Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting
Corresponding Author: John Wang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 2
Abstract
The development of efficient earth-abundant electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions (ORR, OER, and HER) is important for future energy conversion and energy storage devices, for which both rechargeable Zn–air batteries and water splitting have raised great expectations. Herein, we report a single-phase bimetallic nickel cobalt sulfide ((Ni,Co)S2) as an efficient electrocatalyst for both OER and ORR. Owing to the synergistic combination of Ni and Co, the (Ni,Co)S2 exhibits superior electrocatalytic performance for ORR, OER, and HER in an alkaline electrolyte, and the first principle calculation results indicate that the reaction of an adsorbed O atom with a H2O molecule to form a *OOH is the potential limiting step in the OER. Importantly, it could be utilized as an advanced air electrode material in Zn–air batteries, which shows an enhanced charge–discharge performance (charging voltage of 1.71 V and discharge voltage of 1.26 V at 2 mA cm−2), large specific capacity (842 mAh g−1Zn at 5 mA cm−2), and excellent cycling stability (480 h). Interestingly, the (Ni,Co)S2-based Zn–air battery can efficiently power an electrochemical water-splitting unit with (Ni,Co)S2 serving as both the electrodes. This reveals that the prepared (Ni,Co)S2 has promising applications in future energy conversion and energy storage devices.
Highlights:
1 Bimetallic nickel cobalt sulfide (Ni,Co)S2 nanosheet arrays were demonstrated as a multifunctional catalyst for OER, HER, and ORR.
2 First principle calculations were performed to probe the rate-limiting step, which involves the formation of *OOH from HO− on the (Ni,Co)S2 surface.
3 A water-splitting system was designed with the (Ni,Co)S2 serving as both cathode and anode, and a Zn–air battery cathode electrocatalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.S. Lee, G. Nam, J. Sun, S. Higashi, H.W. Lee, S. Lee, W. Chen, Y. Cui, J. Cho, Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn–air battery. Adv. Energy Mater. 6(22), 1601052 (2016). https://doi.org/10.1002/aenm.201601052
- H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261
- J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
- F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- C. Lin, S.S. Shinde, Y. Wang, Y. Sun, S. Chen, H. Zhang, J.H. Lee, Flexible and rechargeable Zn–air batteries based on green feedstocks with 75% round-trip efficiency. Sustain. Energy Fuels 1(9), 1909–1914 (2017). https://doi.org/10.1039/C7SE00346C
- J.S. Lee, S. Tai Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Metal-air batteries with high energy density: Li-air versus Zn–air. Adv. Energy Mater. 1(1), 34–50 (2011). https://doi.org/10.1002/aenm.201000010
- B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1(1), 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
- T. Liu, X. Ma, D. Liu, S. Hao, G. Du et al., Mn doping of cop nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 7(1), 98–102 (2016). https://doi.org/10.1021/acscatal.6b02849
- P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess, Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catal. 7(1), 103–109 (2016). https://doi.org/10.1021/acscatal.6b02666
- L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li et al., Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318), 1410–1414 (2016). https://doi.org/10.1126/science.aah6133
- S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, Y. Román-Leshkov, Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
- J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, D. Yuan, Synthesis of 3D hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
- J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134(41), 17253–17261 (2012). https://doi.org/10.1021/ja307507a
- J. Yin, Y. Li, F. Lv, Q. Fan, Y.Q. Zhao et al., NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries. ACS Nano 11(2), 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
- J.X. Feng, L.X. Ding, S.H. Ye, X.J. He, H. Xu, Y.X. Tong, G.R. Li, Co(OH)2 @PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 27(44), 7051–7057 (2015). https://doi.org/10.1002/adma.201503187
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, R.B. Wehrspohn, Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 28(14), 1706847 (2018). https://doi.org/10.1002/adfm.201706847
- Z. Liu, Y. Wang, R. Chen, C. Chen, H. Yang, J. Ma, S. Wang, Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution. J. Power Sources 403, 90–96 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.078
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
- J. Wang, K. Li, H.X. Zhong, D. Xu, Z.L. Wang, Z. Jiang, X.B. Zhang, Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water–oxidation performance. Angew. Chem. Int. Ed. 54(36), 10530–10534 (2015). https://doi.org/10.1002/anie.201504358
- C. Lin, S.S. Shinde, Z. Jiang, X. Song, Y. Sun, L. Guo, J.H. Lee, In situ directional formation of Co@CoOx embedded 1D carbon nanotubes as an efficient oxygen electrocatalyst for ultra-high rate Zn–air batteries. J. Mater. Chem. A 5(27), 13994–14002 (2017). https://doi.org/10.1039/C7TA02215H
- J. Jiang, M. Gao, W. Sheng, Y. Yan, Hollow chevrel-phase NiMo3S4 for hydrogen evolution in alkaline electrolytes. Angew. Chem. Int. Ed. 55(49), 15240–15245 (2016). https://doi.org/10.1002/anie.201607651
- G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson et al., All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138(51), 16632–16638 (2016). https://doi.org/10.1021/jacs.6b05940
- L. Jia, X. Sun, Y. Jiang, S. Yu, C. Wang, A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv. Funct. Mater. 25(12), 1814–1820 (2015). https://doi.org/10.1002/adfm.201401814
- F. Wang, Y. Li, T.A. Shifa, K. Liu, F. Wang, Z. Wang, J. He, Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem. Int. Ed. 55(24), 6919–6924 (2016). https://doi.org/10.1002/anie.201602802
- H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54(21), 6325–6329 (2015). https://doi.org/10.1002/anie.201501419
- B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen, Y. Tang, Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 28(19), 6934–6941 (2016). https://doi.org/10.1021/acs.chemmater.6b02610
- L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, B. Geng, A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 53(29), 7547–7551 (2014). https://doi.org/10.1002/anie.201404208
- P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu et al., Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem. Int. Ed. 55(7), 2488–2492 (2016). https://doi.org/10.1002/anie.201511032
- Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang et al., Heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29(17), 1700017 (2017). https://doi.org/10.1002/adma.201700017
- Y. Wang, M. Qiao, Y. Li, S. Wang, Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 14(17), 1800136 (2018). https://doi.org/10.1002/smll.201800136
- Z.L. Wang, X.F. Hao, Z. Jiang, X.P. Sun, D. Xu, J. Wang, X.B. Zhang, C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 137(48), 15070–15073 (2015). https://doi.org/10.1021/jacs.5b09021
- K.H. Liu, H.X. Zhong, S.J. Li, Y.X. Duan, M.M. Shi, X.B. Zhang, Q. Jiang, Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Prog. Mater Sci. 92, 64 (2018). https://doi.org/10.1016/j.pmatsci.2017.09.001
- D. Liu, L. Tao, D. Yan, Y. Zou, S. Wang, Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. Chem. Electro. Chem. 5(14), 1775–1785 (2018). https://doi.org/10.1002/celc.201800086
- J. Yin, Y. Li, F. Lv, M. Lu, K. Sun et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
- N. Kornienko, J. Resasco, N. Becknell, C.M. Jiang, Y.S. Liu et al., Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137(23), 7448–7455 (2015). https://doi.org/10.1021/jacs.5b03545
- H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 11(11), 11574–11583 (2017). https://doi.org/10.1021/acsnano.7b06501
- Y. Qu, M. Yang, J. Chai, Z. Tang, M. Shao et al., Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9(7), 5959–5967 (2017). https://doi.org/10.1021/acsami.6b13244
- J. Zhang, Y. Liu, C. Sun, P. Xi, S. Peng, D. Gao, D. Xue, Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Lett. 3(4), 779–786 (2018). https://doi.org/10.1021/acsenergylett.8b00066
- J. Zhang, B. Xiao, X. Liu, P. Liu, P. Xi, W. Xiao, J. Ding, D. Gao, D. Xue, Copper dopants improved the hydrogen evolution activity of earth-abundant cobalt pyrite catalysts by activating the electrocatalytically inert sulfur sites. J. Mater. Chem. A 5(33), 17601–17608 (2017). https://doi.org/10.1039/C7TA05433E
- M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14(12), 1245–1251 (2015). https://doi.org/10.1038/nmat4410
- H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlogl, H.N. Alshareef, Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 16(12), 7718–7725 (2016). https://doi.org/10.1021/acs.nanolett.6b03803
- K. Liang, K. Marcus, S. Zhang, L. Zhou, Y. Li, S.T. De Oliveira, N. Orlovskaya, Y.H. Sohn, Y. Yang, NiS2/FeS holey film as freestanding electrode for high-performance lithium battery. Adv. Energy Mater. 7(22), 1701309 (2017). https://doi.org/10.1002/aenm.201701309
- H. Zhang, Y. Li, T. Xu, J. Wang, Z. Huo, P. Wan, X. Sun, Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 3(29), 15020–15023 (2015). https://doi.org/10.1039/C5TA03410H
- X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, P.H. Tan, Shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 87(11), 1504–1509 (2012). https://doi.org/10.1103/PhysRevB.87.115413
- J. Zhang, W. Xiao, P. Xi, S. Xi, Y. Du, D. Gao, J. Ding, Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies. ACS Energy Lett. 2(5), 1022–1028 (2017). https://doi.org/10.1021/acsenergylett.7b00270
- L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang, C. Yuan, Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28(13), 1705921 (2018). https://doi.org/10.1002/adfm.201705921
- X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie, Z. Wang, Prussian blue analogues derived penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. ACS Catal. 7(9), 6394–6399 (2017). https://doi.org/10.1021/acscatal.7b02079
- D. Susac, L. Zhu, M. Teo, A. Sode, K.C. Wong, P.C. Wong, S.A. Campbell, Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J. Phys. Chem. C 111(50), 18715–18723 (2007). https://doi.org/10.1021/jp073395i
- T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao, M. Cao, In situ coupling of Co0.85Se and n-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. J. Mater. Chem. A 5(15), 7001–7014 (2017). https://doi.org/10.1039/C7TA01453H
- D. Yoon, B. Seo, J. Lee, K.S. Nam, B. Kim, S. Park, H. Baik, S. Hoon Joo, K. Lee, Facet-controlled hollow RhS2 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ. Sci. 9(3), 850–856 (2016). https://doi.org/10.1039/C5EE03456F
- J. Miao, F.X. Xiao, H.B. Yang, S.Y. Khoo, J. Chen, Z. Fan, B. Liu, Hierarchical Ni–Mo–S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 1(7), e1500259 (2015). https://doi.org/10.1126/sciadv.1500259
- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
- Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y.Q. Zhao, P. Xi, Metallic CuCo2S4 nanosheets of atomic thickness as efficient bifunctional electrocatalysts for portable, flexible Zn–air batteries. Nanoscale 10(14), 6581–6588 (2018). https://doi.org/10.1039/C8NR01381K
- J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607(1–2), 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
- P. Liu, D. Gao, W. Xiao, L. Ma, K. Sun, P. Xi, D. Xue, J. Wang, Self-powered water-splitting devices by core–shell NiFe@N-graphite-based Zn–air batteries. Adv. Funct. Mater. 28(14), 1706928 (2018). https://doi.org/10.1002/adfm.201706928
- C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942
References
J.S. Lee, G. Nam, J. Sun, S. Higashi, H.W. Lee, S. Lee, W. Chen, Y. Cui, J. Cho, Composites of a prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn–air battery. Adv. Energy Mater. 6(22), 1601052 (2016). https://doi.org/10.1002/aenm.201601052
H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
C. Lin, S.S. Shinde, Y. Wang, Y. Sun, S. Chen, H. Zhang, J.H. Lee, Flexible and rechargeable Zn–air batteries based on green feedstocks with 75% round-trip efficiency. Sustain. Energy Fuels 1(9), 1909–1914 (2017). https://doi.org/10.1039/C7SE00346C
J.S. Lee, S. Tai Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Metal-air batteries with high energy density: Li-air versus Zn–air. Adv. Energy Mater. 1(1), 34–50 (2011). https://doi.org/10.1002/aenm.201000010
B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1(1), 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
T. Liu, X. Ma, D. Liu, S. Hao, G. Du et al., Mn doping of cop nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 7(1), 98–102 (2016). https://doi.org/10.1021/acscatal.6b02849
P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess, Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catal. 7(1), 103–109 (2016). https://doi.org/10.1021/acscatal.6b02666
L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li et al., Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318), 1410–1414 (2016). https://doi.org/10.1126/science.aah6133
S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, Y. Román-Leshkov, Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, D. Yuan, Synthesis of 3D hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134(41), 17253–17261 (2012). https://doi.org/10.1021/ja307507a
J. Yin, Y. Li, F. Lv, Q. Fan, Y.Q. Zhao et al., NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries. ACS Nano 11(2), 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
J.X. Feng, L.X. Ding, S.H. Ye, X.J. He, H. Xu, Y.X. Tong, G.R. Li, Co(OH)2 @PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 27(44), 7051–7057 (2015). https://doi.org/10.1002/adma.201503187
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, R.B. Wehrspohn, Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 28(14), 1706847 (2018). https://doi.org/10.1002/adfm.201706847
Z. Liu, Y. Wang, R. Chen, C. Chen, H. Yang, J. Ma, S. Wang, Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution. J. Power Sources 403, 90–96 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.078
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
J. Wang, K. Li, H.X. Zhong, D. Xu, Z.L. Wang, Z. Jiang, X.B. Zhang, Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water–oxidation performance. Angew. Chem. Int. Ed. 54(36), 10530–10534 (2015). https://doi.org/10.1002/anie.201504358
C. Lin, S.S. Shinde, Z. Jiang, X. Song, Y. Sun, L. Guo, J.H. Lee, In situ directional formation of Co@CoOx embedded 1D carbon nanotubes as an efficient oxygen electrocatalyst for ultra-high rate Zn–air batteries. J. Mater. Chem. A 5(27), 13994–14002 (2017). https://doi.org/10.1039/C7TA02215H
J. Jiang, M. Gao, W. Sheng, Y. Yan, Hollow chevrel-phase NiMo3S4 for hydrogen evolution in alkaline electrolytes. Angew. Chem. Int. Ed. 55(49), 15240–15245 (2016). https://doi.org/10.1002/anie.201607651
G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson et al., All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138(51), 16632–16638 (2016). https://doi.org/10.1021/jacs.6b05940
L. Jia, X. Sun, Y. Jiang, S. Yu, C. Wang, A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv. Funct. Mater. 25(12), 1814–1820 (2015). https://doi.org/10.1002/adfm.201401814
F. Wang, Y. Li, T.A. Shifa, K. Liu, F. Wang, Z. Wang, J. He, Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem. Int. Ed. 55(24), 6919–6924 (2016). https://doi.org/10.1002/anie.201602802
H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54(21), 6325–6329 (2015). https://doi.org/10.1002/anie.201501419
B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen, Y. Tang, Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 28(19), 6934–6941 (2016). https://doi.org/10.1021/acs.chemmater.6b02610
L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, B. Geng, A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 53(29), 7547–7551 (2014). https://doi.org/10.1002/anie.201404208
P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu et al., Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem. Int. Ed. 55(7), 2488–2492 (2016). https://doi.org/10.1002/anie.201511032
Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang et al., Heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29(17), 1700017 (2017). https://doi.org/10.1002/adma.201700017
Y. Wang, M. Qiao, Y. Li, S. Wang, Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 14(17), 1800136 (2018). https://doi.org/10.1002/smll.201800136
Z.L. Wang, X.F. Hao, Z. Jiang, X.P. Sun, D. Xu, J. Wang, X.B. Zhang, C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 137(48), 15070–15073 (2015). https://doi.org/10.1021/jacs.5b09021
K.H. Liu, H.X. Zhong, S.J. Li, Y.X. Duan, M.M. Shi, X.B. Zhang, Q. Jiang, Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Prog. Mater Sci. 92, 64 (2018). https://doi.org/10.1016/j.pmatsci.2017.09.001
D. Liu, L. Tao, D. Yan, Y. Zou, S. Wang, Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. Chem. Electro. Chem. 5(14), 1775–1785 (2018). https://doi.org/10.1002/celc.201800086
J. Yin, Y. Li, F. Lv, M. Lu, K. Sun et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
N. Kornienko, J. Resasco, N. Becknell, C.M. Jiang, Y.S. Liu et al., Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137(23), 7448–7455 (2015). https://doi.org/10.1021/jacs.5b03545
H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 11(11), 11574–11583 (2017). https://doi.org/10.1021/acsnano.7b06501
Y. Qu, M. Yang, J. Chai, Z. Tang, M. Shao et al., Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9(7), 5959–5967 (2017). https://doi.org/10.1021/acsami.6b13244
J. Zhang, Y. Liu, C. Sun, P. Xi, S. Peng, D. Gao, D. Xue, Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Lett. 3(4), 779–786 (2018). https://doi.org/10.1021/acsenergylett.8b00066
J. Zhang, B. Xiao, X. Liu, P. Liu, P. Xi, W. Xiao, J. Ding, D. Gao, D. Xue, Copper dopants improved the hydrogen evolution activity of earth-abundant cobalt pyrite catalysts by activating the electrocatalytically inert sulfur sites. J. Mater. Chem. A 5(33), 17601–17608 (2017). https://doi.org/10.1039/C7TA05433E
M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14(12), 1245–1251 (2015). https://doi.org/10.1038/nmat4410
H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlogl, H.N. Alshareef, Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 16(12), 7718–7725 (2016). https://doi.org/10.1021/acs.nanolett.6b03803
K. Liang, K. Marcus, S. Zhang, L. Zhou, Y. Li, S.T. De Oliveira, N. Orlovskaya, Y.H. Sohn, Y. Yang, NiS2/FeS holey film as freestanding electrode for high-performance lithium battery. Adv. Energy Mater. 7(22), 1701309 (2017). https://doi.org/10.1002/aenm.201701309
H. Zhang, Y. Li, T. Xu, J. Wang, Z. Huo, P. Wan, X. Sun, Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 3(29), 15020–15023 (2015). https://doi.org/10.1039/C5TA03410H
X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, P.H. Tan, Shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 87(11), 1504–1509 (2012). https://doi.org/10.1103/PhysRevB.87.115413
J. Zhang, W. Xiao, P. Xi, S. Xi, Y. Du, D. Gao, J. Ding, Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies. ACS Energy Lett. 2(5), 1022–1028 (2017). https://doi.org/10.1021/acsenergylett.7b00270
L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang, C. Yuan, Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28(13), 1705921 (2018). https://doi.org/10.1002/adfm.201705921
X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie, Z. Wang, Prussian blue analogues derived penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. ACS Catal. 7(9), 6394–6399 (2017). https://doi.org/10.1021/acscatal.7b02079
D. Susac, L. Zhu, M. Teo, A. Sode, K.C. Wong, P.C. Wong, S.A. Campbell, Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J. Phys. Chem. C 111(50), 18715–18723 (2007). https://doi.org/10.1021/jp073395i
T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao, M. Cao, In situ coupling of Co0.85Se and n-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. J. Mater. Chem. A 5(15), 7001–7014 (2017). https://doi.org/10.1039/C7TA01453H
D. Yoon, B. Seo, J. Lee, K.S. Nam, B. Kim, S. Park, H. Baik, S. Hoon Joo, K. Lee, Facet-controlled hollow RhS2 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ. Sci. 9(3), 850–856 (2016). https://doi.org/10.1039/C5EE03456F
J. Miao, F.X. Xiao, H.B. Yang, S.Y. Khoo, J. Chen, Z. Fan, B. Liu, Hierarchical Ni–Mo–S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 1(7), e1500259 (2015). https://doi.org/10.1126/sciadv.1500259
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y.Q. Zhao, P. Xi, Metallic CuCo2S4 nanosheets of atomic thickness as efficient bifunctional electrocatalysts for portable, flexible Zn–air batteries. Nanoscale 10(14), 6581–6588 (2018). https://doi.org/10.1039/C8NR01381K
J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607(1–2), 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
P. Liu, D. Gao, W. Xiao, L. Ma, K. Sun, P. Xi, D. Xue, J. Wang, Self-powered water-splitting devices by core–shell NiFe@N-graphite-based Zn–air batteries. Adv. Funct. Mater. 28(14), 1706928 (2018). https://doi.org/10.1002/adfm.201706928
C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29(9), 1604942 (2017). https://doi.org/10.1002/adma.201604942