Hierarchically Structured Nb2O5 Microflowers with Enhanced Capacity and Fast-Charging Capability for Flexible Planar Sodium Ion Micro-Supercapacitors
Corresponding Author: Zhong‑Shuai Wu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 67
Abstract
Planar Na ion micro-supercapacitors (NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectronics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode. Herein, we demonstrate a novel carbon-coated Nb2O5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abundant pores, endow the Nb2O5 microflower with highly reversible Na ion storage capacity of 245 mAh g−1 at 0.25 C and excellent rate capability. Benefiting from high capacity and fast charging of Nb2O5 microflower, the planar NIMSCs consisted of Nb2O5 negative electrode and activated carbon positive electrode deliver high areal energy density of 60.7 μWh cm−2, considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
Highlights:
1 Hierarchically structured Nb2O5 microflowers consiste of porous and ultrathin nanosheets.
2 Nb2O5 microflowers exhibit enhanced capacity and rate performance boosting Na ion storage.
3 Planar NIMSCs with charge and kinetics matching show superior areal capacitance and lifespan.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
- P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c
- M. Ye, Z. Zhang, Y. Zhao, L. Qu, Graphene platforms for smart energy generation and storage. Joule 2, 245–268 (2018). https://doi.org/10.1016/j.joule.2017.11.011
- H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narvaez, F. Guder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- X. Wan, T. Mu, G. Yin, Intrinsic Self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15(1), 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- S. Zheng, J. Ma, Z.-S. Wu, F. Zhou, Y.-B. He et al., All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 11(8), 2001–2009 (2018). https://doi.org/10.1039/c8ee00855h
- J. Ma, S. Zheng, L. Chi, Y. Liu, Y. Zhang et al., 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Adv. Mater. 34(39), e2205569 (2022). https://doi.org/10.1002/adma.202205569
- Y.-F. Ren, Z.-L. He, H.-Z. Zhao, T. Zhu, Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Met. 41(3), 830–835 (2022). https://doi.org/10.1007/s12598-021-01836-8
- S. Liu, H. Cheng, R. Mao, W. Jiang, L. Wang et al., Designing zwitterionic gel polymer electrolytes with dual-ion solvation regulation enabling stable sodium ion capacitor. Adv. Energy Mater. 13(18), 2300068 (2023). https://doi.org/10.1002/aenm.202300068
- J. Ruan, S. Luo, S. Wang, J. Hu, F. Fang et al., Enhancing the whole migration kinetics of Na+ in the anode side for advanced ultralow temperature sodium-ion hybrid capacitor. Adv. Energy Mater. 13(34), 2301509 (2023). https://doi.org/10.1002/aenm.202301509
- Y.M. Jung, J.H. Choi, D.W. Kim, J.K. Kang, 3D porous oxygen-doped and nitrogen-doped graphitic carbons derived from metal azolate frameworks as cathode and anode materials for high-performance dual-carbon sodium-ion hybrid capacitors. Adv. Sci. 10(24), e2301160 (2023). https://doi.org/10.1002/advs.202301160
- C. Sun, X. Zhang, Y. An, C. Li, L. Wang et al., Low-temperature carbonized nitrogen-doped hard carbon nanofiber toward high-performance sodium-ion capacitors. Energy Environ. Mater. 6(4), e12603 (2023). https://doi.org/10.1002/eem2.12603
- J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov et al., Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/C4EE02986K
- N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
- S. Zheng, S. Wang, Y. Dong, F. Zhou, J. Qin et al., All-solid-state planar sodium-ion microcapacitors with multidirectional fast ion diffusion pathways. Adv. Sci. 6(23), 1902147 (2019). https://doi.org/10.1002/advs.201902147
- J. Ma, S. Zheng, P. Das, P. Lu, Y. Yu et al., Sodium ion microscale electrochemical energy storage device: present status and future perspective. Small Struct. 1(1), 2000053 (2020). https://doi.org/10.1002/sstr.202000053
- A. Brady, K. Liang, V.Q. Vuong, R. Sacci, K. Prenger et al., Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 15(2), 2994–3003 (2021). https://doi.org/10.1021/acsnano.0c09301
- L. Deng, J. Wang, G. Zhu, L. Kang, Z. Hao et al., RuO2/graphene hybrid material for high performance electrochemical capacitor. J. Power. Sources 248, 407–415 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.081
- Y. Xia, L. Que, F. Yu, L. Deng, Z. Liang et al., Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 14(1), 143 (2022). https://doi.org/10.1007/s40820-022-00885-7
- Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu et al., Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
- Z. Jian, V. Raju, Z. Li, Z. Xing, Y.-S. Hu et al., A High-power symmetric Na-ion pseudocapacitor. Adv. Funct. Mater. 25(36), 5778–5785 (2015). https://doi.org/10.1002/adfm.201502433
- Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13(1), 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
- F. Zhang, S. Wei, W. Wei, J. Zou, G. Gu et al., Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Sci. Bull. 65(19), 1659–1666 (2020). https://doi.org/10.1016/j.scib.2020.05.033
- J. Xu, Y. He, S. Bi, M. Wang, P. Yang et al., An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed. 58(35), 12065–12069 (2019). https://doi.org/10.1002/anie.201905713
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- F. Su, J. Qin, P. Das, F. Zhou, Z.-S. Wu, A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy Environ. Sci. 14(4), 2269–2277 (2021). https://doi.org/10.1039/d1ee00317h
- D. Chen, Y. Wu, Z. Huang, J. Chen, A novel hybrid point defect of oxygen vacancy and phosphorus doping in TiO2 anode for high-performance sodium ion capacitor. Nano-Micro Lett. 14(1), 156 (2022). https://doi.org/10.1007/s40820-022-00912-7
- H. Yang, H. Xu, L. Wang, L. Zhang, Y. Huang et al., Microwave-assisted rapid synthesis of self-assembled T-Nb2O5 nanowires for high-energy hybrid supercapacitors. Chem. Eur. J. 23(17), 4203–4209 (2017). https://doi.org/10.1002/chem.201700010
- Y. Jiang, S. Guo, X. Hu, Bifunctional sodium compensation of anodes for hybrid sodium-ion capacitors. Sci. China Mater. 66(8), 3084–3092 (2023). https://doi.org/10.1007/s40843-023-2473-8
- Q. Deng, F. Chen, S. Liu, A. Bayaguud, Y. Feng et al., Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 30(10), 1908665 (2020). https://doi.org/10.1002/adfm.201908665
- F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang et al., Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28(18), 1800394 (2018). https://doi.org/10.1002/adfm.201800394
- H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu et al., An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 48, 448–455 (2018). https://doi.org/10.1016/j.nanoen.2018.04.006
- S. Hemmati, G. Li, X. Wang, Y. Ding, Y. Pei et al., 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy 56, 118–126 (2019). https://doi.org/10.1016/j.nanoen.2018.10.048
- D. Luo, C. Ma, J. Hou, Z. Zhang, R. Feng et al., Integrating nanoreactor with O–Nb–C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater. 12(18), 2103716 (2022). https://doi.org/10.1002/aenm.202103716
- H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang et al., Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy 16, 62–70 (2015). https://doi.org/10.1016/j.nanoen.2015.05.015
- Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang et al., Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 15(9), 1804539 (2019). https://doi.org/10.1002/smll.201804539
- Y. Jiang, S. Guo, Y. Li, X. Hu, Rapid microwave synthesis of carbon-bridged Nb2O5 mesocrystals for high-energy and high-power sodium-ion capacitors. J. Mater. Chem. A 10(21), 11470–11476 (2022). https://doi.org/10.1039/d2ta01574a
- Z. Bi, Y. Zhang, X. Li, Y. Liang, W. Ma et al., Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochim. Acta 411, 140070 (2022). https://doi.org/10.1016/j.electacta.2022.140070
- C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng et al., Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016). https://doi.org/10.1016/j.nanoen.2016.08.026
- Z. Zhao, G. Huang, Y. Kong, J. Cui, A.A. Solovev et al., Atomic layer deposition for electrochemical energy: from design to industrialization. Electrochem. Energy Rev. 5(S1), 31 (2022). https://doi.org/10.1007/s41918-022-00146-6
- S. Sollami Delekta, A.D. Smith, J. Li, M. Ostling, Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Nanoscale 9(21), 6998–7005 (2017). https://doi.org/10.1039/c7nr02204b
- H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7(4), 1601847 (2017). https://doi.org/10.1002/aenm.201601847
- J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14(1), 640–650 (2020). https://doi.org/10.1021/acsnano.9b07325
- H. Xiao, Z.S. Wu, L. Chen, F. Zhou, S. Zheng et al., One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11(7), 7284–7292 (2017). https://doi.org/10.1021/acsnano.7b03288
- D. Chen, J.H. Wang, T.F. Chou, B. Zhao, M.A. El-Sayed et al., Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 139(20), 7071–7081 (2017). https://doi.org/10.1021/jacs.7b03141
- J. Ni, W. Wang, C. Wu, H. Liang, J. Maier et al., Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 29(9), 1605607 (2017). https://doi.org/10.1002/adma.201605607
- R.M. Pittman, A.T. Bell, Raman studies of the structure of Nb2O5/TiO2. J. Phys. Chem. 91, 12178–12185 (1993). https://doi.org/10.1021/j100149a013
- Y. Gao, S. Zheng, H. Fu, J. Ma, X. Xu et al., Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 168, 701–709 (2020). https://doi.org/10.1016/j.carbon.2020.06.063
- H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
- L. Wang, X. Bi, S. Yang, Partially Single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 28(35), 7672–7679 (2016). https://doi.org/10.1002/adma.201601723
- S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou et al., Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 13(3), 821–829 (2020). https://doi.org/10.1039/c9ee03219c
- H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (anatase). 2 Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997). https://doi.org/10.1021/jp970490q
- J. Ma, J. Li, R. Guo, H. Xu, F. Shi et al., Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. J. Power. Sources 428, 124–130 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.101
- S. Ardizzone, G. Fergonnara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35(1), 263–267 (1990). https://doi.org/10.1016/0013-4686(90)85068-X
- R. Bai, M. Zhang, X. Zhang, S. Zhao, W. Chen et al., A multidimensional topotactic host composite anode toward transparent flexible potassium-ion microcapacitors. ACS Appl. Mater. Interfaces 14(1), 1478–1488 (2022). https://doi.org/10.1021/acsami.1c20609
References
N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c
M. Ye, Z. Zhang, Y. Zhao, L. Qu, Graphene platforms for smart energy generation and storage. Joule 2, 245–268 (2018). https://doi.org/10.1016/j.joule.2017.11.011
H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narvaez, F. Guder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
X. Wan, T. Mu, G. Yin, Intrinsic Self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15(1), 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
S. Zheng, J. Ma, Z.-S. Wu, F. Zhou, Y.-B. He et al., All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 11(8), 2001–2009 (2018). https://doi.org/10.1039/c8ee00855h
J. Ma, S. Zheng, L. Chi, Y. Liu, Y. Zhang et al., 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Adv. Mater. 34(39), e2205569 (2022). https://doi.org/10.1002/adma.202205569
Y.-F. Ren, Z.-L. He, H.-Z. Zhao, T. Zhu, Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Met. 41(3), 830–835 (2022). https://doi.org/10.1007/s12598-021-01836-8
S. Liu, H. Cheng, R. Mao, W. Jiang, L. Wang et al., Designing zwitterionic gel polymer electrolytes with dual-ion solvation regulation enabling stable sodium ion capacitor. Adv. Energy Mater. 13(18), 2300068 (2023). https://doi.org/10.1002/aenm.202300068
J. Ruan, S. Luo, S. Wang, J. Hu, F. Fang et al., Enhancing the whole migration kinetics of Na+ in the anode side for advanced ultralow temperature sodium-ion hybrid capacitor. Adv. Energy Mater. 13(34), 2301509 (2023). https://doi.org/10.1002/aenm.202301509
Y.M. Jung, J.H. Choi, D.W. Kim, J.K. Kang, 3D porous oxygen-doped and nitrogen-doped graphitic carbons derived from metal azolate frameworks as cathode and anode materials for high-performance dual-carbon sodium-ion hybrid capacitors. Adv. Sci. 10(24), e2301160 (2023). https://doi.org/10.1002/advs.202301160
C. Sun, X. Zhang, Y. An, C. Li, L. Wang et al., Low-temperature carbonized nitrogen-doped hard carbon nanofiber toward high-performance sodium-ion capacitors. Energy Environ. Mater. 6(4), e12603 (2023). https://doi.org/10.1002/eem2.12603
J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov et al., Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/C4EE02986K
N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
S. Zheng, S. Wang, Y. Dong, F. Zhou, J. Qin et al., All-solid-state planar sodium-ion microcapacitors with multidirectional fast ion diffusion pathways. Adv. Sci. 6(23), 1902147 (2019). https://doi.org/10.1002/advs.201902147
J. Ma, S. Zheng, P. Das, P. Lu, Y. Yu et al., Sodium ion microscale electrochemical energy storage device: present status and future perspective. Small Struct. 1(1), 2000053 (2020). https://doi.org/10.1002/sstr.202000053
A. Brady, K. Liang, V.Q. Vuong, R. Sacci, K. Prenger et al., Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 15(2), 2994–3003 (2021). https://doi.org/10.1021/acsnano.0c09301
L. Deng, J. Wang, G. Zhu, L. Kang, Z. Hao et al., RuO2/graphene hybrid material for high performance electrochemical capacitor. J. Power. Sources 248, 407–415 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.081
Y. Xia, L. Que, F. Yu, L. Deng, Z. Liang et al., Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 14(1), 143 (2022). https://doi.org/10.1007/s40820-022-00885-7
Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu et al., Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
Z. Jian, V. Raju, Z. Li, Z. Xing, Y.-S. Hu et al., A High-power symmetric Na-ion pseudocapacitor. Adv. Funct. Mater. 25(36), 5778–5785 (2015). https://doi.org/10.1002/adfm.201502433
Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13(1), 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
F. Zhang, S. Wei, W. Wei, J. Zou, G. Gu et al., Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Sci. Bull. 65(19), 1659–1666 (2020). https://doi.org/10.1016/j.scib.2020.05.033
J. Xu, Y. He, S. Bi, M. Wang, P. Yang et al., An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed. 58(35), 12065–12069 (2019). https://doi.org/10.1002/anie.201905713
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
F. Su, J. Qin, P. Das, F. Zhou, Z.-S. Wu, A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy Environ. Sci. 14(4), 2269–2277 (2021). https://doi.org/10.1039/d1ee00317h
D. Chen, Y. Wu, Z. Huang, J. Chen, A novel hybrid point defect of oxygen vacancy and phosphorus doping in TiO2 anode for high-performance sodium ion capacitor. Nano-Micro Lett. 14(1), 156 (2022). https://doi.org/10.1007/s40820-022-00912-7
H. Yang, H. Xu, L. Wang, L. Zhang, Y. Huang et al., Microwave-assisted rapid synthesis of self-assembled T-Nb2O5 nanowires for high-energy hybrid supercapacitors. Chem. Eur. J. 23(17), 4203–4209 (2017). https://doi.org/10.1002/chem.201700010
Y. Jiang, S. Guo, X. Hu, Bifunctional sodium compensation of anodes for hybrid sodium-ion capacitors. Sci. China Mater. 66(8), 3084–3092 (2023). https://doi.org/10.1007/s40843-023-2473-8
Q. Deng, F. Chen, S. Liu, A. Bayaguud, Y. Feng et al., Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 30(10), 1908665 (2020). https://doi.org/10.1002/adfm.201908665
F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang et al., Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28(18), 1800394 (2018). https://doi.org/10.1002/adfm.201800394
H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu et al., An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 48, 448–455 (2018). https://doi.org/10.1016/j.nanoen.2018.04.006
S. Hemmati, G. Li, X. Wang, Y. Ding, Y. Pei et al., 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy 56, 118–126 (2019). https://doi.org/10.1016/j.nanoen.2018.10.048
D. Luo, C. Ma, J. Hou, Z. Zhang, R. Feng et al., Integrating nanoreactor with O–Nb–C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater. 12(18), 2103716 (2022). https://doi.org/10.1002/aenm.202103716
H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang et al., Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy 16, 62–70 (2015). https://doi.org/10.1016/j.nanoen.2015.05.015
Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang et al., Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 15(9), 1804539 (2019). https://doi.org/10.1002/smll.201804539
Y. Jiang, S. Guo, Y. Li, X. Hu, Rapid microwave synthesis of carbon-bridged Nb2O5 mesocrystals for high-energy and high-power sodium-ion capacitors. J. Mater. Chem. A 10(21), 11470–11476 (2022). https://doi.org/10.1039/d2ta01574a
Z. Bi, Y. Zhang, X. Li, Y. Liang, W. Ma et al., Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochim. Acta 411, 140070 (2022). https://doi.org/10.1016/j.electacta.2022.140070
C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng et al., Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016). https://doi.org/10.1016/j.nanoen.2016.08.026
Z. Zhao, G. Huang, Y. Kong, J. Cui, A.A. Solovev et al., Atomic layer deposition for electrochemical energy: from design to industrialization. Electrochem. Energy Rev. 5(S1), 31 (2022). https://doi.org/10.1007/s41918-022-00146-6
S. Sollami Delekta, A.D. Smith, J. Li, M. Ostling, Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Nanoscale 9(21), 6998–7005 (2017). https://doi.org/10.1039/c7nr02204b
H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7(4), 1601847 (2017). https://doi.org/10.1002/aenm.201601847
J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14(1), 640–650 (2020). https://doi.org/10.1021/acsnano.9b07325
H. Xiao, Z.S. Wu, L. Chen, F. Zhou, S. Zheng et al., One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11(7), 7284–7292 (2017). https://doi.org/10.1021/acsnano.7b03288
D. Chen, J.H. Wang, T.F. Chou, B. Zhao, M.A. El-Sayed et al., Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 139(20), 7071–7081 (2017). https://doi.org/10.1021/jacs.7b03141
J. Ni, W. Wang, C. Wu, H. Liang, J. Maier et al., Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 29(9), 1605607 (2017). https://doi.org/10.1002/adma.201605607
R.M. Pittman, A.T. Bell, Raman studies of the structure of Nb2O5/TiO2. J. Phys. Chem. 91, 12178–12185 (1993). https://doi.org/10.1021/j100149a013
Y. Gao, S. Zheng, H. Fu, J. Ma, X. Xu et al., Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 168, 701–709 (2020). https://doi.org/10.1016/j.carbon.2020.06.063
H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
L. Wang, X. Bi, S. Yang, Partially Single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 28(35), 7672–7679 (2016). https://doi.org/10.1002/adma.201601723
S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou et al., Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 13(3), 821–829 (2020). https://doi.org/10.1039/c9ee03219c
H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (anatase). 2 Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997). https://doi.org/10.1021/jp970490q
J. Ma, J. Li, R. Guo, H. Xu, F. Shi et al., Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. J. Power. Sources 428, 124–130 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.101
S. Ardizzone, G. Fergonnara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35(1), 263–267 (1990). https://doi.org/10.1016/0013-4686(90)85068-X
R. Bai, M. Zhang, X. Zhang, S. Zhao, W. Chen et al., A multidimensional topotactic host composite anode toward transparent flexible potassium-ion microcapacitors. ACS Appl. Mater. Interfaces 14(1), 1478–1488 (2022). https://doi.org/10.1021/acsami.1c20609