Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance
Corresponding Author: Joseph W. Lyding
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 179
Abstract
Ultrathin, lightweight, and flexible aligned single-walled carbon nanotube (SWCNT) films are fabricated by a facile, environmentally friendly, and scalable printing methodology. The aligned pattern and outstanding intrinsic properties render “metal-like” thermal conductivity of the SWCNT films, as well as excellent mechanical strength, flexibility, and hydrophobicity. Further, the aligned cellular microstructure promotes the electromagnetic interference (EMI) shielding ability of the SWCNTs, leading to excellent shielding effectiveness (SE) of ~ 39 to 90 dB despite a density of only ~ 0.6 g cm−3 at thicknesses of merely 1.5–24 µm, respectively. An ultrahigh thickness-specific SE of 25 693 dB mm−1 and an unprecedented normalized specific SE of 428 222 dB cm2 g−1 are accomplished by the freestanding SWCNT films, significantly surpassing previously reported shielding materials. In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz, the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation, chemical (acid/alkali/organic solvent) corrosion, and high-/low-temperature environments. The novel printed SWCNT films offer significant potential for practical applications in the aerospace, defense, precision components, and smart wearable electronics industries.
Highlights:
1 Ultrathin, lightweight, and ultraflexible aligned single-walled carbon nanotube (SWCNT) films were fabricated via a facile, environmentally friendly, and scalable printing methodology.
2 The aligned pattern and outstanding intrinsic properties of SWCNTs rendered “metal-like” thermal conductivity, excellent mechanical strength, hydrophobicity, and remarkable electromagnetic interference (EMI) shielding performance of the films.
3 The excellent EMI shielding stability and reliability when subjected to mechanical deformation, chemical corrosion, and extreme environments demonstrated the significant potential of the films in aerospace, defense, and smart wearable electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTX (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- L. Li, S. Zhao, X. Luo, H. Zhang, Z. Yu, Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17(16), 1999–2003 (2005). https://doi.org/10.1002/adma.200500615
- J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- G. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- Y. Wan, X. Wang, X. Li, S. Liao, Z. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- Z. Zeng, N. Wu, J. Wei, Y. Yang, T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. (2022). https://doi.org/10.1007/s40820-022-00800-0
- X. Luo, L. Li, H. Zhang, S. Zhao, Y. Zhang et al., Multifunctional Ti3C2Tx MXene/low-density polyethylene soft robots with programmable configuration for amphibious motions. ACS Appl. Mater. Interfaces 13(38), 45833–45842 (2021). https://doi.org/10.1021/acsami.1c11056
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), e1908496 (2020). https://doi.org/10.1002/adma.201908496
- J. Lipton, J.A. Röhr, V. Dang, A. Goad, K. Maleski et al., Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 3(2), 546–557 (2020). https://doi.org/10.1016/j.matt.2020.05.023
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. (2020). https://doi.org/10.1002/adma.201907411
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
- K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff et al., High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007). https://doi.org/10.1126/science.1147635
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. (2020). https://doi.org/10.1002/adma.202001093
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- D. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Func. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I.S. Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10(9), 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- P. Avouris, Z.H. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotech. 2(10), 605–615 (2007). https://doi.org/10.1038/nnano.2007.300
- J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
- D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
- Z. Zeng, C. Wang, T. Wu, D. Han, M. Luković et al., Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 8(35), 17969–17979 (2020). https://doi.org/10.1039/d0ta05961g
- K.D. France, Z. Zeng, T. Wu, G. Nystrom, Functional materials from nanocellulose: utilizing structure-property relationships in bottom-up fabrication. Adv. Mater. 33(28), 2000657 (2021). https://doi.org/10.1002/adma.202000657
- B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit et al., Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996). https://doi.org/10.1126/science.273.5274.483
- N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
- D. Zhang, H. Yang, J.J. Pan, B. Lewis, W.C. Zhou et al., Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes. Comp. Part B Eng. (2020). https://doi.org/10.1016/j.compositesb.2019.107646
- S. Lu, J. Shao, K. Ma, D. Chen, X. Wang et al., Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 136, 387–394 (2018). https://doi.org/10.1016/j.carbon.2018.04.086
- O.A. Castaneda-Uribe, A. Avila, Enhancing electromagnetic interference shielding effectiveness of polymer nanocomposites by modifying subsurface carbon nanotube distribution. Adv. Eng. Mater. 23(1), 2000707 (2021). https://doi.org/10.1002/adem.202000707
- Z. Deng, P. Tang, X. Wu, H. Zhang, Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
- M.T. Pettes, L. Shi, Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 19(24), 3918–3925 (2009). https://doi.org/10.1002/adfm.200900932
- L. Noerochim, J. Wang, S. Chou, D. Wexler, H. Liu, Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 50(3), 1289–1297 (2012). https://doi.org/10.1016/j.carbon.2011.10.049
- D. Zhang, M.G. Villarreal, E. Cabrera, A. Benatar, L.J. Lee et al., Performance study of ultrasonic assisted processing of CNT nanopaper/solventless epoxy composite. Comp. Part B Eng. 159, 327–335 (2019). https://doi.org/10.1016/j.compositesb.2018.10.012
- Q. Liu, L. Liu, J. Kuang, Z. Dai, J. Han et al., Nanostructured carbon materials based electrothermal air pump actuators. Nanoscale 6(12), 6932–6938 (2014). https://doi.org/10.1039/c4nr00536h
- M.F.L.D. Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
- M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000). https://doi.org/10.1103/physrevlett.84.5552
- M. Radosavljevic, J. Lefebvre, A.T. Johnson, High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B (2001). https://doi.org/10.1103/PhysRevB.64.241307
- J. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300 (1997). https://doi.org/10.1103/PhysRevLett.79.1297
- M.M. Hamedi, A. Hajian, A.B. Fall, K. Hakansson, M. Salajkova et al., Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3), 2467–2476 (2014). https://doi.org/10.1021/nn4060368
- Y. Huang, Z. Wang, H. Yin, J. Xu, Y. Chen et al., Highly anisotropic, thermally conductive, and mechanically strong polymer composites with nacre-like structure for thermal management applications. ACS Appl. Nano Mater. 1(7), 3312–3320 (2018). https://doi.org/10.1021/acsanm.8b00514
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00707-2
- T. Li, J. Song, X. Zhao, Z. Yang, G. Pastel et al., Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aar3724
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-17301-6
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00624-4
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017). https://doi.org/10.1002/smll.201701388
- P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv. Mater. 15(7–8), 600–603 (2003). https://doi.org/10.1002/adma.200304485
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- X. Shui, D.D.L. Chung, Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26(8), 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4
References
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTX (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
L. Li, S. Zhao, X. Luo, H. Zhang, Z. Yu, Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17(16), 1999–2003 (2005). https://doi.org/10.1002/adma.200500615
J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
G. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
Y. Wan, X. Wang, X. Li, S. Liao, Z. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
Z. Zeng, N. Wu, J. Wei, Y. Yang, T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. (2022). https://doi.org/10.1007/s40820-022-00800-0
X. Luo, L. Li, H. Zhang, S. Zhao, Y. Zhang et al., Multifunctional Ti3C2Tx MXene/low-density polyethylene soft robots with programmable configuration for amphibious motions. ACS Appl. Mater. Interfaces 13(38), 45833–45842 (2021). https://doi.org/10.1021/acsami.1c11056
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), e1908496 (2020). https://doi.org/10.1002/adma.201908496
J. Lipton, J.A. Röhr, V. Dang, A. Goad, K. Maleski et al., Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 3(2), 546–557 (2020). https://doi.org/10.1016/j.matt.2020.05.023
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. (2020). https://doi.org/10.1002/adma.201907411
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff et al., High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007). https://doi.org/10.1126/science.1147635
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. (2020). https://doi.org/10.1002/adma.202001093
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
D. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Func. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I.S. Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10(9), 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
P. Avouris, Z.H. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotech. 2(10), 605–615 (2007). https://doi.org/10.1038/nnano.2007.300
J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
Z. Zeng, C. Wang, T. Wu, D. Han, M. Luković et al., Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 8(35), 17969–17979 (2020). https://doi.org/10.1039/d0ta05961g
K.D. France, Z. Zeng, T. Wu, G. Nystrom, Functional materials from nanocellulose: utilizing structure-property relationships in bottom-up fabrication. Adv. Mater. 33(28), 2000657 (2021). https://doi.org/10.1002/adma.202000657
B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit et al., Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996). https://doi.org/10.1126/science.273.5274.483
N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
D. Zhang, H. Yang, J.J. Pan, B. Lewis, W.C. Zhou et al., Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes. Comp. Part B Eng. (2020). https://doi.org/10.1016/j.compositesb.2019.107646
S. Lu, J. Shao, K. Ma, D. Chen, X. Wang et al., Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 136, 387–394 (2018). https://doi.org/10.1016/j.carbon.2018.04.086
O.A. Castaneda-Uribe, A. Avila, Enhancing electromagnetic interference shielding effectiveness of polymer nanocomposites by modifying subsurface carbon nanotube distribution. Adv. Eng. Mater. 23(1), 2000707 (2021). https://doi.org/10.1002/adem.202000707
Z. Deng, P. Tang, X. Wu, H. Zhang, Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
M.T. Pettes, L. Shi, Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 19(24), 3918–3925 (2009). https://doi.org/10.1002/adfm.200900932
L. Noerochim, J. Wang, S. Chou, D. Wexler, H. Liu, Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 50(3), 1289–1297 (2012). https://doi.org/10.1016/j.carbon.2011.10.049
D. Zhang, M.G. Villarreal, E. Cabrera, A. Benatar, L.J. Lee et al., Performance study of ultrasonic assisted processing of CNT nanopaper/solventless epoxy composite. Comp. Part B Eng. 159, 327–335 (2019). https://doi.org/10.1016/j.compositesb.2018.10.012
Q. Liu, L. Liu, J. Kuang, Z. Dai, J. Han et al., Nanostructured carbon materials based electrothermal air pump actuators. Nanoscale 6(12), 6932–6938 (2014). https://doi.org/10.1039/c4nr00536h
M.F.L.D. Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000). https://doi.org/10.1103/physrevlett.84.5552
M. Radosavljevic, J. Lefebvre, A.T. Johnson, High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B (2001). https://doi.org/10.1103/PhysRevB.64.241307
J. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300 (1997). https://doi.org/10.1103/PhysRevLett.79.1297
M.M. Hamedi, A. Hajian, A.B. Fall, K. Hakansson, M. Salajkova et al., Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3), 2467–2476 (2014). https://doi.org/10.1021/nn4060368
Y. Huang, Z. Wang, H. Yin, J. Xu, Y. Chen et al., Highly anisotropic, thermally conductive, and mechanically strong polymer composites with nacre-like structure for thermal management applications. ACS Appl. Nano Mater. 1(7), 3312–3320 (2018). https://doi.org/10.1021/acsanm.8b00514
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00707-2
T. Li, J. Song, X. Zhao, Z. Yang, G. Pastel et al., Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aar3724
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-17301-6
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00624-4
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017). https://doi.org/10.1002/smll.201701388
P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv. Mater. 15(7–8), 600–603 (2003). https://doi.org/10.1002/adma.200304485
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
X. Shui, D.D.L. Chung, Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26(8), 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4