Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics
Corresponding Author: Ang Lu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 8
Abstract
To date, hydrogels have gained increasing attentions as a flexible conductive material in fabricating soft electronics. However, it remains a big challenge to integrate multiple functions into one gel that can be used widely under various conditions. Herein, a kind of multifunctional hydrogel with a combination of desirable characteristics, including remarkable transparency, high conductivity, ultra-stretchability, toughness, good fatigue resistance, and strong adhesive ability is presented, which was facilely fabricated through multiple noncovalent crosslinking strategy. The resultant versatile sensors are able to detect both weak and large deformations, which owns a low detection limit of 0.1% strain, high stretchability up to 1586%, ultrahigh sensitivity with a gauge factor up to 18.54, as well as wide pressure sensing range (0–600 kPa). Meanwhile, the fabrication of conductive hydrogel-based sensors is demonstrated for various soft electronic devices, including a flexible human–machine interactive system, the soft tactile switch, an integrated electronic skin for unprecedented nonplanar visualized pressure sensing, and the stretchable triboelectric nanogenerators with excellent biomechanical energy harvesting ability. This work opens up a simple route for multifunctional hydrogel and promises the practical application of soft and self-powered wearable electronics in various complex scenes.
Highlights:
1 Hydrogel demonstrates superior merits of strain (1586%), self-adhesion (113 kPa for pigskin), high conductivity and transparency (92%).
2 The wearable sensors with a gauge factor up to 18.54, wide pressure sensing range (0–600 kPa) enable the detecting, quantifying, and monitoring of human activities.
3 The hydrogels were developed as electronic skin, high output stretchable CTA-TENGs and explored using as wearable keyboards for human-machine interaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.T. Cao, H. Ouyang, W. Xin, S.Y. Chao, C. Ma et al., A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020). https://doi.org/10.1002/adfm.202004181
- X.J. Pei, H. Zhang, Y. Zhou, L.J. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/d0mh00361a
- X. Wang, X.H. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- Y.F. Yu, G.C. Zheng, K. Dai, W. Zhai, K.K. Zhou et al., Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Mater. Horiz. 8(3), 1037–1046 (2021). https://doi.org/10.1039/d0mh01818j
- J.P. Zhang, Y. Hu, X.H. Lin, X.Y. Qian, L.A. Zhang et al., High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polym. 291, 119586 (2022). https://doi.org/10.1016/j.carbpol.2022.119586
- Z.Q. Shen, X.Y. Zhu, C. Majidi, G.Y. Gu, Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv. Mater. 33(38), 2102069 (2021). https://doi.org/10.1002/adma.202102069
- M.Z. Lin, Z.J. Zheng, L. Yang, M.S. Luo, L.H. Fu et al., A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv. Mater. 34(1), 2107309 (2022). https://doi.org/10.1002/adma.202107309
- B. Shih, D. Shah, J.X. Li, T.G. Thuruthel, Y.L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5(41), eaaz9239 (2020). https://doi.org/10.1126/scirobotics.aaz9239
- A. Chortos, J. Liu, Z.A. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z.A. Bao, 25th anniversary : the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6037 (2013). https://doi.org/10.1002/adma.201302240
- Y. Lu, X.Y. Qu, W. Zhao, Y.F. Ren, W.L. Si et al., Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2038560 (2020). https://doi.org/10.34133/2020/2038560
- J.C. Zhou, X.H. Guo, Z.S. Xu, Q.J. Wu, J. Chen et al., Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications. Compos. Sci. Technol. 197, 108215 (2020). https://doi.org/10.1016/j.compscitech.2020.108215
- Z.Q. Cui, W.S. Wang, L.L. Guo, Z.H. Liu, P.Q. Cai et al., Haptically quantifying young’s modulus of soft materials using a self-locked stretchable strain sensor. Adv. Mater. 34(25), 2104078 (2022). https://doi.org/10.1002/adma.202104078
- C.X. Tan, Z.G. Dong, Y.H. Li, H.G. Zhao, X.Y. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- C.Z. Hang, X.F. Zhao, S.Y. Xi, Y.H. Shang, K.P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
- B.B. Ying, R.Z. Chen, R.Z. Zuo, J.Y. Li, X.Y. Liu, An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 31(42), 2104665 (2021). https://doi.org/10.1002/adfm.202104665
- S.Z. Liu, D.S. Shah, R. Kramer-Bottiglio, Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20(6), 851–858 (2021). https://doi.org/10.1038/s41563-021-00921-8
- M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
- S. Wang, Y. Fang, H. He, L. Zhang, C. Li et al., Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv. Funct. Mater. 31(5), 2007495 (2021). https://doi.org/10.1002/adfm.202007495
- C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.001
- D.H. Bartlett, F. Azam, Chitin, cholera, and competence. Science 310(5755), 1775–1777 (2005). https://doi.org/10.1126/science.1122396
- Y. Fang, B. Duan, A. Lu, M. Liu, H. Liu et al., Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromol 16(4), 1410–1417 (2015). https://doi.org/10.1021/acs.biomac.5b00195
- X. Yang, H. Yang, X. Jiang, B. Yang, K. Zhu et al., Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polym. 256, 117574 (2021). https://doi.org/10.1016/j.carbpol.2020.117574
- M. Zhang, J. Yu, K. Shen, R. Wang, J. Du et al., Highly stretchable nanocomposite hydrogels with outstanding antifatigue fracture based on robust noncovalent interactions for wound healing. Chem. Mater. 33(16), 6453–6463 (2021). https://doi.org/10.1021/acs.chemmater.1c01790
- A. Mandal, D. Chakrabarty, Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films. Carbohydrate Polym. 134, 240–250 (2015). https://doi.org/10.1016/j.carbpol.2015.07.093
- G. Patel, M.B. Sureshkumar, Preparation of PAM/PVA blending films by solution-cast technique and its characterization: a spectroscopic study. Iranian Polym. J. 23(2), 153–162 (2014). https://doi.org/10.1007/s13726-013-0211-x
- S. Song, S. Shen, X. Cui, D. Yao, D. Hu, Microhydrogel surface-supported quaternary ammonium peroxotungstophosphate as reusable catalytic materials for oxidation of DBT. Reactive Funct. Polym. 71(4), 512–519 (2011). https://doi.org/10.1016/j.reactfunctpolym.2011.01.003
- X.H. Lin, L.N. Zhang, B. Duan, Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness. Mater. Horiz. 8(9), 2503–2512 (2021). https://doi.org/10.1039/d1mh00878a
- D.D. Xu, J.C. Huang, D. Zhao, B.B. Ding, L.N. Zhang et al., High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 28(28), 5844–5849 (2016). https://doi.org/10.1002/adma.201600448
- D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 28(5), 6279–6287 (2018). https://doi.org/10.1002/adfm.201707147
- D.D. Ye, C.Y. Chang, L.N. Zhang, High-strength and tough cellulose hydrogels chemically dual cross-linked by using low- and high-molecular-weight cross-linkers. Biomacromol 20(5), 1989–1995 (2019). https://doi.org/10.1021/acs.biomac.9b00204
- W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018). https://doi.org/10.1002/adma.201801934
- L. Bai, Y. Han, C. Sun, X. An, C. Wei et al., Unveiling the effects of interchain hydrogen bonds on solution gelation and mechanical properties of diarylfluorene-based semiconductor polymers. Research 2020, 3405826 (2020). https://doi.org/10.34133/2020/3405826
- R. Tamate, K. Hashimoto, T. Horii, M. Hirasawa, X. Li et al., Self-healing micellar ion gels based on multiple hydrogen bonding. Adv. Mater. 30(36), 1802792 (2018). https://doi.org/10.1002/adma.201802792
- X. Chen, Making electrodes stretchable. Small Methods 1(4), 1600029 (2017). https://doi.org/10.1002/smtd.201600029
- X. Zhang, C. Cui, S. Chen, L. Meng, H. Zhao et al., Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem. Mater. 34(3), 1065–1077 (2022). https://doi.org/10.1021/acs.chemmater.1c03386
- J. Duan, X. Liang, J. Guo, K. Zhu, L. Zhang, Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv. Mater. 28(36), 8037–8044 (2016). https://doi.org/10.1002/adma.201602126
- G. Su, S. Yin, Y. Guo, F. Zhao, Q. Guo et al., Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 8(6), 1795–1804 (2021). https://doi.org/10.1039/D1MH00085C
- X. Yan, Z. Liu, Q. Zhang, J. Lopez, H. Wang et al., Quadruple h-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 140(15), 5280–5289 (2018). https://doi.org/10.1021/jacs.8b01682
- J. Chen, Q. Peng, T. Thundat, H. Zeng, Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 31(12), 4553–4563 (2019). https://doi.org/10.1021/acs.chemmater.9b01239
- G. Song, Z. Zhao, X. Peng, C. He, R.A. Weiss et al., Rheological behavior of tough PVP-in situ-PAAm hydrogels physically cross-linked by cooperative hydrogen bonding. Macromolecules 49(21), 8265–8273 (2016). https://doi.org/10.1021/acs.macromol.6b01448
- B. Zhang, X. Zhang, K. Wan, J. Zhu, J. Xu et al., Dense hydrogen-bonding network boosts ionic conductive hydrogels with extremely high toughness, rapid self-recovery, and autonomous adhesion for human-motion detection. Research 2021, 9761625 (2021). https://doi.org/10.34133/2021/9761625
- Y. Wei, L. Xiang, P. Zhu, Y. Qian, B. Zhao et al., Multifunctional organohydrogel-based ionic skin for capacitance and temperature sensing toward intelligent skin-like devices. Chem. Mater. 33(22), 8623–8634 (2021). https://doi.org/10.1021/acs.chemmater.1c01904
- Q. Fu, S. Hao, L. Meng, F. Xu, J. Yang, Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 15(11), 18469–18482 (2021). https://doi.org/10.1021/acsnano.1c08193
- M. Gao, H. Wu, R. Plamthottam, Z. Xie, Y. Liu et al., Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system. Matter 4(6), 1962–1974 (2021). https://doi.org/10.1016/j.matt.2021.03.003
- J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30(2), 1901693 (2020). https://doi.org/10.1002/adfm.201901693
- S. Li, Y. Cong, J. Fu, Tissue adhesive hydrogel bioelectronics. J. Mater. Chem. B 9(22), 4423–4443 (2021). https://doi.org/10.1039/d1tb00523e
- H. Park, J.W. Kim, S.Y. Hong, G. Lee, H. Lee et al., Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system. ACS Nano 13(9), 10469–10480 (2019). https://doi.org/10.1021/acsnano.9b04340
- Y. Wei, L. Xiang, H. Ou, F. Li, Y. Zhang et al., MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv. Funct. Mater. 30(48), 2005135 (2020). https://doi.org/10.1002/adfm.202005135
- Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
- K.X. Hou, S.P. Zhao, D.P. Wang, P.C. Zhao, C.H. Li et al., A puncture-resistant and self-healing conductive gel for multifunctional electronic skin. Adv. Funct. Mater. 31(49), 2107006 (2021). https://doi.org/10.1002/adfm.202107006
- Y. Liang, K. Wang, J. Li, H. Wang, X.Q. Xie et al., Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors. Adv. Funct. Mater. 31(45), 2104963 (2021). https://doi.org/10.1002/adfm.202104963
- X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6(2), 326–333 (2019). https://doi.org/10.1039/C8MH01188E
- X. Lu, Y. Si, S. Zhang, J. Yu, B. Ding, In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 31(30), 2103117 (2021). https://doi.org/10.1002/adfm.202103117
- J. Wen, J. Tang, H. Ning, N. Hu, Y. Zhu et al., Multifunctional ionic skin with sensing, UV-filtering, water-retaining, and anti-freezing capabilities. Adv. Funct. Mater. 31(21), 2011176 (2021). https://doi.org/10.1002/adfm.202011176
- L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
- Z. Wang, H. Zhou, D. Liu, X. Chen, D. Wang et al., A structural gel composite enabled robust underwater mechanosensing strategy with high sensitivity. Adv. Funct. Mater. 32(25), 2201396 (2022). https://doi.org/10.1002/adfm.202201396
- X. Yao, S. Zhang, L. Qian, N. Wei, V. Nica et al., Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 32(33), 2204565 (2022). https://doi.org/10.1002/adfm.202204565
- M. Wang, C. Ma, P.C. Uzabakiriho, X. Chen, Z. Chen et al., Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano 15(12), 19364–19376 (2021). https://doi.org/10.1021/acsnano.1c05762
- C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
- K.D. Foster, J.M.V. Grigor, J.N. Cheong, M.J.Y. Yoo, J.E. Bronlund et al., The role of oral processing in dynamic sensory perception. J. Food Sci. 76(2), R49–R61 (2011). https://doi.org/10.1111/j.1750-3841.2010.02029.x
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Y. Shi, F. Wang, J. Tian, S. Li, E. Fu et al., Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 7(6), eabe2943 (2021). https://doi.org/10.1126/sciadv.abe2943
- Z. Liu, Y. Huang, Y. Shi, X. Tao, H. He et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13, 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
- B.U. Ye, B.J. Kim, J. Ryu, J.Y. Lee, J.M. Baik et al., Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power. Nanoscale 7(39), 16189–16194 (2015). https://doi.org/10.1039/c5nr02602d
- T. Liu, M. Liu, S. Dou, J. Sun, Z. Cong et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018). https://doi.org/10.1021/acsnano.8b00108
- K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park et al., Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019). https://doi.org/10.1038/s41467-019-10061-y
- X. Pu, M. Liu, X. Chen, J. Sun, C. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), 1700015 (2017). https://doi.org/10.1126/sciadv.1700015
References
W.T. Cao, H. Ouyang, W. Xin, S.Y. Chao, C. Ma et al., A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020). https://doi.org/10.1002/adfm.202004181
X.J. Pei, H. Zhang, Y. Zhou, L.J. Zhou, J. Fu, Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 7(7), 1872–1882 (2020). https://doi.org/10.1039/d0mh00361a
X. Wang, X.H. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
Y.F. Yu, G.C. Zheng, K. Dai, W. Zhai, K.K. Zhou et al., Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Mater. Horiz. 8(3), 1037–1046 (2021). https://doi.org/10.1039/d0mh01818j
J.P. Zhang, Y. Hu, X.H. Lin, X.Y. Qian, L.A. Zhang et al., High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polym. 291, 119586 (2022). https://doi.org/10.1016/j.carbpol.2022.119586
Z.Q. Shen, X.Y. Zhu, C. Majidi, G.Y. Gu, Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv. Mater. 33(38), 2102069 (2021). https://doi.org/10.1002/adma.202102069
M.Z. Lin, Z.J. Zheng, L. Yang, M.S. Luo, L.H. Fu et al., A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv. Mater. 34(1), 2107309 (2022). https://doi.org/10.1002/adma.202107309
B. Shih, D. Shah, J.X. Li, T.G. Thuruthel, Y.L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5(41), eaaz9239 (2020). https://doi.org/10.1126/scirobotics.aaz9239
A. Chortos, J. Liu, Z.A. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z.A. Bao, 25th anniversary : the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6037 (2013). https://doi.org/10.1002/adma.201302240
Y. Lu, X.Y. Qu, W. Zhao, Y.F. Ren, W.L. Si et al., Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2038560 (2020). https://doi.org/10.34133/2020/2038560
J.C. Zhou, X.H. Guo, Z.S. Xu, Q.J. Wu, J. Chen et al., Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications. Compos. Sci. Technol. 197, 108215 (2020). https://doi.org/10.1016/j.compscitech.2020.108215
Z.Q. Cui, W.S. Wang, L.L. Guo, Z.H. Liu, P.Q. Cai et al., Haptically quantifying young’s modulus of soft materials using a self-locked stretchable strain sensor. Adv. Mater. 34(25), 2104078 (2022). https://doi.org/10.1002/adma.202104078
C.X. Tan, Z.G. Dong, Y.H. Li, H.G. Zhao, X.Y. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
C.Z. Hang, X.F. Zhao, S.Y. Xi, Y.H. Shang, K.P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
B.B. Ying, R.Z. Chen, R.Z. Zuo, J.Y. Li, X.Y. Liu, An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 31(42), 2104665 (2021). https://doi.org/10.1002/adfm.202104665
S.Z. Liu, D.S. Shah, R. Kramer-Bottiglio, Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20(6), 851–858 (2021). https://doi.org/10.1038/s41563-021-00921-8
M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
S. Wang, Y. Fang, H. He, L. Zhang, C. Li et al., Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv. Funct. Mater. 31(5), 2007495 (2021). https://doi.org/10.1002/adfm.202007495
C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.001
D.H. Bartlett, F. Azam, Chitin, cholera, and competence. Science 310(5755), 1775–1777 (2005). https://doi.org/10.1126/science.1122396
Y. Fang, B. Duan, A. Lu, M. Liu, H. Liu et al., Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromol 16(4), 1410–1417 (2015). https://doi.org/10.1021/acs.biomac.5b00195
X. Yang, H. Yang, X. Jiang, B. Yang, K. Zhu et al., Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polym. 256, 117574 (2021). https://doi.org/10.1016/j.carbpol.2020.117574
M. Zhang, J. Yu, K. Shen, R. Wang, J. Du et al., Highly stretchable nanocomposite hydrogels with outstanding antifatigue fracture based on robust noncovalent interactions for wound healing. Chem. Mater. 33(16), 6453–6463 (2021). https://doi.org/10.1021/acs.chemmater.1c01790
A. Mandal, D. Chakrabarty, Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films. Carbohydrate Polym. 134, 240–250 (2015). https://doi.org/10.1016/j.carbpol.2015.07.093
G. Patel, M.B. Sureshkumar, Preparation of PAM/PVA blending films by solution-cast technique and its characterization: a spectroscopic study. Iranian Polym. J. 23(2), 153–162 (2014). https://doi.org/10.1007/s13726-013-0211-x
S. Song, S. Shen, X. Cui, D. Yao, D. Hu, Microhydrogel surface-supported quaternary ammonium peroxotungstophosphate as reusable catalytic materials for oxidation of DBT. Reactive Funct. Polym. 71(4), 512–519 (2011). https://doi.org/10.1016/j.reactfunctpolym.2011.01.003
X.H. Lin, L.N. Zhang, B. Duan, Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness. Mater. Horiz. 8(9), 2503–2512 (2021). https://doi.org/10.1039/d1mh00878a
D.D. Xu, J.C. Huang, D. Zhao, B.B. Ding, L.N. Zhang et al., High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings. Adv. Mater. 28(28), 5844–5849 (2016). https://doi.org/10.1002/adma.201600448
D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 28(5), 6279–6287 (2018). https://doi.org/10.1002/adfm.201707147
D.D. Ye, C.Y. Chang, L.N. Zhang, High-strength and tough cellulose hydrogels chemically dual cross-linked by using low- and high-molecular-weight cross-linkers. Biomacromol 20(5), 1989–1995 (2019). https://doi.org/10.1021/acs.biomac.9b00204
W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018). https://doi.org/10.1002/adma.201801934
L. Bai, Y. Han, C. Sun, X. An, C. Wei et al., Unveiling the effects of interchain hydrogen bonds on solution gelation and mechanical properties of diarylfluorene-based semiconductor polymers. Research 2020, 3405826 (2020). https://doi.org/10.34133/2020/3405826
R. Tamate, K. Hashimoto, T. Horii, M. Hirasawa, X. Li et al., Self-healing micellar ion gels based on multiple hydrogen bonding. Adv. Mater. 30(36), 1802792 (2018). https://doi.org/10.1002/adma.201802792
X. Chen, Making electrodes stretchable. Small Methods 1(4), 1600029 (2017). https://doi.org/10.1002/smtd.201600029
X. Zhang, C. Cui, S. Chen, L. Meng, H. Zhao et al., Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem. Mater. 34(3), 1065–1077 (2022). https://doi.org/10.1021/acs.chemmater.1c03386
J. Duan, X. Liang, J. Guo, K. Zhu, L. Zhang, Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv. Mater. 28(36), 8037–8044 (2016). https://doi.org/10.1002/adma.201602126
G. Su, S. Yin, Y. Guo, F. Zhao, Q. Guo et al., Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 8(6), 1795–1804 (2021). https://doi.org/10.1039/D1MH00085C
X. Yan, Z. Liu, Q. Zhang, J. Lopez, H. Wang et al., Quadruple h-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 140(15), 5280–5289 (2018). https://doi.org/10.1021/jacs.8b01682
J. Chen, Q. Peng, T. Thundat, H. Zeng, Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 31(12), 4553–4563 (2019). https://doi.org/10.1021/acs.chemmater.9b01239
G. Song, Z. Zhao, X. Peng, C. He, R.A. Weiss et al., Rheological behavior of tough PVP-in situ-PAAm hydrogels physically cross-linked by cooperative hydrogen bonding. Macromolecules 49(21), 8265–8273 (2016). https://doi.org/10.1021/acs.macromol.6b01448
B. Zhang, X. Zhang, K. Wan, J. Zhu, J. Xu et al., Dense hydrogen-bonding network boosts ionic conductive hydrogels with extremely high toughness, rapid self-recovery, and autonomous adhesion for human-motion detection. Research 2021, 9761625 (2021). https://doi.org/10.34133/2021/9761625
Y. Wei, L. Xiang, P. Zhu, Y. Qian, B. Zhao et al., Multifunctional organohydrogel-based ionic skin for capacitance and temperature sensing toward intelligent skin-like devices. Chem. Mater. 33(22), 8623–8634 (2021). https://doi.org/10.1021/acs.chemmater.1c01904
Q. Fu, S. Hao, L. Meng, F. Xu, J. Yang, Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 15(11), 18469–18482 (2021). https://doi.org/10.1021/acsnano.1c08193
M. Gao, H. Wu, R. Plamthottam, Z. Xie, Y. Liu et al., Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system. Matter 4(6), 1962–1974 (2021). https://doi.org/10.1016/j.matt.2021.03.003
J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30(2), 1901693 (2020). https://doi.org/10.1002/adfm.201901693
S. Li, Y. Cong, J. Fu, Tissue adhesive hydrogel bioelectronics. J. Mater. Chem. B 9(22), 4423–4443 (2021). https://doi.org/10.1039/d1tb00523e
H. Park, J.W. Kim, S.Y. Hong, G. Lee, H. Lee et al., Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system. ACS Nano 13(9), 10469–10480 (2019). https://doi.org/10.1021/acsnano.9b04340
Y. Wei, L. Xiang, H. Ou, F. Li, Y. Zhang et al., MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv. Funct. Mater. 30(48), 2005135 (2020). https://doi.org/10.1002/adfm.202005135
Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
K.X. Hou, S.P. Zhao, D.P. Wang, P.C. Zhao, C.H. Li et al., A puncture-resistant and self-healing conductive gel for multifunctional electronic skin. Adv. Funct. Mater. 31(49), 2107006 (2021). https://doi.org/10.1002/adfm.202107006
Y. Liang, K. Wang, J. Li, H. Wang, X.Q. Xie et al., Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors. Adv. Funct. Mater. 31(45), 2104963 (2021). https://doi.org/10.1002/adfm.202104963
X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6(2), 326–333 (2019). https://doi.org/10.1039/C8MH01188E
X. Lu, Y. Si, S. Zhang, J. Yu, B. Ding, In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 31(30), 2103117 (2021). https://doi.org/10.1002/adfm.202103117
J. Wen, J. Tang, H. Ning, N. Hu, Y. Zhu et al., Multifunctional ionic skin with sensing, UV-filtering, water-retaining, and anti-freezing capabilities. Adv. Funct. Mater. 31(21), 2011176 (2021). https://doi.org/10.1002/adfm.202011176
L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
Z. Wang, H. Zhou, D. Liu, X. Chen, D. Wang et al., A structural gel composite enabled robust underwater mechanosensing strategy with high sensitivity. Adv. Funct. Mater. 32(25), 2201396 (2022). https://doi.org/10.1002/adfm.202201396
X. Yao, S. Zhang, L. Qian, N. Wei, V. Nica et al., Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 32(33), 2204565 (2022). https://doi.org/10.1002/adfm.202204565
M. Wang, C. Ma, P.C. Uzabakiriho, X. Chen, Z. Chen et al., Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano 15(12), 19364–19376 (2021). https://doi.org/10.1021/acsnano.1c05762
C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
K.D. Foster, J.M.V. Grigor, J.N. Cheong, M.J.Y. Yoo, J.E. Bronlund et al., The role of oral processing in dynamic sensory perception. J. Food Sci. 76(2), R49–R61 (2011). https://doi.org/10.1111/j.1750-3841.2010.02029.x
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Y. Shi, F. Wang, J. Tian, S. Li, E. Fu et al., Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 7(6), eabe2943 (2021). https://doi.org/10.1126/sciadv.abe2943
Z. Liu, Y. Huang, Y. Shi, X. Tao, H. He et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13, 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
B.U. Ye, B.J. Kim, J. Ryu, J.Y. Lee, J.M. Baik et al., Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power. Nanoscale 7(39), 16189–16194 (2015). https://doi.org/10.1039/c5nr02602d
T. Liu, M. Liu, S. Dou, J. Sun, Z. Cong et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018). https://doi.org/10.1021/acsnano.8b00108
K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park et al., Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019). https://doi.org/10.1038/s41467-019-10061-y
X. Pu, M. Liu, X. Chen, J. Sun, C. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), 1700015 (2017). https://doi.org/10.1126/sciadv.1700015