Lithium-Ion Charged Polymer Channels Flattening Lithium Metal Anode
Corresponding Author: Wei‑Hong Lai
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 78
Abstract
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive β phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm−2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g−1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.
Highlights:
1 The LiNO3-implanted electroactive β phase polyvinylidene fluoride-co-hexafluoropropylene was built as an artificial solid electrolyte interphase layer for dendrite suppression.
2 The electronegatively charged polymer layer can capture Li ion on its surface to form Li-ion charged channels and recompense the ionic flux of electrolytes via continuous supply of Li ion.
3 The modified Li anode achieved a long cycle life over 2000 h under ultrahigh Li utilization of 50% in symmetric cell and worked in full cell for 100 cycles at harsh condition of extremely low N/P of 0.83.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4, 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
- C. Chen, Q. Liang, Z. Chen, W. Zhu, Z. Wang et al., Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes. Angew. Chem. Int. Ed. 133, 26922–26928 (2021). https://doi.org/10.1002/ange.202110441
- J. Meng, M. Lei, C. Lai, Q. Wu, Y. Liu et al., Lithium ion repulsion-enrichment synergism induced by core-shell ionic complexes to enable high-loading lithium metal batteries. Angew. Chem. Int. Ed. 60, 23256–23266 (2021). https://doi.org/10.1002/anie.202108143
- Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
- C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015
- T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux et al., Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 11, 5429 (2020). https://doi.org/10.1038/s41467-020-19246-2
- H. Wu, Q. Wu, F. Chu, J. Hu, Y. Cui et al., Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. J. Power. Sources 419, 72–81 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.033
- R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao et al., Artificial interphases for highly stable lithium metal anode. Matter 1, 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
- Y. Han, B. Liu, Z. Xiao, W. Zhang, X. Wang et al., Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives. InfoMat 3, 155–174 (2021). https://doi.org/10.1002/inf2.12166
- P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10, 2001257 (2020). https://doi.org/10.1002/aenm.202001257
- A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14(7), 4115–4124 (2021). https://doi.org/10.1039/D1EE00508A
- Q. Zhao, X. Chen, W. Hou, B. Ye, Y. Zhang et al., A facile, scalable, high stability Lithium metal anode. SusMat 2, 104–112 (2022). https://doi.org/10.1002/sus2.43
- J. He, A. Bhargav, A. Manthiram, Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem. Int. Ed. 61, e202116586 (2022). https://doi.org/10.1002/anie.202116586
- Q. Yang, J. Hu, Z. Yao, J. Liu, C. Li, Durable Li2CN2 solid electrolyte interphase wired by carbon nanodomains via in situ interface lithiation to enable long-cycling Li metal batteries. Adv. Funct. Mater. 33, 2206778 (2023). https://doi.org/10.1002/adfm.202206778
- Q. Yang, J. Hu, J. Meng, C. Li, C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 14, 3621–3631 (2021). https://doi.org/10.1039/D0EE03952G
- C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32, 2107249 (2022). https://doi.org/10.1002/adfm.202107249
- L. Fan, B. Sun, K. Yan, P. Xiong, X. Guo et al., A dual-protective artificial interface for stable lithium metal anodes. Adv. Energy Mater. 11, 2102242 (2021). https://doi.org/10.1002/aenm.202102242
- C. Wu, J. Hu, Q. Yang, M. Lei, Y. Yu et al., Open framework perovskite derivate SEI with fluorinated heterogeneous nanodomains for practical Li-metal pouch cells. Nano Energy 113, 108523 (2023). https://doi.org/10.1016/j.nanoen.2023.108523
- Q. Wang, J. Yang, X. Huang, Z. Zhai, J. Tang et al., Rigid and flexible SEI layer formed over a cross-linked polymer for enhanced ultrathin Li metal anode performance. Adv. Energy Mater. 12, 2103972 (2022). https://doi.org/10.1002/aenm.202103972
- H. Yuan, X. Ding, T. Liu, J. Nai, Y. Wang et al., A review of concepts and contributions in lithium metal anode development. Mater. Today 53, 173–196 (2022). https://doi.org/10.1016/j.mattod.2022.01.015
- H. Wu, Z. Yao, Q. Wu, S. Fan, C. Yin et al., Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. J. Mater. Chem. A 7, 22257–22264 (2019). https://doi.org/10.1039/C9TA09146G
- W. Cao, J. Lu, K. Zhou, G. Sun, J. Zheng et al., Organic-inorganic composite SEI for a stable Li metal anode by in situ polymerization. Nano Energy 95, 106983 (2022). https://doi.org/10.1016/j.nanoen.2022.106983
- J. Zhu, P. Li, X. Chen, D. Legut, Y. Fan et al., Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater. 16, 426–433 (2019). https://doi.org/10.1016/j.ensm.2018.06.023
- Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12, 2270035 (2022). https://doi.org/10.1002/aenm.202270035
- Y. Xie, Y. Huang, Y. Zhang, T. Wu, S. Liu et al., Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 14, 2883 (2023). https://doi.org/10.1038/s41467-023-38724-x
- G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang et al., Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 59, 2055–2060 (2020). https://doi.org/10.1002/anie.201913351
- C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
- E. Winter, M. Briccola, T.J. Schmidt, S. Trabesinger, Enabling LiNO3 in carbonate electrolytes by flame-retardant electrolyte additive as a cosolvent for enhanced performance of lithium metal batteries. Appl. Res. (2022). https://doi.org/10.1002/appl.202200096
- C.-X. Bi, L.-P. Hou, Z. Li, M. Zhao, X.-Q. Zhang et al., Protecting lithium metal anodes in lithium–sulfur batteries: a review. Energy Mater. Adv. 4, 0010 (2023). https://doi.org/10.34133/energymatadv.0010
- J. Tan, M. Ye, J. Shen, Deciphering the role of LiNO3 additives in Li-S batteries. Mater. Horiz. 9, 2325–2334 (2022). https://doi.org/10.1039/d2mh00469k
- W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
- W. Fang, Z. Wen, L. Chen, Z. Qin, J. Li et al., Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes. Nano Energy 104, 107881 (2022). https://doi.org/10.1016/j.nanoen.2022.107881
- R. May, K.J. Fritzsching, D. Livitz, S.R. Denny, L.E. Marbella, Rapid interfacial exchange of Li ions dictates high coulombic efficiency in Li metal anodes. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00112
- J.-T. Kim, I. Phiri, S.-Y. Ryou, Incorporation of embedded protective layers to circumvent the low LiNO3 solubility problem and enhance Li metal anode cycling performance. ACS Appl. Energy Mater. 6, 2311–2319 (2023). https://doi.org/10.1021/acsaem.2c03511
- Q. Shi, Y. Zhong, M. Wu, H. Wang, H. Wang, High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. U.S.A. 115, 5676–5680 (2018). https://doi.org/10.1073/pnas.1803634115
- D. Liu, X. Xiong, Q. Liang, X. Wu, H. Fu, An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 57, 9232–9235 (2021). https://doi.org/10.1039/D1CC03676A
- W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, e2001740 (2020). https://doi.org/10.1002/adma.202001740
- Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59, 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
- D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li+-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16, e2004688 (2020). https://doi.org/10.1002/smll.202004688
- Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
- Y. Wen, J. Ding, Y. Yang, X. Lan, J. Liu et al., Introducing NO3– into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries. Adv. Funct. Mater. 32, 2109377 (2022). https://doi.org/10.1002/adfm.202109377
- S. Zhou, C. Fu, Z. Chang, Y. Zhang, D. Xu et al., Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Mater. 47, 482–490 (2022). https://doi.org/10.1016/j.ensm.2022.02.033
- Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5
- H. Yang, Q. Liu, Y. Wang, Z. Ma, P. Tang et al., An interlayer containing dissociated LiNO3 with fast release speed for stable lithium metal batteries with 400 wh kg−1 energy density. Small 18, e2202349 (2022). https://doi.org/10.1002/smll.202202349
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3, 929–956 (2021). https://doi.org/10.1002/cey2.146
- G.-Y. Li, J. Li, Z.-J. Li, Y.-P. Zhang, X. Zhang et al., Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv. Compos. Hybrid Mater. 5, 766–775 (2022). https://doi.org/10.1007/s42114-021-00331-z
- A. Mallikarjun, J. Siva Kumar, T. Sreekanth, M. Sangeetha, M.R. Mettu et al., Investigation of FT-IR and impedance spectroscopy of nanocomposite PVDF-HFP based polymer electrolytes. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.215
- S.K. Chacko, M.T. Rahul, B. Raneesh, K. Vinodan, J.K. Jose et al., Enhanced electroactive phase, dielectric properties and tuning of bandgap in Ho3+ modified PVDF-HFP composite films. J. Polym. Res. 29, 493 (2022). https://doi.org/10.1007/s10965-022-03318-6
- D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen et al., Constructing multifunctional solid electrolyte interface via in situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12, 186 (2021). https://doi.org/10.1038/s41467-020-20339-1
- K.H. Kim, J.H. Cho, J.U. Hwang, J.S. Im, Y.-S. Lee, A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic C–F bond. J. Ind. Eng. Chem. 99, 48–54 (2021). https://doi.org/10.1016/j.jiec.2021.04.002
- Y. Luo, T. Li, H. Zhang, W. Liu, X. Zhang et al., Endogenous symbiotic Li3N/cellulose skin to extend the cycle life of lithium anode. Angew. Chem. Int. Ed. 60, 11718–11724 (2021). https://doi.org/10.1002/anie.202017281
References
X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou et al., Thermodynamic understanding of Li-dendrite formation. Joule 4, 1864–1879 (2020). https://doi.org/10.1016/j.joule.2020.06.016
C. Chen, Q. Liang, Z. Chen, W. Zhu, Z. Wang et al., Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes. Angew. Chem. Int. Ed. 133, 26922–26928 (2021). https://doi.org/10.1002/ange.202110441
J. Meng, M. Lei, C. Lai, Q. Wu, Y. Liu et al., Lithium ion repulsion-enrichment synergism induced by core-shell ionic complexes to enable high-loading lithium metal batteries. Angew. Chem. Int. Ed. 60, 23256–23266 (2021). https://doi.org/10.1002/anie.202108143
Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015
T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux et al., Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 11, 5429 (2020). https://doi.org/10.1038/s41467-020-19246-2
H. Wu, Q. Wu, F. Chu, J. Hu, Y. Cui et al., Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. J. Power. Sources 419, 72–81 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.033
R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao et al., Artificial interphases for highly stable lithium metal anode. Matter 1, 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
Y. Han, B. Liu, Z. Xiao, W. Zhang, X. Wang et al., Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives. InfoMat 3, 155–174 (2021). https://doi.org/10.1002/inf2.12166
P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10, 2001257 (2020). https://doi.org/10.1002/aenm.202001257
A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14(7), 4115–4124 (2021). https://doi.org/10.1039/D1EE00508A
Q. Zhao, X. Chen, W. Hou, B. Ye, Y. Zhang et al., A facile, scalable, high stability Lithium metal anode. SusMat 2, 104–112 (2022). https://doi.org/10.1002/sus2.43
J. He, A. Bhargav, A. Manthiram, Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem. Int. Ed. 61, e202116586 (2022). https://doi.org/10.1002/anie.202116586
Q. Yang, J. Hu, Z. Yao, J. Liu, C. Li, Durable Li2CN2 solid electrolyte interphase wired by carbon nanodomains via in situ interface lithiation to enable long-cycling Li metal batteries. Adv. Funct. Mater. 33, 2206778 (2023). https://doi.org/10.1002/adfm.202206778
Q. Yang, J. Hu, J. Meng, C. Li, C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 14, 3621–3631 (2021). https://doi.org/10.1039/D0EE03952G
C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32, 2107249 (2022). https://doi.org/10.1002/adfm.202107249
L. Fan, B. Sun, K. Yan, P. Xiong, X. Guo et al., A dual-protective artificial interface for stable lithium metal anodes. Adv. Energy Mater. 11, 2102242 (2021). https://doi.org/10.1002/aenm.202102242
C. Wu, J. Hu, Q. Yang, M. Lei, Y. Yu et al., Open framework perovskite derivate SEI with fluorinated heterogeneous nanodomains for practical Li-metal pouch cells. Nano Energy 113, 108523 (2023). https://doi.org/10.1016/j.nanoen.2023.108523
Q. Wang, J. Yang, X. Huang, Z. Zhai, J. Tang et al., Rigid and flexible SEI layer formed over a cross-linked polymer for enhanced ultrathin Li metal anode performance. Adv. Energy Mater. 12, 2103972 (2022). https://doi.org/10.1002/aenm.202103972
H. Yuan, X. Ding, T. Liu, J. Nai, Y. Wang et al., A review of concepts and contributions in lithium metal anode development. Mater. Today 53, 173–196 (2022). https://doi.org/10.1016/j.mattod.2022.01.015
H. Wu, Z. Yao, Q. Wu, S. Fan, C. Yin et al., Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. J. Mater. Chem. A 7, 22257–22264 (2019). https://doi.org/10.1039/C9TA09146G
W. Cao, J. Lu, K. Zhou, G. Sun, J. Zheng et al., Organic-inorganic composite SEI for a stable Li metal anode by in situ polymerization. Nano Energy 95, 106983 (2022). https://doi.org/10.1016/j.nanoen.2022.106983
J. Zhu, P. Li, X. Chen, D. Legut, Y. Fan et al., Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater. 16, 426–433 (2019). https://doi.org/10.1016/j.ensm.2018.06.023
Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12, 2270035 (2022). https://doi.org/10.1002/aenm.202270035
Y. Xie, Y. Huang, Y. Zhang, T. Wu, S. Liu et al., Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 14, 2883 (2023). https://doi.org/10.1038/s41467-023-38724-x
G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang et al., Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 59, 2055–2060 (2020). https://doi.org/10.1002/anie.201913351
C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
E. Winter, M. Briccola, T.J. Schmidt, S. Trabesinger, Enabling LiNO3 in carbonate electrolytes by flame-retardant electrolyte additive as a cosolvent for enhanced performance of lithium metal batteries. Appl. Res. (2022). https://doi.org/10.1002/appl.202200096
C.-X. Bi, L.-P. Hou, Z. Li, M. Zhao, X.-Q. Zhang et al., Protecting lithium metal anodes in lithium–sulfur batteries: a review. Energy Mater. Adv. 4, 0010 (2023). https://doi.org/10.34133/energymatadv.0010
J. Tan, M. Ye, J. Shen, Deciphering the role of LiNO3 additives in Li-S batteries. Mater. Horiz. 9, 2325–2334 (2022). https://doi.org/10.1039/d2mh00469k
W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
W. Fang, Z. Wen, L. Chen, Z. Qin, J. Li et al., Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes. Nano Energy 104, 107881 (2022). https://doi.org/10.1016/j.nanoen.2022.107881
R. May, K.J. Fritzsching, D. Livitz, S.R. Denny, L.E. Marbella, Rapid interfacial exchange of Li ions dictates high coulombic efficiency in Li metal anodes. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.1c00112
J.-T. Kim, I. Phiri, S.-Y. Ryou, Incorporation of embedded protective layers to circumvent the low LiNO3 solubility problem and enhance Li metal anode cycling performance. ACS Appl. Energy Mater. 6, 2311–2319 (2023). https://doi.org/10.1021/acsaem.2c03511
Q. Shi, Y. Zhong, M. Wu, H. Wang, H. Wang, High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. U.S.A. 115, 5676–5680 (2018). https://doi.org/10.1073/pnas.1803634115
D. Liu, X. Xiong, Q. Liang, X. Wu, H. Fu, An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 57, 9232–9235 (2021). https://doi.org/10.1039/D1CC03676A
W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, e2001740 (2020). https://doi.org/10.1002/adma.202001740
Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59, 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li+-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16, e2004688 (2020). https://doi.org/10.1002/smll.202004688
Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
Y. Wen, J. Ding, Y. Yang, X. Lan, J. Liu et al., Introducing NO3– into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries. Adv. Funct. Mater. 32, 2109377 (2022). https://doi.org/10.1002/adfm.202109377
S. Zhou, C. Fu, Z. Chang, Y. Zhang, D. Xu et al., Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Mater. 47, 482–490 (2022). https://doi.org/10.1016/j.ensm.2022.02.033
Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5
H. Yang, Q. Liu, Y. Wang, Z. Ma, P. Tang et al., An interlayer containing dissociated LiNO3 with fast release speed for stable lithium metal batteries with 400 wh kg−1 energy density. Small 18, e2202349 (2022). https://doi.org/10.1002/smll.202202349
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3, 929–956 (2021). https://doi.org/10.1002/cey2.146
G.-Y. Li, J. Li, Z.-J. Li, Y.-P. Zhang, X. Zhang et al., Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv. Compos. Hybrid Mater. 5, 766–775 (2022). https://doi.org/10.1007/s42114-021-00331-z
A. Mallikarjun, J. Siva Kumar, T. Sreekanth, M. Sangeetha, M.R. Mettu et al., Investigation of FT-IR and impedance spectroscopy of nanocomposite PVDF-HFP based polymer electrolytes. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.215
S.K. Chacko, M.T. Rahul, B. Raneesh, K. Vinodan, J.K. Jose et al., Enhanced electroactive phase, dielectric properties and tuning of bandgap in Ho3+ modified PVDF-HFP composite films. J. Polym. Res. 29, 493 (2022). https://doi.org/10.1007/s10965-022-03318-6
D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen et al., Constructing multifunctional solid electrolyte interface via in situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12, 186 (2021). https://doi.org/10.1038/s41467-020-20339-1
K.H. Kim, J.H. Cho, J.U. Hwang, J.S. Im, Y.-S. Lee, A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic C–F bond. J. Ind. Eng. Chem. 99, 48–54 (2021). https://doi.org/10.1016/j.jiec.2021.04.002
Y. Luo, T. Li, H. Zhang, W. Liu, X. Zhang et al., Endogenous symbiotic Li3N/cellulose skin to extend the cycle life of lithium anode. Angew. Chem. Int. Ed. 60, 11718–11724 (2021). https://doi.org/10.1002/anie.202017281