Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction
Corresponding Author: Pinxian Xi
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 63
Abstract
Effective and robust catalyst is the core of water splitting to produce hydrogen. Here, we report an anionic etching method to tailor the sulfur vacancy (VS) of NiS2 to further enhance the electrocatalytic performance for hydrogen evolution reaction (HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS2-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential (68 mV) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy (ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S- H* peak of the NiS2-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the NiS2-VS 5.9% has the optimal |ΔGH*| of 0.17 eV. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy.
Highlights:
1 The Ar plasma etching strategy was introduced to homogeneously distributed S-vacancies (VS) into the NiS2 nanosheets (NiS2-VS).
2 Build the relationship between sulfur vacancy and H absorption and find that NiS2-VS 5.9% performs outstanding hydrogen evolution reaction performance and remarkable stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
- C. Costentin, J.-M. Savéant, Towards an intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 87 (2017). https://doi.org/10.1038/s41570-017-0087
- T. Wang, X. Cao, L. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 1(1), 69–74 (2021). https://doi.org/10.1016/j.esci.2021.09.002
- C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters et al., Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). https://doi.org/10.1021/ja510442p
- H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33, e2007508 (2021). https://doi.org/10.1002/adma.202007508
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
- F. Li, G.-F. Han, H.-J. Noh, Y. Lu, J. Xu et al., Construction of porous Mo3P/Mo nanobelts as catalysts for efficient water splitting. Angew. Chem. Int. Ed. 57(43), 14139–14143 (2018). https://doi.org/10.1002/anie.201808844
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
- J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–914 (2006). https://doi.org/10.1038/nmat1752
- J.K. Norskov, C.H. Christensen, Toward efficient hydrogen production at surfaces. Science 312(5778), 1322–1323 (2006). https://doi.org/10.1126/science.1127180
- T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110(11), 6474–6502 (2010). https://doi.org/10.1021/cr100246c
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50(4), 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
- G. Li, D. Zhang, Y. Yu, S. Huang, W. Yang et al., Activating MoS2 for pH-universal hydrogen evolution catalysis. J. Am. Chem. Soc. 139(45), 16194–16200 (2017). https://doi.org/10.1021/jacs.7b07450
- L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
- J.M. Falkowski, N.M. Concannon, B. Yan, Y. Surendranath, Heazlewoodite, Ni3S2: A potent catalyst for oxygen reduction to water under benign conditions. J. Am. Chem. Soc. 137(25), 7978–7981 (2015). https://doi.org/10.1021/jacs.5b03426
- W. Zhou, J.-L. Zheng, Y.-H. Yue, L. Guo, Highly stable rGO-wrapped Ni3S2 nanobowls: Structure fabrication and superior long-life electrochemical performance in LIBs. Nano Energy 11, 428–435 (2015). https://doi.org/10.1016/j.nanoen.2014.11.022
- X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu et al., Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142(9), 4298–4308 (2020). https://doi.org/10.1021/jacs.9b12113
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao et al., Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 30(29), e1801351 (2018). https://doi.org/10.1002/adma.201801351
- L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi et al., Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349(6246), 412–416 (2015). https://doi.org/10.1126/science.aab0801
- Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 54(25), 7234–7254 (2015). https://doi.org/10.1002/anie.201411540
- Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14, 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
- C.Y. Zhang, C. Zhang, J.L. Pan, G.W. Sun, Z. Shi et al., Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience 2(4), 405–415 (2022). https://doi.org/10.1016/j.esci.2022.07.001
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- M. Ha, D.Y. Kim, M. Umer, V. Gladkikh, C.W. Myung et al., Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ. Sci. 14(6), 3455–3468 (2021). https://doi.org/10.1039/D1EE00154J
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- W. Wang, J. Li, Q. Jin, Y. Liu, Y. Zhang et al., Rational construction of sulfur-deficient NiCo2S4–x hollow microspheres as an effective polysulfide immobilizer toward high-performance lithium/sulfur batteries. ACS Appl. Energy Mater. 4(2), 1687–1695 (2021). https://doi.org/10.1021/acsaem.0c02839
- Q. Fu, X. Wang, J. Han, J. Zhong, T. Zhang et al., Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem. Int. Ed. 60(1), 259–267 (2021). https://doi.org/10.1002/anie.202011318
- J. Zhang, L. Zhang, L. Du, H.L. Xin, J.B. Goodenough et al., Composition-tunable antiperovskite CuxIn1-xNNi3 as superior electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 59(40), 17488–17493 (2020). https://doi.org/10.1002/anie.202007883
- J. Liu, Z. Wang, D. Zhang, Y. Qin, J. Xiong et al., Systematic engineering on Ni-based nanocatalysts effectively promote hydrogen evolution reaction. Small 18(13), e2108072 (2022). https://doi.org/10.1002/smll.202108072
- W. Ma, D. Liu, F. Gao, Z. Lv, X. Lv et al., P-doped MoS2/Ni2P/Ti3C2Tx heterostructures for efficient hydrogen evolution reaction in alkaline media. J. Am. Ceram. Soc. 105(10), 6096–6104 (2022). https://doi.org/10.1111/jace.18622
- C. Cai, K. Liu, L. Zhang, F. Li, Y. Tan et al., Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angew. Chem. Int. Ed. 62(26), e202300873 (2023). https://doi.org/10.1002/anie.202300873
- F. Gong, Y. Liu, Y. Zhao, W. Liu, G. Zeng et al., Universal sub-nanoreactor strategy for synthesis of yolk-shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction. Angew. Chem. Int. Ed. 62(40), e202308091 (2023). https://doi.org/10.1002/anie.202308091
- Y. Zhang, P. Guo, S. Guo, X. Xin, Y. Wang et al., Gradient heating epitaxial growth gives well lattice-matched Mo2C–Mo2N heterointerfaces that boost both electrocatalytic hydrogen evolution and water vapor splitting. Angew. Chem. Int. Ed. 61(47), e202209703 (2022). https://doi.org/10.1002/anie.202209703
- C. Sun, C. Wang, H. Xie, G. Han, Y. Zhang et al., 2D cobalt chalcogenide heteronanostructures enable efficient alkaline hydrogen evolution reaction. Small 19(35), e2302056 (2023). https://doi.org/10.1002/smll.202302056
- Z. Wang, K. Chi, S. Yang, J. Xiao, F. Xiao et al., Optimizing the electronic structure of atomically dispersed Ru sites with CoP for highly efficient hydrogen evolution in both alkaline and acidic media. Small 19(28), e2301403 (2023). https://doi.org/10.1002/smll.202301403
- X. Liu, Q. Hu, B. Zhu, G. Li, L. Fan et al., Boosting electrochemical hydrogen evolution of porous metal phosphides nanosheets by coating defective TiO2 overlayers. Small 14(42), e1802755 (2018). https://doi.org/10.1002/smll.201802755
- C. Tang, Q. Hu, F. Li, C. He, X. Chai et al., Coupled molybdenum carbide and nitride on carbon nanosheets: an efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline media. Electrochim. Acta 280, 323–331 (2018). https://doi.org/10.1016/j.electacta.2018.05.129
- H. Lin, Z. Shi, S. He, X. Yu, S. Wang et al., Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 7(5), 3399–3405 (2016). https://doi.org/10.1039/c6sc00077k
References
H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
C. Costentin, J.-M. Savéant, Towards an intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 87 (2017). https://doi.org/10.1038/s41570-017-0087
T. Wang, X. Cao, L. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 1(1), 69–74 (2021). https://doi.org/10.1016/j.esci.2021.09.002
C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters et al., Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). https://doi.org/10.1021/ja510442p
H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33, e2007508 (2021). https://doi.org/10.1002/adma.202007508
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
F. Li, G.-F. Han, H.-J. Noh, Y. Lu, J. Xu et al., Construction of porous Mo3P/Mo nanobelts as catalysts for efficient water splitting. Angew. Chem. Int. Ed. 57(43), 14139–14143 (2018). https://doi.org/10.1002/anie.201808844
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–914 (2006). https://doi.org/10.1038/nmat1752
J.K. Norskov, C.H. Christensen, Toward efficient hydrogen production at surfaces. Science 312(5778), 1322–1323 (2006). https://doi.org/10.1126/science.1127180
T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110(11), 6474–6502 (2010). https://doi.org/10.1021/cr100246c
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50(4), 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
G. Li, D. Zhang, Y. Yu, S. Huang, W. Yang et al., Activating MoS2 for pH-universal hydrogen evolution catalysis. J. Am. Chem. Soc. 139(45), 16194–16200 (2017). https://doi.org/10.1021/jacs.7b07450
L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
J.M. Falkowski, N.M. Concannon, B. Yan, Y. Surendranath, Heazlewoodite, Ni3S2: A potent catalyst for oxygen reduction to water under benign conditions. J. Am. Chem. Soc. 137(25), 7978–7981 (2015). https://doi.org/10.1021/jacs.5b03426
W. Zhou, J.-L. Zheng, Y.-H. Yue, L. Guo, Highly stable rGO-wrapped Ni3S2 nanobowls: Structure fabrication and superior long-life electrochemical performance in LIBs. Nano Energy 11, 428–435 (2015). https://doi.org/10.1016/j.nanoen.2014.11.022
X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu et al., Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142(9), 4298–4308 (2020). https://doi.org/10.1021/jacs.9b12113
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao et al., Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 30(29), e1801351 (2018). https://doi.org/10.1002/adma.201801351
L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi et al., Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349(6246), 412–416 (2015). https://doi.org/10.1126/science.aab0801
Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 54(25), 7234–7254 (2015). https://doi.org/10.1002/anie.201411540
Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14, 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
C.Y. Zhang, C. Zhang, J.L. Pan, G.W. Sun, Z. Shi et al., Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. eScience 2(4), 405–415 (2022). https://doi.org/10.1016/j.esci.2022.07.001
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
M. Ha, D.Y. Kim, M. Umer, V. Gladkikh, C.W. Myung et al., Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ. Sci. 14(6), 3455–3468 (2021). https://doi.org/10.1039/D1EE00154J
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
W. Wang, J. Li, Q. Jin, Y. Liu, Y. Zhang et al., Rational construction of sulfur-deficient NiCo2S4–x hollow microspheres as an effective polysulfide immobilizer toward high-performance lithium/sulfur batteries. ACS Appl. Energy Mater. 4(2), 1687–1695 (2021). https://doi.org/10.1021/acsaem.0c02839
Q. Fu, X. Wang, J. Han, J. Zhong, T. Zhang et al., Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem. Int. Ed. 60(1), 259–267 (2021). https://doi.org/10.1002/anie.202011318
J. Zhang, L. Zhang, L. Du, H.L. Xin, J.B. Goodenough et al., Composition-tunable antiperovskite CuxIn1-xNNi3 as superior electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 59(40), 17488–17493 (2020). https://doi.org/10.1002/anie.202007883
J. Liu, Z. Wang, D. Zhang, Y. Qin, J. Xiong et al., Systematic engineering on Ni-based nanocatalysts effectively promote hydrogen evolution reaction. Small 18(13), e2108072 (2022). https://doi.org/10.1002/smll.202108072
W. Ma, D. Liu, F. Gao, Z. Lv, X. Lv et al., P-doped MoS2/Ni2P/Ti3C2Tx heterostructures for efficient hydrogen evolution reaction in alkaline media. J. Am. Ceram. Soc. 105(10), 6096–6104 (2022). https://doi.org/10.1111/jace.18622
C. Cai, K. Liu, L. Zhang, F. Li, Y. Tan et al., Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angew. Chem. Int. Ed. 62(26), e202300873 (2023). https://doi.org/10.1002/anie.202300873
F. Gong, Y. Liu, Y. Zhao, W. Liu, G. Zeng et al., Universal sub-nanoreactor strategy for synthesis of yolk-shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction. Angew. Chem. Int. Ed. 62(40), e202308091 (2023). https://doi.org/10.1002/anie.202308091
Y. Zhang, P. Guo, S. Guo, X. Xin, Y. Wang et al., Gradient heating epitaxial growth gives well lattice-matched Mo2C–Mo2N heterointerfaces that boost both electrocatalytic hydrogen evolution and water vapor splitting. Angew. Chem. Int. Ed. 61(47), e202209703 (2022). https://doi.org/10.1002/anie.202209703
C. Sun, C. Wang, H. Xie, G. Han, Y. Zhang et al., 2D cobalt chalcogenide heteronanostructures enable efficient alkaline hydrogen evolution reaction. Small 19(35), e2302056 (2023). https://doi.org/10.1002/smll.202302056
Z. Wang, K. Chi, S. Yang, J. Xiao, F. Xiao et al., Optimizing the electronic structure of atomically dispersed Ru sites with CoP for highly efficient hydrogen evolution in both alkaline and acidic media. Small 19(28), e2301403 (2023). https://doi.org/10.1002/smll.202301403
X. Liu, Q. Hu, B. Zhu, G. Li, L. Fan et al., Boosting electrochemical hydrogen evolution of porous metal phosphides nanosheets by coating defective TiO2 overlayers. Small 14(42), e1802755 (2018). https://doi.org/10.1002/smll.201802755
C. Tang, Q. Hu, F. Li, C. He, X. Chai et al., Coupled molybdenum carbide and nitride on carbon nanosheets: an efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline media. Electrochim. Acta 280, 323–331 (2018). https://doi.org/10.1016/j.electacta.2018.05.129
H. Lin, Z. Shi, S. He, X. Yu, S. Wang et al., Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 7(5), 3399–3405 (2016). https://doi.org/10.1039/c6sc00077k