An Electrochemical Perspective of Aqueous Zinc Metal Anode
Corresponding Author: Bin Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 15
Abstract
Based on the attributes of nonflammability, environmental benignity, and cost-effectiveness of aqueous electrolytes, as well as the favorable compatibility of zinc metal with them, aqueous zinc ions batteries (AZIBs) become the leading energy storage candidate to meet the requirements of safety and low cost. Yet, aqueous electrolytes, acting as a double-edged sword, also play a negative role by directly or indirectly causing various parasitic reactions at the zinc anode side. These reactions include hydrogen evolution reaction, passivation, and dendrites, resulting in poor Coulombic efficiency and short lifespan of AZIBs. A comprehensive review of aqueous electrolytes chemistry, zinc chemistry, mechanism and chemistry of parasitic reactions, and their relationship is lacking. Moreover, the understanding of strategies for suppressing parasitic reactions from an electrochemical perspective is not profound enough. In this review, firstly, the chemistry of electrolytes, zinc anodes, and parasitic reactions and their relationship in AZIBs are deeply disclosed. Subsequently, the strategies for suppressing parasitic reactions from the perspective of enhancing the inherent thermodynamic stability of electrolytes and anodes, and lowering the dynamics of parasitic reactions at Zn/electrolyte interfaces are reviewed. Lastly, the perspectives on the future development direction of aqueous electrolytes, zinc anodes, and Zn/electrolyte interfaces are presented.
Highlights:
1 Detailed discussion and summary of aqueous electrolyte chemistry, parasitic reactions chemistry, and storage energy chemistry and their relationship in aqueous zinc ions batteries are conducted.
2 The recent development of strategies for enhancing the inherent stability of electrolyte and zinc anode to restrain parasitic reactions is reviewed from a thermodynamic perspective.
3 The regulation strategies of electrolyte/electrode interfaces to block parasitic reactions by adsorbents and solid electrolyte interphase are reviewed from a kinetic perspective.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004). https://doi.org/10.1021/cr020730k
- J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17(2), 1610–1621 (2023). https://doi.org/10.1021/acsnano.2c11357
- Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu et al., Formation of solid-electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Funct. Mater. 10(15), 1903665 (2020). https://doi.org/10.1002/aenm.201903665
- X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15(9), 3750–3774 (2022). https://doi.org/10.1039/d2ee01573k
- Y. Li, W. Deng, Z. Zhou, C. Li, M. Zhang et al., An ultra-long life aqueous full K-ion battery. J. Mater. Chem. A 9(5), 2822–2829 (2021). https://doi.org/10.1039/d0ta10033a
- G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
- J. Park, Z.L. Xu, G. Yoon, S.K. Park, J. Wang et al., Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 32(4), 1904411 (2020). https://doi.org/10.1002/adma.201904411
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- N. Subjalearndee, N. He, H. Cheng, P. Tesatchabut, P. Eiamlamai et al., Gamma(ɣ)-MnO2/rRO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv. Fiber Mater. 4(3), 457–474 (2022). https://doi.org/10.1007/s42765-021-00118-3
- C. Guan, F. Hu, X. Yu, H.-L. Chen, G.-H. Song et al., High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 41(2), 448–456 (2021). https://doi.org/10.1007/s12598-021-01778-1
- Y.-H. Du, X.-Y. Liu, X.-Y. Wang, J.-C. Sun, Q.-Q. Lu et al., Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 41(2), 415–424 (2021). https://doi.org/10.1007/s12598-021-01777-2
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19(5), 3199–3206 (2019). https://doi.org/10.1021/acs.nanolett.9b00697
- F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57(50), 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
- L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang et al., Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy Environ. Sci. 11(9), 2521–2530 (2018). https://doi.org/10.1039/c8ee01415a
- Y. Zhao, Y. Lu, H. Li, Y. Zhu, Y. Meng et al., Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nat. Commun. 13(1), 752 (2022). https://doi.org/10.1038/s41467-022-28380-y
- V. Verma, S. Kumar, W. Manalastas, M. Srinivasan, Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 6(5), 1773–1785 (2021). https://doi.org/10.1021/acsenergylett.1c00393
- W. Yang, Y. Yang, H. Yang, H. Zhou, Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS Energy Lett. 7(8), 2515–2530 (2022). https://doi.org/10.1021/acsenergylett.2c01152
- H. Yu, D. Chen, T. Zhang, M. Fu, J. Cai et al., Insight on the double-edged sword role of water molecules in the anode of aqueous zinc-ion batteries. Small Struct. 3(12), 2200143 (2022). https://doi.org/10.1002/sstr.202200143
- Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
- Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin et al., Electrolyte additive engineering for aqueous zn ion batteries. Energy Stor. Mater. 51, 733–755 (2022). https://doi.org/10.1016/j.ensm.2022.07.017
- C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6(3), 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
- F. Wan, X. Zhou, Y. Lu, Z. Niu, J. Chen, Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett. 5(11), 3569–3590 (2020). https://doi.org/10.1021/acsenergylett.0c02028
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
- M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Stor. Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Stor. Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
- Y. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang et al., Electrolyte engineering enables high performance zinc-ion batteries. Small 18(43), 2107033 (2022). https://doi.org/10.1002/smll.202107033
- C.-X. Xu, J.-J. Jiang, Electrolytes speed up development of zinc batteries. Rare Met. 40(4), 749–751 (2021). https://doi.org/10.1007/s12598-020-01628-6
- L.F. Zhou, T. Du, J.Y. Li, Y.S. Wang, H. Gong et al., A strategy for anode modification for future zinc-based battery application. Mater. Horiz. 9(11), 2722–2751 (2022). https://doi.org/10.1039/d2mh00973k
- M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
- S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40(32), 2868–2881 (2019). https://doi.org/10.1002/jcc.26068
- K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996). https://doi.org/10.1126/science.271.5251.929
- K. Kiyohara, Y. Kawai, Hydration of monovalent and divalent cations near a cathode surface. J. Chem. Phys. 151(10), 104704 (2019). https://doi.org/10.1063/1.5113738
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies on regulating Zn2+ solvation structure for dendrites-free and side reactions-suppressed zinc-ion batteries. Energy Environ. Sci. 15, 499–528 (2022). https://doi.org/10.1039/d1ee03377h
- H. Yan, S. Li, H. Xu, H. Chen, S. Yang et al., Triggering Zn2+ unsaturated hydration structure via hydrated salt electrolyte for high voltage and cycling stable rechargeable aqueous Zn battery. Adv. Energy Mater. 12(31), 2201599 (2022). https://doi.org/10.1002/aenm.202201599
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- B. Xiao, Intercalated water in aqueous batteries. Carbon Energy 2(2), 251–264 (2020). https://doi.org/10.1002/cey2.55
- D.Z. Caralampio, J.M. Martinez, R.R. Pappalardo, E.S. Marcos, The hydration structure of the heavy-alkalines Rb+ and Cs+ through molecular dynamics and x-ray absorption spectroscopy: surface clusters and eccentricity. Phys. Chem. Chem. Phys. 19(42), 28993–29004 (2017). https://doi.org/10.1039/c7cp05346k
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- J. Li, N.T. Tsona, L. Du, Effect of a single water molecule on the HO2 + ClO reaction. Phys. Chem. Chem. Phys. 20(16), 10650–10659 (2018). https://doi.org/10.1039/c7cp05008a
- H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
- H. Glatz, E. Tervoort, D. Kundu, Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(3), 3522–3530 (2020). https://doi.org/10.1021/acsami.9b16125
- J. Liu, J. Yang, X.C. Zeng, S.S. Xantheas, K. Yagi et al., Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21. Nat. Commun. 12(1), 6141 (2021). https://doi.org/10.1038/s41467-021-26284-x
- S. Kumar, V. Verma, R. Chua, H. Ren, P. Kidkhunthod et al., Multiscalar investigation of FeVO4 conversion cathode for a low concentration Zn(CF3SO3)2 rechargeable Zn-ion aqueous battery. Batteries Supercaps 3(7), 619–630 (2020). https://doi.org/10.1002/batt.202000018
- W. Manalastas Jr., S. Kumar, V. Verma, L. Zhang, D. Yuan et al., Water in rechargeable multivalent-ion batteries: an electrochemical pandora’s box. Chemsuschem 12(2), 379–396 (2019). https://doi.org/10.1002/cssc.201801523
- A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120(14), 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang et al., Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 20, 100675 (2021). https://doi.org/10.1016/j.mtener.2021.100675
- L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29(30), 1902653 (2019). https://doi.org/10.1002/adfm.201902653
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- X. Liu, H. Euchner, M. Zarrabeitia, X. Gao, G.A. Elia et al., Operando pH measurements decipher H+/Zn2+ intercalation chemistry in high-performance aqueous Zn/δ-V2O5 batteries. ACS Energy Lett. 5(9), 2979–2986 (2020). https://doi.org/10.1021/acsenergylett.0c01767
- Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019). https://doi.org/10.1002/adma.201903778
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- Z. Cai, J. Wang, Z. Lu, R. Zhan, Y. Ou et al., Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew. Chem. Int. Ed. 134(14), e202116560 (2022). https://doi.org/10.1002/anie.202116560
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
- C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
- Q. Li, Y. Zhao, F. Mo, D. Wang, Q. Yang et al., Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2(3), e12035 (2020). https://doi.org/10.1002/eom2.12035
- L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
- B. Wu, Y. Mu, J. He, M. Li, Z. Li et al., In situ characterizations for aqueous rechargeable zinc batteries. Carbon Neutralization 2(3), 310–338 (2023). https://doi.org/10.1002/cnl2.56
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- L. Wang, Y. Zhang, H. Hu, H.Y. Shi, Y. Song et al., A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 11(45), 42000–42005 (2019). https://doi.org/10.1021/acsami.9b10905
- D. Kim, J. Jeon, A Zn(ClO4)2 supporting material for highly reversible zinc-bromine electrolytes. Bull. Korean Chem. Soc. 37(3), 299–304 (2016). https://doi.org/10.1002/bkcs.10669
- G. Kasiri, R. Trócoli, A.B. Hashemi, F. La Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
- S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Stor. Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
- L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59(43), 19292–19296 (2020). https://doi.org/10.1002/anie.202008634
- B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang et al., Unmasking chloride attack on the passive film of metals. Nat. Commun. 9(1), 2559 (2018). https://doi.org/10.1038/s41467-018-04942-xv
- N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries. J. Colloid Interface Sci. 342(2), 505–512 (2010). https://doi.org/10.1016/j.jcis.2009.10.034
- J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu et al., Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- J. Shin, D.S. Choi, H.J. Lee, Y. Jung, J.W. Choi, Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv. Energy Mater. 9(14), 1900083 (2019). https://doi.org/10.1002/aenm.201900083
- F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang et al., Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(21), 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
- F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
- W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng et al., Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10(26), 22059–22066 (2018). https://doi.org/10.1021/acsami.8b04085
- J. Han, A. Mariani, A. Varzi, S. Passerini, Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. J. Power. Sour. 485, 229329 (2021). https://doi.org/10.1016/j.jpowsour.2020.229329
- M. Yang, J. Zhu, S. Bi, R. Wang, Z. Niu, A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes. Adv. Mater. 34(18), 2201744 (2022). https://doi.org/10.1002/adma.202201744
- X. Zhong, F. Wang, Y. Ding, L. Duan, F. Shi et al., Water-in-salt electrolyte Zn/LiFePO4 batteries. J. Electroanal. Chem. 867, 114193 (2020). https://doi.org/10.1016/j.jelechem.2020.114193
- C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021). https://doi.org/10.1002/cey2.70
- H. Ao, W. Zhu, M. Liu, W. Zhang, Z. Hou et al., High-voltage and super-stable aqueous sodium-zinc hybrid ion batteries enabled by double solvation structures in concentrated electrolyte. Small Methods 5(7), 2100418 (2021). https://doi.org/10.1002/smtd.202100418
- C.Y. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, A room-temperature molten hydrate electrolyte for rechargeable zinc-air batteries. Adv. Energy Mater. 9(22), 1900196 (2019). https://doi.org/10.1002/aenm.201900196
- Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
- J. Zhang, J. Zhao, H. Du, Z. Zhang, S. Wang et al., Amide-based molten electrolyte with hybrid active ions for rechargeable Zn batteries. Electrochim. Acta 280, 108–113 (2018). https://doi.org/10.1016/j.electacta.2018.05.107
- G.A. Giffin, The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13(1), 5250 (2022). https://doi.org/10.1038/s41467-022-32794-z
- Y. Xu, X. Zhou, Z. Chen, Y. Hou, Y. You et al., Electrolyte formulas of aqueous zinc ion battery: A physical difference with chemical consequences. Mater. Today 66, 339–347 (2023). https://doi.org/10.1016/j.mattod.2023.04.005
- X. Cao, H. Jia, W. Xu, J.-G. Zhang, Review-localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168(1), 010522 (2021). https://doi.org/10.1149/1945-7111/abd60e
- R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021). https://doi.org/10.1016/j.cej.2021.129642
- L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
- F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
- J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
- Z. Wu, M. Li, Y. Tian, H. Chen, S.J. Zhang et al., Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode. Nano-Micro Lett. 14(1), 110 (2022). https://doi.org/10.1007/s40820-022-00846-0
- M. Song, C.-L. Zhong, Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 41(2), 356–360 (2021). https://doi.org/10.1007/s12598-021-01858-2
- Y. Zhang, X. Han, R. Liu, Z. Yang, S. Zhang et al., Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn(100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 18(7), 2105978 (2022). https://doi.org/10.1002/smll.202105978
- S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021). https://doi.org/10.1002/adma.202008424
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
- S. Khorsand, K. Raeissi, M.A. Golozar, An investigation on the role of texture and surface morphology in the corrosion resistance of zinc electrodeposits. Corros. Sci. 53(8), 2676–2678 (2011). https://doi.org/10.1016/j.corsci.2011.04.007
- M. Mouanga, L. Ricq, J. Douglade, P. Berçot, Corrosion behaviour of zinc deposits obtained under pulse current electrodeposition: effects of coumarin as additive. Corros. Sci. 51(3), 690–698 (2009). https://doi.org/10.1016/j.corsci.2008.12.020
- S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34(28), 2202552 (2022). https://doi.org/10.1002/adma.202202552
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- T. Foroozan, V. Yurkiv, S. Sharifi-Asl, R. Rojaee, F. Mashayek et al., Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 11(47), 44077–44089 (2019). https://doi.org/10.1021/acsami.9b13174
- K. Zhang, Z. Yan, J. Chen, Electrodeposition accelerates metal-based batteries. Joule 4(1), 10–11 (2020). https://doi.org/10.1016/j.joule.2019.12.012
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
- H. Lu, Q. Jin, X. Jiang, Z.M. Dang, D. Zhang et al., Vertical crystal plane matching between AgZn3(002) and Zn(002) achieving a dendrite-free zinc anode. Small 18(16), 2200131 (2022). https://doi.org/10.1002/smll.202200131
- J. Zou, Z. Zeng, C. Wang, X. Zhu, J. Zhang et al., Ultraconformal horizontal zinc deposition toward dendrite-free anode. Small Struct. 4(1), 2200194 (2022). https://doi.org/10.1002/sstr.202200194
- X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 mxenes. ACS Nano 16(1), 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
- Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12(1), 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
- H. Yan, C. Han, S. Li, J. Liu, J. Ren et al., Adjusting zinc ion de-solvation kinetics via rich electron-donating artificial SEI towards high Columbic efficiency and stable Zn metal anode. Chem. Eng. J. 442, 136081 (2022). https://doi.org/10.1016/j.cej.2022.136081
- J. Wang, B. Zhang, Z. Cai, R. Zhan, W. Wang et al., Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci. Bull. 67(7), 716–724 (2022). https://doi.org/10.1016/j.scib.2022.01.010
- Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). https://doi.org/10.1002/adma.202106937
- J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), 2300073 (2023). https://doi.org/10.1002/adma.202300073
- Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn(002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), 2104832 (2022). https://doi.org/10.1002/advs.202104832
- D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
- K.E. Sun, T.K. Hoang, T.N. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
- K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, P. Chen, Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24(7), 1667–1673 (2018). https://doi.org/10.1002/chem.201704440
- J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- J. Ruan, D. Ma, K. Ouyang, S. Shen, M. Yang et al., 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 15(1), 37 (2023). https://doi.org/10.1007/s40820-022-01007-z
- S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14(1), 39 (2021). https://doi.org/10.1007/s40820-021-00783-4
- H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14(1), 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
- L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 (2021). https://doi.org/10.1002/adfm.202108533
- W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang et al., 3d zinc@carbon fiber composite framework anode for aqueous Zn–MnO2 batteries. RSC Adv. 8(34), 19157–19163 (2018). https://doi.org/10.1039/c8ra03226b
- S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11(1), 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
- M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
- C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy (2020). https://doi.org/10.1038/s41560-020-0584-y
- C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10(12), 1903589 (2020). https://doi.org/10.1002/aenm.201903589
- C. Li, W. Wu, P. Wang, W. Zhou, J. Wang et al., Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2V by using an alkaline-acidic electrolyte. Adv. Sci. 6(1), 1801665 (2019). https://doi.org/10.1002/advs.201801665
- L. Chen, Z. Guo, Y. Xia, Y. Wang, High-voltage aqueous battery approaching 3V using an acidic-alkaline double electrolyte. Chem. Commun. 49(22), 2204–2206 (2013). https://doi.org/10.1039/c3cc00064h
- D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), 2001894 (2020). https://doi.org/10.1002/adma.202001894
- F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Stor. Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
- C. Li, W. Wu, S. Zhang, L. He, Y. Zhu et al., A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline-neutral electrolyte. J. Mater. Chem. A 7(8), 4110–4118 (2019). https://doi.org/10.1039/c8ta11735g
- X. Wang, R.S. Chandrabose, Z. Jian, Z. Xing, X. Ji, A 1.8V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163(9), A1853–A1858 (2016). https://doi.org/10.1149/2.0311609jes.
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- J. Song, K. Xu, N. Liu, D. Reed, X. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
- Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
- W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- S. Jin, J. Yin, X. Gao, A. Sharma, P. Chen et al., Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nat. Commun. 13(1), 2283 (2022). https://doi.org/10.1038/s41467-022-29954-6
- Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748–4760 (2022). https://doi.org/10.1039/d2ee02687b
- X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
- W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
- H. Zhang, R. Guo, S. Li, C. Liu, H. Li et al., Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy 92, 106752 (2022). https://doi.org/10.1016/j.nanoen.2021.106752
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx mxene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13(1), 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. (2022). https://doi.org/10.1002/adma.202203104
- B.W. Olbasa, F.W. Fenta, S.-F. Chiu, M.-C. Tsai, C.-J. Huang et al., High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 3(5), 4499–4508 (2020). https://doi.org/10.1021/acsaem.0c00183
- D. Han, Z. Wang, H. Lu, H. Li, C. Cui et al., A self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202102982
- F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
- Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14, 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in-situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm-2 and 30 mA h cm-2. Energy Environ. Sci. 14, 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
- G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Stor. Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
- H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
- H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
- X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7(21), 2002173 (2020). https://doi.org/10.1002/advs.202002173
- X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
- J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14(1), 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx mxene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32(32), 2204306 (2022). https://doi.org/10.1002/adfm.202204306
- Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
References
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004). https://doi.org/10.1021/cr020730k
J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17(2), 1610–1621 (2023). https://doi.org/10.1021/acsnano.2c11357
Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu et al., Formation of solid-electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Funct. Mater. 10(15), 1903665 (2020). https://doi.org/10.1002/aenm.201903665
X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15(9), 3750–3774 (2022). https://doi.org/10.1039/d2ee01573k
Y. Li, W. Deng, Z. Zhou, C. Li, M. Zhang et al., An ultra-long life aqueous full K-ion battery. J. Mater. Chem. A 9(5), 2822–2829 (2021). https://doi.org/10.1039/d0ta10033a
G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
J. Park, Z.L. Xu, G. Yoon, S.K. Park, J. Wang et al., Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 32(4), 1904411 (2020). https://doi.org/10.1002/adma.201904411
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
N. Subjalearndee, N. He, H. Cheng, P. Tesatchabut, P. Eiamlamai et al., Gamma(ɣ)-MnO2/rRO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv. Fiber Mater. 4(3), 457–474 (2022). https://doi.org/10.1007/s42765-021-00118-3
C. Guan, F. Hu, X. Yu, H.-L. Chen, G.-H. Song et al., High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 41(2), 448–456 (2021). https://doi.org/10.1007/s12598-021-01778-1
Y.-H. Du, X.-Y. Liu, X.-Y. Wang, J.-C. Sun, Q.-Q. Lu et al., Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 41(2), 415–424 (2021). https://doi.org/10.1007/s12598-021-01777-2
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19(5), 3199–3206 (2019). https://doi.org/10.1021/acs.nanolett.9b00697
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57(50), 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang et al., Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy Environ. Sci. 11(9), 2521–2530 (2018). https://doi.org/10.1039/c8ee01415a
Y. Zhao, Y. Lu, H. Li, Y. Zhu, Y. Meng et al., Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nat. Commun. 13(1), 752 (2022). https://doi.org/10.1038/s41467-022-28380-y
V. Verma, S. Kumar, W. Manalastas, M. Srinivasan, Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 6(5), 1773–1785 (2021). https://doi.org/10.1021/acsenergylett.1c00393
W. Yang, Y. Yang, H. Yang, H. Zhou, Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS Energy Lett. 7(8), 2515–2530 (2022). https://doi.org/10.1021/acsenergylett.2c01152
H. Yu, D. Chen, T. Zhang, M. Fu, J. Cai et al., Insight on the double-edged sword role of water molecules in the anode of aqueous zinc-ion batteries. Small Struct. 3(12), 2200143 (2022). https://doi.org/10.1002/sstr.202200143
Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin et al., Electrolyte additive engineering for aqueous zn ion batteries. Energy Stor. Mater. 51, 733–755 (2022). https://doi.org/10.1016/j.ensm.2022.07.017
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6(3), 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
F. Wan, X. Zhou, Y. Lu, Z. Niu, J. Chen, Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett. 5(11), 3569–3590 (2020). https://doi.org/10.1021/acsenergylett.0c02028
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Stor. Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Stor. Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
Y. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang et al., Electrolyte engineering enables high performance zinc-ion batteries. Small 18(43), 2107033 (2022). https://doi.org/10.1002/smll.202107033
C.-X. Xu, J.-J. Jiang, Electrolytes speed up development of zinc batteries. Rare Met. 40(4), 749–751 (2021). https://doi.org/10.1007/s12598-020-01628-6
L.F. Zhou, T. Du, J.Y. Li, Y.S. Wang, H. Gong et al., A strategy for anode modification for future zinc-based battery application. Mater. Horiz. 9(11), 2722–2751 (2022). https://doi.org/10.1039/d2mh00973k
M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40(32), 2868–2881 (2019). https://doi.org/10.1002/jcc.26068
K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996). https://doi.org/10.1126/science.271.5251.929
K. Kiyohara, Y. Kawai, Hydration of monovalent and divalent cations near a cathode surface. J. Chem. Phys. 151(10), 104704 (2019). https://doi.org/10.1063/1.5113738
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies on regulating Zn2+ solvation structure for dendrites-free and side reactions-suppressed zinc-ion batteries. Energy Environ. Sci. 15, 499–528 (2022). https://doi.org/10.1039/d1ee03377h
H. Yan, S. Li, H. Xu, H. Chen, S. Yang et al., Triggering Zn2+ unsaturated hydration structure via hydrated salt electrolyte for high voltage and cycling stable rechargeable aqueous Zn battery. Adv. Energy Mater. 12(31), 2201599 (2022). https://doi.org/10.1002/aenm.202201599
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
B. Xiao, Intercalated water in aqueous batteries. Carbon Energy 2(2), 251–264 (2020). https://doi.org/10.1002/cey2.55
D.Z. Caralampio, J.M. Martinez, R.R. Pappalardo, E.S. Marcos, The hydration structure of the heavy-alkalines Rb+ and Cs+ through molecular dynamics and x-ray absorption spectroscopy: surface clusters and eccentricity. Phys. Chem. Chem. Phys. 19(42), 28993–29004 (2017). https://doi.org/10.1039/c7cp05346k
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
J. Li, N.T. Tsona, L. Du, Effect of a single water molecule on the HO2 + ClO reaction. Phys. Chem. Chem. Phys. 20(16), 10650–10659 (2018). https://doi.org/10.1039/c7cp05008a
H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
H. Glatz, E. Tervoort, D. Kundu, Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(3), 3522–3530 (2020). https://doi.org/10.1021/acsami.9b16125
J. Liu, J. Yang, X.C. Zeng, S.S. Xantheas, K. Yagi et al., Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21. Nat. Commun. 12(1), 6141 (2021). https://doi.org/10.1038/s41467-021-26284-x
S. Kumar, V. Verma, R. Chua, H. Ren, P. Kidkhunthod et al., Multiscalar investigation of FeVO4 conversion cathode for a low concentration Zn(CF3SO3)2 rechargeable Zn-ion aqueous battery. Batteries Supercaps 3(7), 619–630 (2020). https://doi.org/10.1002/batt.202000018
W. Manalastas Jr., S. Kumar, V. Verma, L. Zhang, D. Yuan et al., Water in rechargeable multivalent-ion batteries: an electrochemical pandora’s box. Chemsuschem 12(2), 379–396 (2019). https://doi.org/10.1002/cssc.201801523
A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120(14), 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang et al., Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 20, 100675 (2021). https://doi.org/10.1016/j.mtener.2021.100675
L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29(30), 1902653 (2019). https://doi.org/10.1002/adfm.201902653
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
X. Liu, H. Euchner, M. Zarrabeitia, X. Gao, G.A. Elia et al., Operando pH measurements decipher H+/Zn2+ intercalation chemistry in high-performance aqueous Zn/δ-V2O5 batteries. ACS Energy Lett. 5(9), 2979–2986 (2020). https://doi.org/10.1021/acsenergylett.0c01767
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019). https://doi.org/10.1002/adma.201903778
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
Z. Cai, J. Wang, Z. Lu, R. Zhan, Y. Ou et al., Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew. Chem. Int. Ed. 134(14), e202116560 (2022). https://doi.org/10.1002/anie.202116560
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
Q. Li, Y. Zhao, F. Mo, D. Wang, Q. Yang et al., Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2(3), e12035 (2020). https://doi.org/10.1002/eom2.12035
L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
B. Wu, Y. Mu, J. He, M. Li, Z. Li et al., In situ characterizations for aqueous rechargeable zinc batteries. Carbon Neutralization 2(3), 310–338 (2023). https://doi.org/10.1002/cnl2.56
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
L. Wang, Y. Zhang, H. Hu, H.Y. Shi, Y. Song et al., A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 11(45), 42000–42005 (2019). https://doi.org/10.1021/acsami.9b10905
D. Kim, J. Jeon, A Zn(ClO4)2 supporting material for highly reversible zinc-bromine electrolytes. Bull. Korean Chem. Soc. 37(3), 299–304 (2016). https://doi.org/10.1002/bkcs.10669
G. Kasiri, R. Trócoli, A.B. Hashemi, F. La Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Stor. Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59(43), 19292–19296 (2020). https://doi.org/10.1002/anie.202008634
B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang et al., Unmasking chloride attack on the passive film of metals. Nat. Commun. 9(1), 2559 (2018). https://doi.org/10.1038/s41467-018-04942-xv
N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries. J. Colloid Interface Sci. 342(2), 505–512 (2010). https://doi.org/10.1016/j.jcis.2009.10.034
J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu et al., Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
J. Shin, D.S. Choi, H.J. Lee, Y. Jung, J.W. Choi, Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv. Energy Mater. 9(14), 1900083 (2019). https://doi.org/10.1002/aenm.201900083
F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang et al., Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(21), 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng et al., Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10(26), 22059–22066 (2018). https://doi.org/10.1021/acsami.8b04085
J. Han, A. Mariani, A. Varzi, S. Passerini, Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. J. Power. Sour. 485, 229329 (2021). https://doi.org/10.1016/j.jpowsour.2020.229329
M. Yang, J. Zhu, S. Bi, R. Wang, Z. Niu, A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes. Adv. Mater. 34(18), 2201744 (2022). https://doi.org/10.1002/adma.202201744
X. Zhong, F. Wang, Y. Ding, L. Duan, F. Shi et al., Water-in-salt electrolyte Zn/LiFePO4 batteries. J. Electroanal. Chem. 867, 114193 (2020). https://doi.org/10.1016/j.jelechem.2020.114193
C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021). https://doi.org/10.1002/cey2.70
H. Ao, W. Zhu, M. Liu, W. Zhang, Z. Hou et al., High-voltage and super-stable aqueous sodium-zinc hybrid ion batteries enabled by double solvation structures in concentrated electrolyte. Small Methods 5(7), 2100418 (2021). https://doi.org/10.1002/smtd.202100418
C.Y. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, A room-temperature molten hydrate electrolyte for rechargeable zinc-air batteries. Adv. Energy Mater. 9(22), 1900196 (2019). https://doi.org/10.1002/aenm.201900196
Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
J. Zhang, J. Zhao, H. Du, Z. Zhang, S. Wang et al., Amide-based molten electrolyte with hybrid active ions for rechargeable Zn batteries. Electrochim. Acta 280, 108–113 (2018). https://doi.org/10.1016/j.electacta.2018.05.107
G.A. Giffin, The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13(1), 5250 (2022). https://doi.org/10.1038/s41467-022-32794-z
Y. Xu, X. Zhou, Z. Chen, Y. Hou, Y. You et al., Electrolyte formulas of aqueous zinc ion battery: A physical difference with chemical consequences. Mater. Today 66, 339–347 (2023). https://doi.org/10.1016/j.mattod.2023.04.005
X. Cao, H. Jia, W. Xu, J.-G. Zhang, Review-localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168(1), 010522 (2021). https://doi.org/10.1149/1945-7111/abd60e
R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021). https://doi.org/10.1016/j.cej.2021.129642
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
Z. Wu, M. Li, Y. Tian, H. Chen, S.J. Zhang et al., Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode. Nano-Micro Lett. 14(1), 110 (2022). https://doi.org/10.1007/s40820-022-00846-0
M. Song, C.-L. Zhong, Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 41(2), 356–360 (2021). https://doi.org/10.1007/s12598-021-01858-2
Y. Zhang, X. Han, R. Liu, Z. Yang, S. Zhang et al., Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn(100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 18(7), 2105978 (2022). https://doi.org/10.1002/smll.202105978
S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021). https://doi.org/10.1002/adma.202008424
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
S. Khorsand, K. Raeissi, M.A. Golozar, An investigation on the role of texture and surface morphology in the corrosion resistance of zinc electrodeposits. Corros. Sci. 53(8), 2676–2678 (2011). https://doi.org/10.1016/j.corsci.2011.04.007
M. Mouanga, L. Ricq, J. Douglade, P. Berçot, Corrosion behaviour of zinc deposits obtained under pulse current electrodeposition: effects of coumarin as additive. Corros. Sci. 51(3), 690–698 (2009). https://doi.org/10.1016/j.corsci.2008.12.020
S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34(28), 2202552 (2022). https://doi.org/10.1002/adma.202202552
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
T. Foroozan, V. Yurkiv, S. Sharifi-Asl, R. Rojaee, F. Mashayek et al., Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 11(47), 44077–44089 (2019). https://doi.org/10.1021/acsami.9b13174
K. Zhang, Z. Yan, J. Chen, Electrodeposition accelerates metal-based batteries. Joule 4(1), 10–11 (2020). https://doi.org/10.1016/j.joule.2019.12.012
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
H. Lu, Q. Jin, X. Jiang, Z.M. Dang, D. Zhang et al., Vertical crystal plane matching between AgZn3(002) and Zn(002) achieving a dendrite-free zinc anode. Small 18(16), 2200131 (2022). https://doi.org/10.1002/smll.202200131
J. Zou, Z. Zeng, C. Wang, X. Zhu, J. Zhang et al., Ultraconformal horizontal zinc deposition toward dendrite-free anode. Small Struct. 4(1), 2200194 (2022). https://doi.org/10.1002/sstr.202200194
X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 mxenes. ACS Nano 16(1), 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12(1), 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
H. Yan, C. Han, S. Li, J. Liu, J. Ren et al., Adjusting zinc ion de-solvation kinetics via rich electron-donating artificial SEI towards high Columbic efficiency and stable Zn metal anode. Chem. Eng. J. 442, 136081 (2022). https://doi.org/10.1016/j.cej.2022.136081
J. Wang, B. Zhang, Z. Cai, R. Zhan, W. Wang et al., Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci. Bull. 67(7), 716–724 (2022). https://doi.org/10.1016/j.scib.2022.01.010
Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). https://doi.org/10.1002/adma.202106937
J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), 2300073 (2023). https://doi.org/10.1002/adma.202300073
Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn(002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), 2104832 (2022). https://doi.org/10.1002/advs.202104832
D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
K.E. Sun, T.K. Hoang, T.N. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, P. Chen, Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24(7), 1667–1673 (2018). https://doi.org/10.1002/chem.201704440
J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
J. Ruan, D. Ma, K. Ouyang, S. Shen, M. Yang et al., 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 15(1), 37 (2023). https://doi.org/10.1007/s40820-022-01007-z
S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14(1), 39 (2021). https://doi.org/10.1007/s40820-021-00783-4
H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14(1), 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 (2021). https://doi.org/10.1002/adfm.202108533
W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang et al., 3d zinc@carbon fiber composite framework anode for aqueous Zn–MnO2 batteries. RSC Adv. 8(34), 19157–19163 (2018). https://doi.org/10.1039/c8ra03226b
S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11(1), 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy (2020). https://doi.org/10.1038/s41560-020-0584-y
C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10(12), 1903589 (2020). https://doi.org/10.1002/aenm.201903589
C. Li, W. Wu, P. Wang, W. Zhou, J. Wang et al., Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2V by using an alkaline-acidic electrolyte. Adv. Sci. 6(1), 1801665 (2019). https://doi.org/10.1002/advs.201801665
L. Chen, Z. Guo, Y. Xia, Y. Wang, High-voltage aqueous battery approaching 3V using an acidic-alkaline double electrolyte. Chem. Commun. 49(22), 2204–2206 (2013). https://doi.org/10.1039/c3cc00064h
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), 2001894 (2020). https://doi.org/10.1002/adma.202001894
F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Stor. Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
C. Li, W. Wu, S. Zhang, L. He, Y. Zhu et al., A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline-neutral electrolyte. J. Mater. Chem. A 7(8), 4110–4118 (2019). https://doi.org/10.1039/c8ta11735g
X. Wang, R.S. Chandrabose, Z. Jian, Z. Xing, X. Ji, A 1.8V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163(9), A1853–A1858 (2016). https://doi.org/10.1149/2.0311609jes.
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
J. Song, K. Xu, N. Liu, D. Reed, X. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
S. Jin, J. Yin, X. Gao, A. Sharma, P. Chen et al., Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nat. Commun. 13(1), 2283 (2022). https://doi.org/10.1038/s41467-022-29954-6
Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748–4760 (2022). https://doi.org/10.1039/d2ee02687b
X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
H. Zhang, R. Guo, S. Li, C. Liu, H. Li et al., Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy 92, 106752 (2022). https://doi.org/10.1016/j.nanoen.2021.106752
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx mxene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13(1), 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. (2022). https://doi.org/10.1002/adma.202203104
B.W. Olbasa, F.W. Fenta, S.-F. Chiu, M.-C. Tsai, C.-J. Huang et al., High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 3(5), 4499–4508 (2020). https://doi.org/10.1021/acsaem.0c00183
D. Han, Z. Wang, H. Lu, H. Li, C. Cui et al., A self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202102982
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14, 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in-situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm-2 and 30 mA h cm-2. Energy Environ. Sci. 14, 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Stor. Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7(21), 2002173 (2020). https://doi.org/10.1002/advs.202002173
X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14(1), 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx mxene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32(32), 2204306 (2022). https://doi.org/10.1002/adfm.202204306
Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936