zhao, Y.H. Zhu et al., Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 13, 4602 (2022). https://doi.org/10.1038/s41467-022-32443-5
J.-X. Wu, W.-X. Chen, C.-T. He, K. Zheng, L.-L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 (2023). https://doi.org/10.1007/s40820-023-01080-y
H. Liu, J.N. Cheng, W.J. He, Y. Li, J. Mao et al., Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with au nanops boosts overall water splitting. Appl. Catal. B Environ. 304, 120935 (2022). https://doi.org/10.1016/j.apcatb.2021.120935
C. Panda, P.W. Menezes, S. Yao, J. Schmidt, C. Walter et al., Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor. J. Am. Chem. Soc. 141, 13306–13310 (2019). https://doi.org/10.1021/jacs.9b06530
K.L. Zhou, C.B. Han, Z. Wang, X. Ke, C. Wang et al., Atomically dispersed platinum modulated by sulfide as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Sci. 8, 2100347 (2021). https://doi.org/10.1002/advs.202100347
J.B. Ding, L.Z. Bu, S.J. Guo, Z.P. Zhao, E.B. Zhu et al., Morphology and phase controlled construction of Pt–Ni nanostructures for efficient electrocatalysis. Nano Lett. 16, 2762–2767 (2016). https://doi.org/10.1021/acs.nanolett.6b00471
X. Xu, X. Zhang, H. Sun, Y. Yang, X. Dai et al., Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 53, 12522–12527 (2014). https://doi.org/10.1002/anie.201406497
J.X. Zhu, L.X. Xia, R.H. Yu, R.H. Lu, J.T. Li et al., Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 144, 15529–15538 (2022). https://doi.org/10.1021/jacs.2c03982
Y.C. Wu, W. Wei, R.H. Yu, L.X. Xia, X.F. Hong et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32, 2110910 (2022). https://doi.org/10.1002/adfm.202110910
L.H. Sun, Q.Y. Li, S.N. Zhang, D. Xu, Z.H. Xue et al., Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanops for efficient hydrogen atom dissociation and gas evolution. Angew. Chem. Int. Ed. 60, 25766–25770 (2021). https://doi.org/10.1002/anie.202111920
L.Y. Zeng, Z.L. Zhao, F. Lv, Z.H. Xia, S.Y. Lu et al., Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 13, 3822 (2022). https://doi.org/10.1038/s41467-022-31406-0
W.W. Yang, P. Cheng, Z. Li, Y.X. Lin, M.Y. Li et al., Tuning the cobalt-platinum alloy regulating single-atom platinum for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 32, 2205920 (2022). https://doi.org/10.1002/adfm.202205920
K.L. Zhou, Z.L. Wang, C.B. Han, X.X. Ke, C.H. Wang et al., Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12, 3783 (2021). https://doi.org/10.1038/s41467-021-24079-8
F. Xu, S.B. Cai, B.F. Lin, L. Yang, H.F. Le et al., Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability. Small 18, 2107387 (2022). https://doi.org/10.1002/smll.202107387
T.Y. Yoo, J.M. Yoo, A.K. Sinha, M.S. Bootharaju, E. Jung et al., Direct synthesis of intermetallic platinum-alloy nanops highly loaded on carbon supports for efficient electrocatalysis. J. Am. Chem. Soc. 142, 14190–14200 (2020). https://doi.org/10.1021/jacs.0c05140
S.F. Xue, W.T. Deng, F. Yang, J.L. Yang, I.S. Amiinu et al., Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 8, 7578–7584 (2018). https://doi.org/10.1021/acscatal.8b00366
M. Qiqi, M. Xu, D. Kai, Y. Hongjie, W. Ziqiang et al., Multisite synergism-induced electron regulation of high-entropy alloy metallene for boosting alkaline hydrogen evolution reaction. Adv. Funct. Mater. 33, 2304963 (2023). https://doi.org/10.1002/adfm.202304963
M. Qiqi, W. Wenxin, D. Kai, Y. Hongjie, W. Ziqiang et al., Low-content Pt-triggered the optimized d-band center of Rh metallene for energy-saving hydrogen production coupled with hydrazine degradation. J. Energy Chem. 85, 58–66 (2023). https://doi.org/10.1016/j.jechem.2023.06.005
L. Xu, X.Y. Zhai, W.G. Lin, X. Chen, F. Li et al., Monodispersed platinum nanops embedded in Ni3S2-containing hollow carbon spheres with ultralow Pt loading and high alkaline hydrogen evolution activity. Electrochim. Acta 318, 590–596 (2019). https://doi.org/10.1016/j.electacta.2019.06.116
L. Yang, G.Q. Li, R.P. Ma, S. Hou, J.F. Chang et al., Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 14, 2853–2860 (2021). https://doi.org/10.1007/s12274-021-3300-8
M. Qiao, F.Y. Meng, H. Wu, Y. Wei, X.F. Zeng et al., PtCuRu nanoflowers with Ru-rich edge for efficient fuel-cell electrocatalysis. Small 18, 2204720 (2022). https://doi.org/10.1002/smll.202204720
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002). https://doi.org/10.1088/0953-8984/14/11/301
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
R. Li, X. Zhang, H. Dong, Q. Li, Z. Shuai et al., Gibbs–Curie–Wulff theorem in organic materials: a case study on the relationship between surface energy and crystal growth. Adv. Mater. 28, 1697–1702 (2015). https://doi.org/10.1002/adma.201504370
X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher et al., Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000). https://doi.org/10.1038/35003535
B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanops. Chem. Rev. 104, 3893–3946 (2004). https://doi.org/10.1021/cr030027b
K.A. Fichthorn, Theory of anisotropic metal nanostructures. Chem. Rev. 123, 4146–4183 (2023). https://doi.org/10.1021/acs.chemrev.2c00831
B. Zhao, J.W. Liu, C.Y. Xu, R.F. Feng, P.F. Sui et al., Interfacial engineering of Cu2Se/Co3Se4 multivalent hetero-nanocrystals for energy-efficient electrocatalytic co-generation of value-added chemicals and hydrogen. Appl. Catal. B Environ. 285, 119800 (2021). https://doi.org/10.1016/j.apcatb.2020.119800
B. Zhao, J.W. Liu, R.F. Feng, L. Wang, J.J. Zhang et al., Less-energy consumed hydrogen evolution coupled with electrocatalytic removal of ethanolamine pollutant in saline water over Ni@Ni3S2/CNT nano-heterostructured electrocatalysts. Small Methods 6, 2101195 (2022). https://doi.org/10.1002/smtd.202101195
H.J. Yin, S.L. Zhao, K. Zhao, A. Muqsit, H.J. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
K. Xiang, Z.X. Song, D. Wu, X.H. Deng, X.W. Wang et al., Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 9, 6316–6324 (2021). https://doi.org/10.1039/d0ta10501e
J. Hao, J.W. Liu, D. Wu, M.X. Chen, Y. Liang et al., In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B Environ. 281, 119580 (2020). https://doi.org/10.1016/j.apcatb.2020.119510
L. Hui, Y.R. Xue, C.Y. Xing, Y.X. Liu, Y.C. Du et al., Atomic alloys of nickel-platinum on carbon network for methanol oxidation. Nano Energy 95, 106984 (2022). https://doi.org/10.1016/j.nanoen.2022.106984
Z.W. Wei, H.J. Wang, C. Zhang, K. Xu, X.L. Lu et al., Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem. Int. Ed. 60, 16622–16627 (2021). https://doi.org/10.1002/anie.202104856
Y.C. Yao, X.K. Gu, D.S. He, Z.J. Li, W. Liu et al., Engineering electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts hydrogen evolution reaction. J. Am. Chem. Soc. 141, 19964–19968 (2019). https://doi.org/10.1021/jacs.9b09391
D. Kobayashi, H. Kobayashi, D.S. Wu, S. Okazoe, K. Kusada et al., Significant enhancement of hydrogen evolution reaction activity by negatively charged Pt through light doping of W. J. Am. Chem. Soc. 142, 17250–17254 (2020). https://doi.org/10.1021/jacs.0c07143
M. Xu, S. He, H. Chen, G.Q. Cui, L.R. Zheng et al., TiO2–x-modified Ni nanocatalyst with tunable metal–support interaction for water–gas shift reaction. ACS Catal. 7, 7600–7609 (2017). https://doi.org/10.1021/acscatal.7b01951
H. Tan, B. Tang, Y. Lu, Q.Q. Ji, L.Y. Lv et al., Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat. Commun. 13, 2024 (2022). https://doi.org/10.1038/s41467-022-29710-w
M.F. Li, K.N. Duanmu, C.Z. Wan, T. Cheng, L. Zhang et al., Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6
C.L. Yang, L.N. Wang, P. Yin, J.Y. Liu, M.X. Chen et al., Sulfur-anchoring synthesis of platinum intermetallic nanop catalysts for fuel cells. Science 374, 459–464 (2021). https://doi.org/10.1126/science.abj9980
P.F. Hu, H.S. Yang, S.L. Chen, Y.F. Xue, Q.A. Zhu et al., Hybrid lamellar superlattices with monoatomic platinum layers and programmable organic ligands. J. Am. Chem. Soc. 145, 717–724 (2022). https://doi.org/10.1021/jacs.2c11928
T.Y. Xia, K. Zhao, Y.Q. Zhu, X.Y. Bai, H. Gao et al., Mixed-dimensional Pt–Ni alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cells. Adv. Mater. 35, 2206508 (2023). https://doi.org/10.1002/adma.202206508
Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). https://doi.org/10.1038/nmat3087
B. Zhao, J.W. Liu, X.W. Wang, C.Y. Xu, P.F. Sui et al., CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 80, 105530 (2021). https://doi.org/10.1016/j.nanoen.2020.105530
Y.K. Bai, Y. Wu, X.C. Zhou, Y.F. Ye, K.Q. Nie et al., Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 13, 6094 (2022). https://doi.org/10.1038/s41467-022-33846-0
B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui et al., Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 31, 2008812 (2021). https://doi.org/10.1002/adfm.202008812
D.Y. Kuo, H. Paik, J. Kloppenburg, B. Faeth, K.M. Shen et al., Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): a discussion of the sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 140, 17597–17605 (2018). https://doi.org/10.1021/jacs.8b09657
M. Han, N. Wang, B. Zhang, Y.J. Xia, J. Li et al., High-valent nickel promoted by atomically embedded copper for efficient water oxidation. ACS Catal. 10, 9725–9734 (2020). https://doi.org/10.1021/acscatal.0c01733
Z. Ren, Y.S. Yang, S. Wang, X.L. Li, H.S. Feng et al., Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Appl. Catal. B Environ. 295, 120290 (2021). https://doi.org/10.1016/j.apcatb.2021.120290
Q.L. Wen, J.Y. Duan, W.B. Wang, D.J. Huang, Y.W. Liu et al., Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem. Int. Ed. 61, e202206077 (2022). https://doi.org/10.1002/anie.202206077
R.X. Ge, Y. Wang, Z.Z. Li, M. Xu, S.M. Xu et al., Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. Int. Ed. 61, e202200211 (2022). https://doi.org/10.1002/anie.202200211