Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding
Corresponding Author: Shan‑Yu Zhao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 59
Abstract
Lightweight, ultra-flexible, and robust crosslinked transition metal carbide (Ti3C2 MXene) coated polyimide (PI) (C-MXene@PI) porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach. In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, efficient utilization of the intrinsic conductivity of MXene, the interfacial polarization between MXene and PI, and the micrometer-sized pores of the composite foams are achieved. Consequently, the composites show a satisfactory X-band electromagnetic interference (EMI) shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm−3, leading to an excellent surface-specific SE of 21,317 dB cm2 g−1. Moreover, the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunctionalities, along with the facile and easy-to-scalable manufacturing techniques, imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics, aerospace, and smart devices.
Highlights:
1 Large-area, lightweight, ultra-flexible, and robust crosslinked MXene-coated PI porous composites were manufactured via a scalable and facile approach.
2 In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, excellent electromagnetic interference shielding performance was achieved because of the high-efficiency utilization of the building units and microstructure.
3 Moreover, the highly flexible composite foams exhibited excellent electrothermal and electromechanical sensing performance, demonstrating promising perspectives in next-generation flexible electronics, aerospace, and smart devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17(16), 1999–2003 (2005). https://doi.org/10.1002/adma.200500615
- Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- Z. Zeng, C. Wang, T. Wu, D. Han, M. Luković et al., Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 8(35), 17969–17979 (2020). https://doi.org/10.1039/d0ta05961g
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
- P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwalled carbon nanotubes in the X-Band. Adv. Mater. 15(7–8), 600–603 (2003). https://doi.org/10.1002/adma.200304485
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
- B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017). https://doi.org/10.1002/smll.201701388
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- Z. Fu, N. Wang, D. Legut, C. Si, Q. Zhang et al., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 119(23), 11980–12031 (2019). https://doi.org/10.1021/acs.chemrev.9b00348
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- D. Nepal, W.J. Kennedy, R. Pachter, R.A. Vaia, Toward architected nanocomposites: MXenes and beyond. ACS Nano 15(1), 21–28 (2021). https://doi.org/10.1021/acsnano.0c09834
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- Z. Zeng, E. Mavrona, D. Sacré, N. Kummer, J. Cao et al., Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 15(4), 7451–7462 (2021). https://doi.org/10.1021/acsnano.1c00856
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interface 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/C9NR07331K
- C. Weng, T. Xing, H. Jin, G. Wang, Z. Dai et al., Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Comp. Part A Appl. Sci. Manuf. 135, 105927 (2020). https://doi.org/10.1016/j.compositesa.2020.105927
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/Cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- Q. Liu, Y. Zhang, Y. Liu, Z. Liu, B. Zhang et al., Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management. J. Alloys Compd. 860, 158151 (2021). https://doi.org/10.1016/j.jallcom.2020.158151
- Z. Zhan, Q. Song, Z. Zhou, C. Lu, Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 7(32), 9820–9829 (2019). https://doi.org/10.1039/c9tc03309b
- W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu et al., Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv. 9(51), 29636–29644 (2019). https://doi.org/10.1039/c9ra06399d
- M. Carey, M.W. Barsoum, MXene polymer nanocomposites: a review. Mater. Today Adv. 9, 100120 (2021). https://doi.org/10.1016/j.mtadv.2020.100120
- X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(7), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
- Y.J. Wan, K. Rajavel, X.M. Li, X.Y. Wang, S.Y. Liao et al., Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 408, 127303 (2021). https://doi.org/10.1016/j.cej.2020.127303
- H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30(5), 1906996 (2019). https://doi.org/10.1002/adfm.201906996
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
- X.J. Luo, L. Li, H.B. Zhang, S. Zhao, Y. Zhang et al., Multifunctional Ti3C2Tx MXene/low-density polyethylene soft robots with programmable configuration for amphibious motions. ACS Appl. Mater. Interfaces 13(38), 45833–45842 (2021). https://doi.org/10.1021/acsami.1c11056
- Z. Zeng, S.I.S. Shahabadi, B. Che, Y. Zhang, C. Zhao et al., Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale 9(44), 17396 (2017). https://doi.org/10.1039/C7NR05106A
- D. Song, X. Li, X. Li, X. Jia, P. Min et al., Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range. J. Colloid Interface Sci. 555, 751–758 (2019). https://doi.org/10.1016/j.jcis.2019.08.020
- C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354(6317), 1257–1260 (2016). https://doi.org/10.1126/science.aag2879
- Y. Wang, L. Wang, T. Yang, X. Li, X. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- D. Jiao, F. Lossada, J. Guo, O. Skarsetz, D. Hoenders et al., Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat. Commun. 12, 1312 (2021). https://doi.org/10.1038/s41467-021-21599-1
- L. Zhang, M. Baima, T.L. Andrew, Transforming commercial textiles and threads into sewable and weavable electric heaters. ACS Appl. Mater. Interface 9(37), 32299–32307 (2017). https://doi.org/10.1021/acsami.7b10514
- Y. Guo, C. Dun, J. Xu, J. Mu, P. Li et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44), 1702645 (2017). https://doi.org/10.1002/smll.201702645
- Y. Yao, K.K. Fu, C. Yan, J. Dai, Y. Chen et al., Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 10(5), 5272–5279 (2016). https://doi.org/10.1021/acsnano.6b01059
- Y.H. Yoon, J.W. Song, D. Kim, J. Kim, J.K. Park et al., Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19(23), 4284–4287 (2007). https://doi.org/10.1002/adma.200701173
- J.J. Bae, S.C. Lim, G.H. Han, Y.W. Jo, D.L. Doung et al., Heat dissipation of transparent graphene defoggers. Adv. Funct. Mater. 22(22), 4819–4826 (2012). https://doi.org/10.1002/adfm.201201155
- Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., m Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
- A. Zhou, Y. Liu, S. Li, X. Wang, G. Ying et al., From structural ceramics to 2D materials with multi-applications: a review on the development from max phases to MXenes. J. Adv. Ceram. 10(6), 1194–1242 (2021). https://doi.org/10.1007/s40145-021-0535-5
- M. Wu, M. He, Q. Hu, Q. Wu, G. Sun et al., Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4(10), 2763–2770 (2019). https://doi.org/10.1021/acssensors.9b01308
- J. Liu, H.B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45), 1802479 (2018). https://doi.org/10.1002/smll.201802479
- N. Wu, Z. Zeng, N. Kummer, D. Han, R. Zenobi et al., Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of mxene sheets for electromagnetic interference shielding. Small Methods 5(12), 2100889 (2021). https://doi.org/10.1002/smtd.202100889
- J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
- J. Ma, M. Zhan, K. Wang, Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interface 7(1), 563–576 (2015). https://doi.org/10.1021/am5067095
- Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interface 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
- J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang et al., Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interface 5(7), 2677–2684 (2013). https://doi.org/10.1021/am303289m
- G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- J.Q. Luo, S. Zhao, H.B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
- Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015). https://doi.org/10.1039/C4RA16421K
- D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma et al., Flexible and transparent electrothermal film heaters based on graphene materials. Small 7(22), 3186–3192 (2011). https://doi.org/10.1002/smll.201101305
- T.J. Kang, T. Kim, S.M. Seo, Y.J. Park, Y.H. Kim, Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 49(4), 1087–1093 (2011). https://doi.org/10.1016/j.carbon.2010.11.012
- H.S. Jang, S.K. Jeon, S.H. Nahm, The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 49(1), 111–116 (2011). https://doi.org/10.1016/j.carbon.2010.08.049
- H. Yang, Z. Yu, P. Wu, H. Zou, P. Liu, Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 434, 318–325 (2018). https://doi.org/10.1016/j.apsusc.2017.10.191
- Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
- Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interface 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
- H. Yang, Z. Li, H. Zou, P. Liu, Preparation of porous polyimide/in-situ reduced graphene oxide composite films for electromagnetic interference shielding. Poly. Adv. Technol. 28(2), 233–242 (2017). https://doi.org/10.1002/pat.3879
- Z. Li, Z. Lin, M. Han, Y. Zhang, J. Yu, Vertical graphene nanosheet/polyimide composite films for electromagnetic interference shielding. ACS Appl. Nano Mater. 4(7), 7461–7470 (2021). https://doi.org/10.1021/acsanm.1c01471
- L. Nayak, T.K. Chaki, D. Khastgir, Electrical percolation behavior and electromagnetic shielding effectiveness of polyimide nanocomposites filled with carbon nanofibers. J. Appl. Polym. Sci. 131(24), 40914 (2014). https://doi.org/10.1002/app.40914
- D.Y. Kong, J. Li, A.R. Guo, X.L. Xiao, High temperature electromagnetic shielding shape memory polymer composite. Chem. Eng. J. 408, 127365 (2021). https://doi.org/10.1016/j.cej.2020.127365
- J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
- Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi et al., Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016). https://doi.org/10.1016/j.carbon.2016.01.030
- Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2TX film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abj1663
References
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17(16), 1999–2003 (2005). https://doi.org/10.1002/adma.200500615
Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
Z. Zeng, C. Wang, T. Wu, D. Han, M. Luković et al., Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 8(35), 17969–17979 (2020). https://doi.org/10.1039/d0ta05961g
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwalled carbon nanotubes in the X-Band. Adv. Mater. 15(7–8), 600–603 (2003). https://doi.org/10.1002/adma.200304485
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017). https://doi.org/10.1002/smll.201701388
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Z. Fu, N. Wang, D. Legut, C. Si, Q. Zhang et al., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 119(23), 11980–12031 (2019). https://doi.org/10.1021/acs.chemrev.9b00348
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
D. Nepal, W.J. Kennedy, R. Pachter, R.A. Vaia, Toward architected nanocomposites: MXenes and beyond. ACS Nano 15(1), 21–28 (2021). https://doi.org/10.1021/acsnano.0c09834
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
Z. Zeng, E. Mavrona, D. Sacré, N. Kummer, J. Cao et al., Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 15(4), 7451–7462 (2021). https://doi.org/10.1021/acsnano.1c00856
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interface 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/C9NR07331K
C. Weng, T. Xing, H. Jin, G. Wang, Z. Dai et al., Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Comp. Part A Appl. Sci. Manuf. 135, 105927 (2020). https://doi.org/10.1016/j.compositesa.2020.105927
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/Cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
Q. Liu, Y. Zhang, Y. Liu, Z. Liu, B. Zhang et al., Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management. J. Alloys Compd. 860, 158151 (2021). https://doi.org/10.1016/j.jallcom.2020.158151
Z. Zhan, Q. Song, Z. Zhou, C. Lu, Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 7(32), 9820–9829 (2019). https://doi.org/10.1039/c9tc03309b
W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu et al., Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv. 9(51), 29636–29644 (2019). https://doi.org/10.1039/c9ra06399d
M. Carey, M.W. Barsoum, MXene polymer nanocomposites: a review. Mater. Today Adv. 9, 100120 (2021). https://doi.org/10.1016/j.mtadv.2020.100120
X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(7), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
Y.J. Wan, K. Rajavel, X.M. Li, X.Y. Wang, S.Y. Liao et al., Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 408, 127303 (2021). https://doi.org/10.1016/j.cej.2020.127303
H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30(5), 1906996 (2019). https://doi.org/10.1002/adfm.201906996
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
X.J. Luo, L. Li, H.B. Zhang, S. Zhao, Y. Zhang et al., Multifunctional Ti3C2Tx MXene/low-density polyethylene soft robots with programmable configuration for amphibious motions. ACS Appl. Mater. Interfaces 13(38), 45833–45842 (2021). https://doi.org/10.1021/acsami.1c11056
Z. Zeng, S.I.S. Shahabadi, B. Che, Y. Zhang, C. Zhao et al., Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale 9(44), 17396 (2017). https://doi.org/10.1039/C7NR05106A
D. Song, X. Li, X. Li, X. Jia, P. Min et al., Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range. J. Colloid Interface Sci. 555, 751–758 (2019). https://doi.org/10.1016/j.jcis.2019.08.020
C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou et al., Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354(6317), 1257–1260 (2016). https://doi.org/10.1126/science.aag2879
Y. Wang, L. Wang, T. Yang, X. Li, X. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
D. Jiao, F. Lossada, J. Guo, O. Skarsetz, D. Hoenders et al., Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat. Commun. 12, 1312 (2021). https://doi.org/10.1038/s41467-021-21599-1
L. Zhang, M. Baima, T.L. Andrew, Transforming commercial textiles and threads into sewable and weavable electric heaters. ACS Appl. Mater. Interface 9(37), 32299–32307 (2017). https://doi.org/10.1021/acsami.7b10514
Y. Guo, C. Dun, J. Xu, J. Mu, P. Li et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44), 1702645 (2017). https://doi.org/10.1002/smll.201702645
Y. Yao, K.K. Fu, C. Yan, J. Dai, Y. Chen et al., Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 10(5), 5272–5279 (2016). https://doi.org/10.1021/acsnano.6b01059
Y.H. Yoon, J.W. Song, D. Kim, J. Kim, J.K. Park et al., Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19(23), 4284–4287 (2007). https://doi.org/10.1002/adma.200701173
J.J. Bae, S.C. Lim, G.H. Han, Y.W. Jo, D.L. Doung et al., Heat dissipation of transparent graphene defoggers. Adv. Funct. Mater. 22(22), 4819–4826 (2012). https://doi.org/10.1002/adfm.201201155
Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., m Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
A. Zhou, Y. Liu, S. Li, X. Wang, G. Ying et al., From structural ceramics to 2D materials with multi-applications: a review on the development from max phases to MXenes. J. Adv. Ceram. 10(6), 1194–1242 (2021). https://doi.org/10.1007/s40145-021-0535-5
M. Wu, M. He, Q. Hu, Q. Wu, G. Sun et al., Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 4(10), 2763–2770 (2019). https://doi.org/10.1021/acssensors.9b01308
J. Liu, H.B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45), 1802479 (2018). https://doi.org/10.1002/smll.201802479
N. Wu, Z. Zeng, N. Kummer, D. Han, R. Zenobi et al., Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of mxene sheets for electromagnetic interference shielding. Small Methods 5(12), 2100889 (2021). https://doi.org/10.1002/smtd.202100889
J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
J. Ma, M. Zhan, K. Wang, Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interface 7(1), 563–576 (2015). https://doi.org/10.1021/am5067095
Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interface 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang et al., Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interface 5(7), 2677–2684 (2013). https://doi.org/10.1021/am303289m
G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
J.Q. Luo, S. Zhao, H.B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015). https://doi.org/10.1039/C4RA16421K
D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma et al., Flexible and transparent electrothermal film heaters based on graphene materials. Small 7(22), 3186–3192 (2011). https://doi.org/10.1002/smll.201101305
T.J. Kang, T. Kim, S.M. Seo, Y.J. Park, Y.H. Kim, Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 49(4), 1087–1093 (2011). https://doi.org/10.1016/j.carbon.2010.11.012
H.S. Jang, S.K. Jeon, S.H. Nahm, The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 49(1), 111–116 (2011). https://doi.org/10.1016/j.carbon.2010.08.049
H. Yang, Z. Yu, P. Wu, H. Zou, P. Liu, Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 434, 318–325 (2018). https://doi.org/10.1016/j.apsusc.2017.10.191
Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interface 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
H. Yang, Z. Li, H. Zou, P. Liu, Preparation of porous polyimide/in-situ reduced graphene oxide composite films for electromagnetic interference shielding. Poly. Adv. Technol. 28(2), 233–242 (2017). https://doi.org/10.1002/pat.3879
Z. Li, Z. Lin, M. Han, Y. Zhang, J. Yu, Vertical graphene nanosheet/polyimide composite films for electromagnetic interference shielding. ACS Appl. Nano Mater. 4(7), 7461–7470 (2021). https://doi.org/10.1021/acsanm.1c01471
L. Nayak, T.K. Chaki, D. Khastgir, Electrical percolation behavior and electromagnetic shielding effectiveness of polyimide nanocomposites filled with carbon nanofibers. J. Appl. Polym. Sci. 131(24), 40914 (2014). https://doi.org/10.1002/app.40914
D.Y. Kong, J. Li, A.R. Guo, X.L. Xiao, High temperature electromagnetic shielding shape memory polymer composite. Chem. Eng. J. 408, 127365 (2021). https://doi.org/10.1016/j.cej.2020.127365
J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi et al., Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016). https://doi.org/10.1016/j.carbon.2016.01.030
Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2TX film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abj1663