A Sustainable Dual Cross-Linked Cellulose Hydrogel Electrolyte for High-Performance Zinc-Metal Batteries
Corresponding Author: Jinping Zhou
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 106
Abstract
Aqueous rechargeable Zn-metal batteries (ARZBs) are considered one of the most promising candidates for grid-scale energy storage. However, their widespread commercial application is largely plagued by three major challenges: The uncontrollable Zn dendrites, notorious parasitic side reactions, and sluggish Zn2+ ion transfer. To address these issues, we design a sustainable dual cross-linked cellulose hydrogel electrolyte, which has excellent mechanical strength to inhibit dendrite formation, high Zn2+ ions binding capacity to suppress side reaction, and abundant porous structure to facilitate Zn2+ ions migration. Consequently, the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm−2. Moreover, the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance (> 2000 cycles at 2000 mA g−1). Remarkably, the hydrogel electrolyte is easily accessible and biodegradable, making the ARZBs attractive in terms of scalability and sustainability.
Highlights:
1 A sustainable dual cross-linked cellulose hydrogel with excellent mechanical strength was fabricated from aqueous alkali hydroxide/urea solution using a sequential chemical and physical cross-linking strategy.
2 The hydrogel electrolyte effectively suppresses dendrites growth and side reactions to achieve a stable Zn anode (over 2000 h for Zn||Zn cell), which are proved by a multi-perspective and in-depth mechanism investigation.
3 The hydrogel electrolyte is easily accessible and biodegradable, making the zinc batteries attractive in terms of scalability and sustainability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15, 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
- P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, 2200598 (2022). https://doi.org/10.1002/anie.202200598
- J.-L. Yang, J. Li, J.-W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34, e2202382 (2022). https://doi.org/10.1002/adma.202202382
- S. Yuan, K. Dipan, A path forward for the translational development of aqueous zinc-ion batteries. Joule 7, 244–250 (2023). https://doi.org/10.1016/j.joule.2023.01.011
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15, 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
- X. Guo, G. He, Opportunities and challenges of zinc anodes in rechargeable aqueous batteries. J. Mater. Chem. A 11, 11987–12001 (2023). https://doi.org/10.1039/d3ta01904g
- J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15, 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- D. Gomez Vazquez, T.P. Pollard, J. Mars, J.M. Yoo, H.-G. Steinrück et al., Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries. Energy Environ. Sci. 16, 1982–1991 (2023). https://doi.org/10.1039/D3EE00205E
- M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 (2023). https://doi.org/10.1002/anie.202215552
- Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62, 2307271 (2023). https://doi.org/10.1002/anie.202307271
- X. Li, D. Wang, F. Ran, Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater. 56, 351–393 (2023). https://doi.org/10.1016/j.ensm.2023.01.034
- E. Lizundia, D. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 31, 2005646 (2021). https://doi.org/10.1002/adfm.202005646
- X. Ge, W. Zhang, F. Song, B. Xie, J. Li et al., Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv. Funct. Mater. 32, 2200429 (2022). https://doi.org/10.1002/adfm.202200429
- M. Wu, Y. Zhang, L. Xu, C. Yang, M. Hong et al., A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 5, 3402–3416 (2022). https://doi.org/10.1016/j.matt.2022.07.015
- L. Hong, X. Wu, Y.-S. Liu, C. Yu, Y. Liu et al., Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 33, 2300952 (2023). https://doi.org/10.1002/adfm.202300952
- J.-H. Park, S. Hyun Park, D. Joung, C. Kim, Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chem. Eng. J. 433, 133532 (2022). https://doi.org/10.1016/j.cej.2021.133532
- H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33, e2000682 (2021). https://doi.org/10.1002/adma.202000682
- J. Fu, H. Wang, P. Xiao, C. Zeng, Q. Sun et al., A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Mater. 48, 191–191.f6 (2022). https://doi.org/10.1016/j.ensm.2022.02.052
- D. Wang, H. Li, Z. Liu, Z. Tang, G. Liang et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small 14, e1803978 (2018). https://doi.org/10.1002/smll.201803978
- F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10, 2000035 (2020). https://doi.org/10.1002/aenm.202000035
- D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 26, 6279–6287 (2016). https://doi.org/10.1002/adfm.201601645
- F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- J. Zhou, C. Chang, R. Zhang, L. Zhang, Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 7, 804–809 (2007). https://doi.org/10.1002/mabi.200700007
- C. Chang, L. Zhang, J. Zhou, L. Zhang, J.F. Kennedy, Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr. Polym. 82, 122–127 (2010). https://doi.org/10.1016/j.carbpol.2010.04.033
- D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005). https://doi.org/10.1002/anie.200460587
- M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen et al., Anti-freezing flexible aqueous Zn–MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 8, 6828–6841 (2020). https://doi.org/10.1039/D0TA01553A
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33, e2007559 (2021). https://doi.org/10.1002/adma.202007559
- L. Xu, T. Meng, X. Zheng, T. Li, A.H. Brozena et al., Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries. Adv. Funct. Mater. 33, 2302098 (2023). https://doi.org/10.1002/adfm.202302098
- D. Ye, C. Chang, L. Zhang, High-strength and tough cellulose hydrogels chemically dual cross-linked by using low- and high-molecular-weight cross-linkers. Biomacromol 20, 1989–1995 (2019). https://doi.org/10.1021/acs.biomac.9b00204
- H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62, 2217833 (2023). https://doi.org/10.1002/anie.202217833
- T. Chen, Z. Shuang, J. Hu, Y. Zhao, D. Wei et al., Freestanding 3D metallic micromesh for high-performance flexible transparent solid-state zinc batteries. Small 18, e2201628 (2022). https://doi.org/10.1002/smll.202201628
- C. Fu, Y. Wang, C. Lu, S. Zhou, Q. He et al., Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Mater. 51, 588–598 (2022). https://doi.org/10.1016/j.ensm.2022.06.034
- M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62, 2302701 (2023). https://doi.org/10.1002/anie.202302701
- W. Zhang, F. Guo, H. Mi, Z.-S. Wu, C. Ji et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 12, 2202219 (2022). https://doi.org/10.1002/aenm.202202219
- W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32, 2112609 (2022). https://doi.org/10.1002/adfm.202112609
- F. Cao, B. Wu, T. Li, S. Sun, Y. Jiao et al., Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Res. 15, 2030–2039 (2022). https://doi.org/10.1007/s12274-021-3770-8
- C. Kim, B.Y. Ahn, T.S. Wei, Y. Jo, S. Jeong et al., High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano 12, 11838–11846 (2018). https://doi.org/10.1021/acsnano.8b02744
- J. Shi, T. Sun, J. Bao, S. Zheng, H. Du et al., “water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 31, 2102035 (2021). https://doi.org/10.1002/adfm.202102035
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
- X. Gan, Z. Song, Small-molecule organic electrode materials for rechargeable batteries. Sci. China Chem. 66, 3070–3104 (2023). https://doi.org/10.1007/s11426-023-1738-3
- D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62, 2215060 (2023). https://doi.org/10.1002/anie.202215060
- Y. Liu, Z. Dai, W. Zhang, Y. Jiang, J. Peng et al., Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15, 9065–9075 (2021). https://doi.org/10.1021/acsnano.1c02215
References
Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15, 208 (2023). https://doi.org/10.1007/s40820-023-01177-4
P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, 2200598 (2022). https://doi.org/10.1002/anie.202200598
J.-L. Yang, J. Li, J.-W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34, e2202382 (2022). https://doi.org/10.1002/adma.202202382
S. Yuan, K. Dipan, A path forward for the translational development of aqueous zinc-ion batteries. Joule 7, 244–250 (2023). https://doi.org/10.1016/j.joule.2023.01.011
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15, 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
X. Guo, G. He, Opportunities and challenges of zinc anodes in rechargeable aqueous batteries. J. Mater. Chem. A 11, 11987–12001 (2023). https://doi.org/10.1039/d3ta01904g
J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15, 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
D. Gomez Vazquez, T.P. Pollard, J. Mars, J.M. Yoo, H.-G. Steinrück et al., Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries. Energy Environ. Sci. 16, 1982–1991 (2023). https://doi.org/10.1039/D3EE00205E
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 (2023). https://doi.org/10.1002/anie.202215552
Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62, 2307271 (2023). https://doi.org/10.1002/anie.202307271
X. Li, D. Wang, F. Ran, Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater. 56, 351–393 (2023). https://doi.org/10.1016/j.ensm.2023.01.034
E. Lizundia, D. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 31, 2005646 (2021). https://doi.org/10.1002/adfm.202005646
X. Ge, W. Zhang, F. Song, B. Xie, J. Li et al., Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv. Funct. Mater. 32, 2200429 (2022). https://doi.org/10.1002/adfm.202200429
M. Wu, Y. Zhang, L. Xu, C. Yang, M. Hong et al., A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 5, 3402–3416 (2022). https://doi.org/10.1016/j.matt.2022.07.015
L. Hong, X. Wu, Y.-S. Liu, C. Yu, Y. Liu et al., Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 33, 2300952 (2023). https://doi.org/10.1002/adfm.202300952
J.-H. Park, S. Hyun Park, D. Joung, C. Kim, Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chem. Eng. J. 433, 133532 (2022). https://doi.org/10.1016/j.cej.2021.133532
H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33, e2000682 (2021). https://doi.org/10.1002/adma.202000682
J. Fu, H. Wang, P. Xiao, C. Zeng, Q. Sun et al., A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Mater. 48, 191–191.f6 (2022). https://doi.org/10.1016/j.ensm.2022.02.052
D. Wang, H. Li, Z. Liu, Z. Tang, G. Liang et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small 14, e1803978 (2018). https://doi.org/10.1002/smll.201803978
F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10, 2000035 (2020). https://doi.org/10.1002/aenm.202000035
D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 26, 6279–6287 (2016). https://doi.org/10.1002/adfm.201601645
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018). https://doi.org/10.1002/adfm.201804975
J. Zhou, C. Chang, R. Zhang, L. Zhang, Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 7, 804–809 (2007). https://doi.org/10.1002/mabi.200700007
C. Chang, L. Zhang, J. Zhou, L. Zhang, J.F. Kennedy, Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr. Polym. 82, 122–127 (2010). https://doi.org/10.1016/j.carbpol.2010.04.033
D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005). https://doi.org/10.1002/anie.200460587
M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen et al., Anti-freezing flexible aqueous Zn–MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 8, 6828–6841 (2020). https://doi.org/10.1039/D0TA01553A
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33, e2007559 (2021). https://doi.org/10.1002/adma.202007559
L. Xu, T. Meng, X. Zheng, T. Li, A.H. Brozena et al., Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries. Adv. Funct. Mater. 33, 2302098 (2023). https://doi.org/10.1002/adfm.202302098
D. Ye, C. Chang, L. Zhang, High-strength and tough cellulose hydrogels chemically dual cross-linked by using low- and high-molecular-weight cross-linkers. Biomacromol 20, 1989–1995 (2019). https://doi.org/10.1021/acs.biomac.9b00204
H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62, 2217833 (2023). https://doi.org/10.1002/anie.202217833
T. Chen, Z. Shuang, J. Hu, Y. Zhao, D. Wei et al., Freestanding 3D metallic micromesh for high-performance flexible transparent solid-state zinc batteries. Small 18, e2201628 (2022). https://doi.org/10.1002/smll.202201628
C. Fu, Y. Wang, C. Lu, S. Zhou, Q. He et al., Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Mater. 51, 588–598 (2022). https://doi.org/10.1016/j.ensm.2022.06.034
M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62, 2302701 (2023). https://doi.org/10.1002/anie.202302701
W. Zhang, F. Guo, H. Mi, Z.-S. Wu, C. Ji et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 12, 2202219 (2022). https://doi.org/10.1002/aenm.202202219
W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32, 2112609 (2022). https://doi.org/10.1002/adfm.202112609
F. Cao, B. Wu, T. Li, S. Sun, Y. Jiao et al., Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Res. 15, 2030–2039 (2022). https://doi.org/10.1007/s12274-021-3770-8
C. Kim, B.Y. Ahn, T.S. Wei, Y. Jo, S. Jeong et al., High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano 12, 11838–11846 (2018). https://doi.org/10.1021/acsnano.8b02744
J. Shi, T. Sun, J. Bao, S. Zheng, H. Du et al., “water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 31, 2102035 (2021). https://doi.org/10.1002/adfm.202102035
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
X. Gan, Z. Song, Small-molecule organic electrode materials for rechargeable batteries. Sci. China Chem. 66, 3070–3104 (2023). https://doi.org/10.1007/s11426-023-1738-3
D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62, 2215060 (2023). https://doi.org/10.1002/anie.202215060
Y. Liu, Z. Dai, W. Zhang, Y. Jiang, J. Peng et al., Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15, 9065–9075 (2021). https://doi.org/10.1021/acsnano.1c02215