Boosting Sensitivity of Cellulose Pressure Sensor via Hierarchically Porous Structure
Corresponding Author: Ang Lu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 205
Abstract
Pressure sensors are essential for a wide range of applications, including health monitoring, industrial diagnostics, etc. However, achieving both high sensitivity and mechanical ability to withstand high pressure in a single material remains a significant challenge. This study introduces a high-performance cellulose hydrogel inspired by the biomimetic layered porous structure of human skin. The hydrogel features a novel design composed of a soft layer with large macropores and a hard layer with small micropores, each of which contribute uniquely to its pressure-sensing capabilities. The macropores in the soft part facilitate significant deformation and charge accumulation, providing exceptional sensitivity to low pressures. In contrast, the microporous structure in the hard part enhances pressure range, ensuring support under high pressures and preventing structural failure. The performance of hydrogel is further optimized through ion introduction, which improves its conductivity, and as well the sensitivity. The sensor demonstrated a high sensitivity of 1622 kPa−1, a detection range up to 160 kPa, excellent conductivity of 4.01 S m−1, rapid response time of 33 ms, and a low detection limit of 1.6 Pa, outperforming most existing cellulose-based sensors. This innovative hierarchically porous architecture not only enhances the pressure-sensing performance but also offers a simple and effective approach for utilizing natural polymers in sensing technologies. The cellulose hydrogel demonstrates significant potential in both health monitoring and industrial applications, providing a sensitive, durable, and versatile solution for pressure sensing.
Highlights:
1 The study introduces a high-performance cellulose hydrogel (HPCH) with a biomimetic layered porous structure inspired by human skin, combining a soft layer with large macropores and a hard layer with small micropores. This unique design enhances both sensitivity and mechanical performance in pressure-sensing applications.
2 The HPCH sensor demonstrates exceptional pressure sensitivity of 1622 kPa⁻1, a wide detection range of up to 160 kPa, and excellent conductivity of 4.01 S m−1. Ion immersion further optimizes the hydrogel’s conductivity and dielectric properties, offering superior performance compared to existing cellulose-based sensors.
3 The sensor’s outstanding performance in health monitoring, industrial diagnostics, and pressure distribution detection positions it as a versatile, durable, and highly sensitive solution for various pressure-sensing applications, providing a promising path for natural polymer-based sensing technologies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
- Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
- A. Ahmed, S. Sharma, B. Adak, Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4(4), e12295 (2022). https://doi.org/10.1002/inf2.12295
- M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody et al., Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31(1), e1802084 (2019). https://doi.org/10.1002/adma.201802084
- J. Chun, K.Y. Lee, C.-Y. Kang, M.W. Kim, S.-W. Kim et al., Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 24(14), 2038–2043 (2014). https://doi.org/10.1002/adfm.201302962
- H. Shi, M. Al-Rubaiai, C.M. Holbrook, J. Miao, T. Pinto et al., Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Adv. Funct. Mater. 29(23), 1809116 (2019). https://doi.org/10.1002/adfm.201809116
- S.R.A. Ruth, L. Beker, H. Tran, V.R. Feig, N. Matsuhisa et al., Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 30(29), 1903100 (2020). https://doi.org/10.1002/adfm.201903100
- C.G. Núñez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27(18), 1606287 (2017). https://doi.org/10.1002/adfm.201606287
- M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29(41), 1703700 (2017). https://doi.org/10.1002/adma.201703700
- S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
- K. He, Y. Hou, C. Yi, N. Li, F. Sui et al., High-performance zero-standby-power-consumption-under-bending pressure sensors for artificial reflex arc. Nano Energy 73, 104743 (2020). https://doi.org/10.1016/j.nanoen.2020.104743
- Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
- W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- M. Ramuz, B.C. Tee, J.B. Tok, Z. Bao, Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24(24), 3223–3227 (2012). https://doi.org/10.1002/adma.201200523
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- M.L. Hammock, A. Chortos, B.C. Tee, J.B. Tok, Z. Bao, 25th anniversary : the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013). https://doi.org/10.1002/adma.201302240
- K.-H. Ha, W. Zhang, H. Jang, S. Kang, L. Wang et al., Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 33(48), e2103320 (2021). https://doi.org/10.1002/adma.202103320
- S.C.B. Mannsfeld, B.C. Tee, R.M. Stoltenberg, C.V.H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010). https://doi.org/10.1038/nmat2834
- L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13(1), 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
- Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa−1. Nano-Micro Lett. 14(1), 21 (2021). https://doi.org/10.1007/s40820-021-00770-9
- J. Wang, J. Jiu, T. Araki, M. Nogi, T. Sugahara et al., Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors. Nano-Micro Lett. 7(1), 51–58 (2015). https://doi.org/10.1007/s40820-014-0018-0
- M. Zhou, D. Chen, Q. Chen, P. Chen, G. Song et al., Reversible surface engineering of cellulose elementary fibrils: from ultralong nanocelluloses to advanced cellulosic materials. Adv. Mater. 36(21), e2312220 (2024). https://doi.org/10.1002/adma.202312220
- D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), e2000619 (2021). https://doi.org/10.1002/adma.202000619
- X. Feng, X. Wang, M. Wang, S. Zhou, C. Dang et al., Novel PEDOT dispersion by in situ polymerization based on sulfated nanocellulose. Chem. Eng. J. 418, 129533 (2021). https://doi.org/10.1016/j.cej.2021.129533
- A. Hänninen, E. Sarlin, I. Lyyra, T. Salpavaara, M. Kellomäki et al., Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydr. Polym. 202, 418–424 (2018). https://doi.org/10.1016/j.carbpol.2018.09.001
- D. Zhao, C. Chen, Q. Zhang, W. Chen, S. Liu et al., High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7(18), 1700739 (2017). https://doi.org/10.1002/aenm.201700739
- W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31(41), e1902977 (2019). https://doi.org/10.1002/adma.201902977
- H. Chen, T. Liu, J. Mou, W. Zhang, Z. Jiang et al., Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63, 103836 (2019). https://doi.org/10.1016/j.nanoen.2019.06.032
- H. Hu, T. Hua, An easily manipulated protocol for patterning of mxenes on paper for planar micro-supercapacitors. J. Mater. Chem. A 5, 19639–19648 (2017). https://doi.org/10.1039/c7ta04735e
- Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song et al., Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8(33), 1802398 (2018). https://doi.org/10.1002/aenm.201802398
- T. Dong, J. Zhang, G. Xu, J. Chai, H. Du et al., A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11(5), 1197–1203 (2018). https://doi.org/10.1039/C7EE03365F
- J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12(1), 177–186 (2019). https://doi.org/10.1039/C8EE01879K
- Y. Zang, F. Pei, J.H. Huang, Z.H. Fu, G. Xu et al., Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802052 (2018). https://doi.org/10.1002/aenm.201802052
- C. Chen, L. Hu, Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51(12), 3154–3165 (2018). https://doi.org/10.1021/acs.accounts.8b00391
- H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), e2000682 (2021). https://doi.org/10.1002/adma.202000682
- X. Zhang, Z. Hu, Q. Sun, X. Liang, P. Gu et al., Bioinspired gradient stretchable aerogels for ultrabroad-range-response pressure-sensitive wearable electronics and high-efficient separators. Angew. Chem. Int. Ed. 62(1), e202213952 (2023). https://doi.org/10.1002/anie.202213952
- Y. Wang, L. Zhang, A. Lu, Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. J. Mater. Chem. A 8(28), 13935–13941 (2020). https://doi.org/10.1039/D0TA02010A
- Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao et al., Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 33(12), e2008486 (2021). https://doi.org/10.1002/adma.202008486
- S.Y. Oh, D.I. Yoo, Y. Shin, H.C. Kim, H.Y. Kim et al., Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340(15), 2376–2391 (2005). https://doi.org/10.1016/j.carres.2005.08.007
- M. Chen, X. Qian, J. Cai, J. Zhou, A. Lu, Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydr. Polym. 292, 119645 (2022). https://doi.org/10.1016/j.carbpol.2022.119645
- D. Ruan, L. Zhang, Y. Mao, M. Zeng, X. Li, Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution. J. Membr. Sci. 241(2), 265–274 (2004). https://doi.org/10.1016/j.memsci.2004.05.019
- C. Chen, Y. Xi, Y. Weng, Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers 14, 3335 (2022). https://doi.org/10.3390/polym14163335
- Y. Wang, L. Zhang, A. Lu, Transparent, antifreezing, ionic conductive cellulose hydrogel with stable sensitivity at subzero temperature. ACS Appl. Mater. Interfaces 11(44), 41710–41716 (2019). https://doi.org/10.1021/acsami.9b15849
- M. Chen, H. Wan, Y. Hu, F. Zhao, X. An et al., Rationally designed cellulose hydrogel for an ultrasensitive pressure sensor. Mater. Horiz. 10(10), 4510–4520 (2023). https://doi.org/10.1039/d3mh01051a
- H. Ding, Z. Xin, Y. Yang, Y. Luo, K. Xia et al., Ultrasensitive, low-voltage operational, and asymmetric ionic sensing hydrogel for multipurpose applications. Adv. Funct. Mater. 30(12), 1909616 (2020). https://doi.org/10.1002/adfm.201909616
- S. Han, Y. Hu, J. Wei, S. Li, P. Yang et al., A semi-interpenetrating poly(ionic liquid) network-driven low hysteresis and transparent hydrogel as a self-powered multifunctional sensor. Adv. Funct. Mater. 34(32), 2401607 (2024). https://doi.org/10.1002/adfm.202401607
- Y. Huang, P. Zhou, X. Zhang, Green synthesis of Ag-doped cellulose aerogel for highly sensitive, flame retardant strain sensors. Cellulose 29(16), 8719–8731 (2022). https://doi.org/10.1007/s10570-022-04802-4
- Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29(22), 1700321 (2017). https://doi.org/10.1002/adma.201700321
- C. Liu, L. Jiang, Y. Ouyang, Y. Feng, B. Zeng et al., Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures. Adv. Compos. Hybrid Mater. 6(3), 112 (2023). https://doi.org/10.1007/s42114-023-00693-6
- Y. Liu, J. Tao, Y. Mo, R. Bao, C. Pan, Ultrasensitive touch sensor for simultaneous tactile and slip sensing. Adv. Mater. 36(21), e2313857 (2024). https://doi.org/10.1002/adma.202313857
- Y. Ni, L. Liu, J. Huang, S. Li, Z. Chen et al., Rational designed microstructure pressure sensors with highly sensitive and wide detection range performance. J. Mater. Sci. Technol. 130, 184–192 (2022). https://doi.org/10.1016/j.jmst.2022.05.021
- Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32(27), 2201846 (2022). https://doi.org/10.1002/adfm.202201846
- L. Shi, Z. Li, M. Chen, T. Zhu, L. Wu, Ultrasensitive and ultraprecise pressure sensors for soft systems. Adv. Mater. 35(10), e2210091 (2023). https://doi.org/10.1002/adma.202210091
- Y. Tai, Z. Yang, Toward flexible wireless pressure-sensing device via ionic hydrogel microsphere for continuously mapping human-skin signals. Adv. Mater. Interfaces 4(20), 1700496 (2017). https://doi.org/10.1002/admi.201700496
- D. Yang, K. Zhao, R. Yang, S.-W. Zhou, M. Chen et al., A rational design of bio-derived disulfide CANs for wearable capacitive pressure sensor. Adv. Mater. 36(30), e2403880 (2024). https://doi.org/10.1002/adma.202403880
- H. Yuan, M. Wang, J. Zhang, J. Wang, Y. Le, Hydrogels from chrome shavings for a highly sensitive capacitive pressure sensor. J. Mater. Chem. A 12(16), 9797–9805 (2024). https://doi.org/10.1039/D4TA00702F
- H. Yuan, J. Zhang, J. Zhang, M. Wang, J. Wang et al., A “soft and hard” bioinspired hydrogel for enhanced pressure sensing. J. Mater. Chem. C 11(31), 10562–10572 (2023). https://doi.org/10.1039/d3tc01223a
- W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18(1 Pt 2), 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009
References
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
A. Ahmed, S. Sharma, B. Adak, Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4(4), e12295 (2022). https://doi.org/10.1002/inf2.12295
M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody et al., Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31(1), e1802084 (2019). https://doi.org/10.1002/adma.201802084
J. Chun, K.Y. Lee, C.-Y. Kang, M.W. Kim, S.-W. Kim et al., Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 24(14), 2038–2043 (2014). https://doi.org/10.1002/adfm.201302962
H. Shi, M. Al-Rubaiai, C.M. Holbrook, J. Miao, T. Pinto et al., Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Adv. Funct. Mater. 29(23), 1809116 (2019). https://doi.org/10.1002/adfm.201809116
S.R.A. Ruth, L. Beker, H. Tran, V.R. Feig, N. Matsuhisa et al., Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 30(29), 1903100 (2020). https://doi.org/10.1002/adfm.201903100
C.G. Núñez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27(18), 1606287 (2017). https://doi.org/10.1002/adfm.201606287
M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29(41), 1703700 (2017). https://doi.org/10.1002/adma.201703700
S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
K. He, Y. Hou, C. Yi, N. Li, F. Sui et al., High-performance zero-standby-power-consumption-under-bending pressure sensors for artificial reflex arc. Nano Energy 73, 104743 (2020). https://doi.org/10.1016/j.nanoen.2020.104743
Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
M. Ramuz, B.C. Tee, J.B. Tok, Z. Bao, Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24(24), 3223–3227 (2012). https://doi.org/10.1002/adma.201200523
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
M.L. Hammock, A. Chortos, B.C. Tee, J.B. Tok, Z. Bao, 25th anniversary : the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013). https://doi.org/10.1002/adma.201302240
K.-H. Ha, W. Zhang, H. Jang, S. Kang, L. Wang et al., Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 33(48), e2103320 (2021). https://doi.org/10.1002/adma.202103320
S.C.B. Mannsfeld, B.C. Tee, R.M. Stoltenberg, C.V.H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010). https://doi.org/10.1038/nmat2834
L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13(1), 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang et al., High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa−1. Nano-Micro Lett. 14(1), 21 (2021). https://doi.org/10.1007/s40820-021-00770-9
J. Wang, J. Jiu, T. Araki, M. Nogi, T. Sugahara et al., Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors. Nano-Micro Lett. 7(1), 51–58 (2015). https://doi.org/10.1007/s40820-014-0018-0
M. Zhou, D. Chen, Q. Chen, P. Chen, G. Song et al., Reversible surface engineering of cellulose elementary fibrils: from ultralong nanocelluloses to advanced cellulosic materials. Adv. Mater. 36(21), e2312220 (2024). https://doi.org/10.1002/adma.202312220
D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), e2000619 (2021). https://doi.org/10.1002/adma.202000619
X. Feng, X. Wang, M. Wang, S. Zhou, C. Dang et al., Novel PEDOT dispersion by in situ polymerization based on sulfated nanocellulose. Chem. Eng. J. 418, 129533 (2021). https://doi.org/10.1016/j.cej.2021.129533
A. Hänninen, E. Sarlin, I. Lyyra, T. Salpavaara, M. Kellomäki et al., Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydr. Polym. 202, 418–424 (2018). https://doi.org/10.1016/j.carbpol.2018.09.001
D. Zhao, C. Chen, Q. Zhang, W. Chen, S. Liu et al., High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7(18), 1700739 (2017). https://doi.org/10.1002/aenm.201700739
W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31(41), e1902977 (2019). https://doi.org/10.1002/adma.201902977
H. Chen, T. Liu, J. Mou, W. Zhang, Z. Jiang et al., Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63, 103836 (2019). https://doi.org/10.1016/j.nanoen.2019.06.032
H. Hu, T. Hua, An easily manipulated protocol for patterning of mxenes on paper for planar micro-supercapacitors. J. Mater. Chem. A 5, 19639–19648 (2017). https://doi.org/10.1039/c7ta04735e
Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song et al., Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8(33), 1802398 (2018). https://doi.org/10.1002/aenm.201802398
T. Dong, J. Zhang, G. Xu, J. Chai, H. Du et al., A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11(5), 1197–1203 (2018). https://doi.org/10.1039/C7EE03365F
J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12(1), 177–186 (2019). https://doi.org/10.1039/C8EE01879K
Y. Zang, F. Pei, J.H. Huang, Z.H. Fu, G. Xu et al., Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802052 (2018). https://doi.org/10.1002/aenm.201802052
C. Chen, L. Hu, Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51(12), 3154–3165 (2018). https://doi.org/10.1021/acs.accounts.8b00391
H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), e2000682 (2021). https://doi.org/10.1002/adma.202000682
X. Zhang, Z. Hu, Q. Sun, X. Liang, P. Gu et al., Bioinspired gradient stretchable aerogels for ultrabroad-range-response pressure-sensitive wearable electronics and high-efficient separators. Angew. Chem. Int. Ed. 62(1), e202213952 (2023). https://doi.org/10.1002/anie.202213952
Y. Wang, L. Zhang, A. Lu, Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. J. Mater. Chem. A 8(28), 13935–13941 (2020). https://doi.org/10.1039/D0TA02010A
Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao et al., Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 33(12), e2008486 (2021). https://doi.org/10.1002/adma.202008486
S.Y. Oh, D.I. Yoo, Y. Shin, H.C. Kim, H.Y. Kim et al., Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340(15), 2376–2391 (2005). https://doi.org/10.1016/j.carres.2005.08.007
M. Chen, X. Qian, J. Cai, J. Zhou, A. Lu, Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydr. Polym. 292, 119645 (2022). https://doi.org/10.1016/j.carbpol.2022.119645
D. Ruan, L. Zhang, Y. Mao, M. Zeng, X. Li, Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution. J. Membr. Sci. 241(2), 265–274 (2004). https://doi.org/10.1016/j.memsci.2004.05.019
C. Chen, Y. Xi, Y. Weng, Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers 14, 3335 (2022). https://doi.org/10.3390/polym14163335
Y. Wang, L. Zhang, A. Lu, Transparent, antifreezing, ionic conductive cellulose hydrogel with stable sensitivity at subzero temperature. ACS Appl. Mater. Interfaces 11(44), 41710–41716 (2019). https://doi.org/10.1021/acsami.9b15849
M. Chen, H. Wan, Y. Hu, F. Zhao, X. An et al., Rationally designed cellulose hydrogel for an ultrasensitive pressure sensor. Mater. Horiz. 10(10), 4510–4520 (2023). https://doi.org/10.1039/d3mh01051a
H. Ding, Z. Xin, Y. Yang, Y. Luo, K. Xia et al., Ultrasensitive, low-voltage operational, and asymmetric ionic sensing hydrogel for multipurpose applications. Adv. Funct. Mater. 30(12), 1909616 (2020). https://doi.org/10.1002/adfm.201909616
S. Han, Y. Hu, J. Wei, S. Li, P. Yang et al., A semi-interpenetrating poly(ionic liquid) network-driven low hysteresis and transparent hydrogel as a self-powered multifunctional sensor. Adv. Funct. Mater. 34(32), 2401607 (2024). https://doi.org/10.1002/adfm.202401607
Y. Huang, P. Zhou, X. Zhang, Green synthesis of Ag-doped cellulose aerogel for highly sensitive, flame retardant strain sensors. Cellulose 29(16), 8719–8731 (2022). https://doi.org/10.1007/s10570-022-04802-4
Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29(22), 1700321 (2017). https://doi.org/10.1002/adma.201700321
C. Liu, L. Jiang, Y. Ouyang, Y. Feng, B. Zeng et al., Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures. Adv. Compos. Hybrid Mater. 6(3), 112 (2023). https://doi.org/10.1007/s42114-023-00693-6
Y. Liu, J. Tao, Y. Mo, R. Bao, C. Pan, Ultrasensitive touch sensor for simultaneous tactile and slip sensing. Adv. Mater. 36(21), e2313857 (2024). https://doi.org/10.1002/adma.202313857
Y. Ni, L. Liu, J. Huang, S. Li, Z. Chen et al., Rational designed microstructure pressure sensors with highly sensitive and wide detection range performance. J. Mater. Sci. Technol. 130, 184–192 (2022). https://doi.org/10.1016/j.jmst.2022.05.021
Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32(27), 2201846 (2022). https://doi.org/10.1002/adfm.202201846
L. Shi, Z. Li, M. Chen, T. Zhu, L. Wu, Ultrasensitive and ultraprecise pressure sensors for soft systems. Adv. Mater. 35(10), e2210091 (2023). https://doi.org/10.1002/adma.202210091
Y. Tai, Z. Yang, Toward flexible wireless pressure-sensing device via ionic hydrogel microsphere for continuously mapping human-skin signals. Adv. Mater. Interfaces 4(20), 1700496 (2017). https://doi.org/10.1002/admi.201700496
D. Yang, K. Zhao, R. Yang, S.-W. Zhou, M. Chen et al., A rational design of bio-derived disulfide CANs for wearable capacitive pressure sensor. Adv. Mater. 36(30), e2403880 (2024). https://doi.org/10.1002/adma.202403880
H. Yuan, M. Wang, J. Zhang, J. Wang, Y. Le, Hydrogels from chrome shavings for a highly sensitive capacitive pressure sensor. J. Mater. Chem. A 12(16), 9797–9805 (2024). https://doi.org/10.1039/D4TA00702F
H. Yuan, J. Zhang, J. Zhang, M. Wang, J. Wang et al., A “soft and hard” bioinspired hydrogel for enhanced pressure sensing. J. Mater. Chem. C 11(31), 10562–10572 (2023). https://doi.org/10.1039/d3tc01223a
W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18(1 Pt 2), 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009