High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation
Corresponding Author: John Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 94
Abstract
Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century. While lithium-ion batteries have so far been the dominant choice, numerous emerging applications call for higher capacity, better safety and lower costs while maintaining sufficient cyclability. The design space for potentially better alternatives is extremely large, with numerous new chemistries and architectures being simultaneously explored. These include other insertion ions (e.g. sodium and numerous multivalent ions), conversion electrode materials (e.g. silicon, metallic anodes, halides and chalcogens) and aqueous and solid electrolytes. However, each of these potential “beyond lithium-ion” alternatives faces numerous challenges that often lead to very poor cyclability, especially at the commercial cell level, while lithium-ion batteries continue to improve in performance and decrease in cost. This review examines fundamental principles to rationalise these numerous developments, and in each case, a brief overview is given on the advantages, advances, remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges. Finally, research and development results obtained in academia are compared to emerging commercial examples, as a commentary on the current and near-future viability of these “beyond lithium-ion” alternatives.
Highlights:
1 Fundamental rationalisation for high-energy batteries.
2 Newly emerging and the state-of-the-art high-energy batteries vs. incumbent lithium-ion batteries: performance, cost and safety.
3 Closing the gap between academic research and commercialisation of emerging high-energy batteries, and examination of the remaining challenges.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Volta, On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K. B. P. R. S. Proc. Royal Soc. Lond. 1, 27–29 (1832). https://doi.org/10.1098/rspl.1800.0016
- Y. Zhao, O. Pohl, A.I. Bhatt, G.E. Collis, P.J. Mahon et al., A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2(1), 167–205 (2021). https://doi.org/10.3390/suschem2010011
- Shanghai metals market (Shanghai Metals Market, 2021). https://www.metal.com. Accessed 24 July 2021
- Preismonitor Mai 2021 (Deutsche Rohstoffagentur, 2021). https://www.deutsche-rohstoffagentur.de/DERA/DE/Produkte/Rohstoffpreise/Preismonitor/preismonitor_node.html. Accessed 25 July 2021
- Mineral commodity summaries 2021 (U.S. Geological Survey, 2021). https://pubs.er.usgs.gov/publication/mcs2021. Accessed 25 July 2021
- Average prices over the last few months for rare earth. (Institut für seltene Erden und Metalle AG, 2021). https://ise-metal-quotes.com. Accessed 26 July 2021
- The future of hydrogen. (International Energy Agency, 2019). https://www.iea.org/reports/the-future-of-hydrogen. Accessed 25 July 2021
- China: market price: monthly avg: inorganic chemical material: yellow phosphorus, 99.9% or above. (CEIC Data, 2021). https://www.ceicdata.com/en/china/china-petroleum--chemical-industry-association-petrochemical-price-inorganic-chemical-material/cn-market-price-monthly-avg-inorganic-chemical-material-yellow-phosphorus-999-or-above. Accessed 25 July 2021
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
- P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman et al., Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014). https://doi.org/10.1016/j.pmatsci.2014.04.001
- H. Yang, H. Li, J. Li, Z. Sun, K. He et al., The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019). https://doi.org/10.1002/anie.201814031
- J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56(3), 686–711 (2017). https://doi.org/10.1002/anie.201604925
- M.A. Nowroozi, I. Mohammad, P. Molaiyan, K. Wissel, A.R. Munnangi et al., Fluoride ion batteries—past, present, and future. J. Mater. Chem. A 9(10), 5980–6012 (2021). https://doi.org/10.1039/D0TA11656D
- G.G. Amatucci, N. Pereira, Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128(4), 243–262 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.016
- M.A. Rahman, X. Wang, C. Wen, High energy density metal-air batteries: a review. J. Electrochem. Soc. 160, A1759 (2013). https://doi.org/10.1149/2.062310jes
- A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020). https://doi.org/10.1038/s41467-020-15355-0
- S.H. Chung, A. Manthiram, Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
- M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu et al., Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3(4), 1364–1387 (2014). https://doi.org/10.1039/C4TA05565A
- Y. Fu, Q. Wei, G. Zhang, S. Sun, Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8(13), 1703058 (2018). https://doi.org/10.1002/aenm.201702849
- K. Brandt, Historical development of secondary lithium batteries. Solid State Ion. 69, 173–183 (1994). https://doi.org/10.1016/0167-2738(94)90408-1
- S. Schweidler, L. Biasi, A. Schiele, P. Hartmann, T. Brezesinski et al., Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C 122(16), 8829–8835 (2018). https://doi.org/10.1021/acs.jpcc.8b01873
- J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020). https://doi.org/10.1039/D0SE00175A
- C. Mao, R.E. Ruther, J. Li, Z. Du, I. Belharouak, Identifying the limiting electrode in lithium ion batteries for extreme fast charging. Electrochem. Commun. 97, 37–41 (2018). https://doi.org/10.1016/j.elecom.2018.10.007
- T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995). https://doi.org/10.1149/1.2048592
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996). https://doi.org/10.1038/381499a0
- G. Dutta, A. Manthiram, J.B. Goodenough, J.C. Grenier, Chemical synthesis and properties of Li1−δ−xNi1+δO2 and Li[Ni2]O4. J. Solid State Chem. 96(1), 123–131 (1992). https://doi.org/10.1016/S0022-4596(05)80304-4
- A. Purwanto, C.S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi et al., NCA cathode material: synthesis methods and performance enhancement efforts. Mater. Res. Express 5(12), 122001 (2018). https://doi.org/10.1088/2053-1591/aae167
- W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan et al., Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability. Adv. Energy Mater. 8(15), 1703154 (2018). https://doi.org/10.1002/aenm.201703154
- G. Saldaña, J.I.S. Martín, I. Zamora, F.J. Asensio, O. Oñederra, Analysis of the current electric battery models for electric vehicle simulation. Energies 12(14), 2750 (2019). https://doi.org/10.3390/en12142750
- R. Benedek, M.M. Thackeray, Reaction energy for LiMn2O4 spinel dissolution in acid. Electrochem. Solid State Lett. 9, A265 (2006). https://doi.org/10.1149/1.2188071
- D.H. Doughty, E.P. Roth, A general discussion of Li ion battery safety. Electrochem. Soc. Interface 21(2), 37 (2012). https://doi.org/10.1149/2.F03122if
- Y. Preger, H.M. Barkholtz, A. Fresquez, D.L. Campbell, B.W. Juba et al., Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J. Electrochem. Soc. 167(12), 120532 (2020). https://doi.org/10.1149/1945-7111/abae37
- M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43(1), 185–204 (2013). https://doi.org/10.1039/C3CS60199D
- M.J. Lain, J. Brandon, E. Kendrick, Design strategies for high power vs. high energy lithium ion cells. Batteries 5(4), 64 (2019). https://doi.org/10.3390/batteries5040064
- R. Bugga, C. Krause, K. Billings, J.P. Ruiz, E. Brandon et al., Performance of commercial high energy and high power Li-ion cells in jovian missions encountering high radiation environments. NASA Battery Workshop, Huntsville, Alabama (2019). https://www.nasa.gov/sites/default/files/atoms/files/3-nasa_battery_workshop_nov_2019_high_power_li-ion_cells_final.pdf
- ESS batteries by Samsung SDI (Samsung SDI, 2019). https://www.samsungsdi.com/ess/energy-storage-system-reference.html. Accessed 25 July 2021
- F. Hall, J. Touzri, S. Wußler, H. Buqa, W.G. Bessler, Experimental investigation of the thermal and cycling behavior of a lithium titanate-based lithium-ion pouch cell. J. Energy Storage 17, 109–117 (2018). https://doi.org/10.1016/j.est.2018.02.012
- P. Haidl, A. Buchroithner, B. Schweighofer, M. Bader, H. Wegleiter, Lifetime analysis of energy storage systems for sustainable transportation. Sustainability 11(23), 6731 (2019). https://doi.org/10.3390/su11236731
- M.S. Ziegler, J.E. Trancik, Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 14(4), 1635–1651 (2021). https://doi.org/10.1039/D0EE02681F
- Energy storage grand challenge (U.S. Department of Energy, 2020). https://www.energy.gov/energy-storage-grand-challenge/s/energy-storage-grand-challenge-roadmap. Accessed 25 July 2021
- C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
- Rechargeable batteries (Cobalt Institute, 2021). https://www.cobaltinstitute.org/rechargeable-batteries.html. Accessed 25 July 2021
- C. Depcik, T. Cassady, B. Collicott, S.P. Burugupally, X. Li et al., Comparison of lithium ion Batteries, hydrogen fueled combustion engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle. Energy Convers. Manag. 207, 112514 (2020). https://doi.org/10.1016/j.enconman.2020.112514
- N.E. Galushkin, N.N. Yazvinskaya, D.N. Galushkin, Mechanism of thermal runaway in lithium-ion cells. J. Electrochem. Soc. 165, A1303 (2018). https://doi.org/10.1149/2.0611807jes
- X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
- W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- B. Ji, H. He, W. Yao, Y. Tang, Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv. Mater. 33(2), 2005501 (2021). https://doi.org/10.1002/adma.202005501
- H. Che, S. Chen, Y. Xie, H. Wang, K. Amine et al., Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10(5), 1075–1101 (2017). https://doi.org/10.1039/C7EE00524E
- T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad et al., Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549
- W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Sodium-ion battery anodes: status and future trends. EnergyChem 1(2), 100012 (2019). https://doi.org/10.1016/j.enchem.2019.100012
- M.M. Doeff, Y. Ma, S.J. Visco, L.C.D. Jonghe, Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 140(12), L169 (1993). https://doi.org/10.1149/1.2221153
- P. Thomas, J. Ghanbaja, D. Billaud, Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Electrochim. Acta 45(3), 423–430 (1999). https://doi.org/10.1016/S0013-4686(99)00276-5
- Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu et al., Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014). https://doi.org/10.1038/ncomms5033
- B. Jache, P. Adelhelm, Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014). https://doi.org/10.1002/anie.201403734
- D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803 (2001). https://doi.org/10.1149/1.1379565
- Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta et al., Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7(18), 1602894 (2017). https://doi.org/10.1002/aenm.201602894
- J. Song, K. Wang, J. Zheng, M.H. Engelhard, B. Xiao et al., Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5(6), 1718–1725 (2020). https://doi.org/10.1021/acsenergylett.0c00700
- K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5(11), 3544–3547 (2020). https://doi.org/10.1021/acsenergylett.0c02181
- Y. Lyu, Y. Liu, Z.E. Yu, N. Su, Y. Liu et al., Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustain. Mater. Technol. 21, e00098 (2019). https://doi.org/10.1016/j.susmat.2019.e00098
- J. Xiao, X. Li, K. Tang, D. Wang, M. Long et al., Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5(10), 3735–3764 (2021). https://doi.org/10.1039/D1QM00179E
- J. Xu, F. Lin, M.M. Doeff, W. Tong, A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 5(3), 874–901 (2017). https://doi.org/10.1039/C6TA07991A
- W. Tang, X. Song, Y. Du, C. Peng, M. Lin et al., High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. J. Mater. Chem. A 4(13), 4882–4892 (2016). https://doi.org/10.1039/C6TA01111J
- J. Lu, S.C. Chung, S. Nishimura, A. Yamada, Phase diagram of olivine NaxFePO4 (0https://doi.org/10.1021/cm402617b
- Y. Zhu, Y. Xu, Y. Liu, C. Luo, C. Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2), 780–787 (2012). https://doi.org/10.1039/C2NR32758A
- J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang et al., Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8(17), 1702619 (2018). https://doi.org/10.1002/aenm.201702619
- H.W. Lee, R.Y. Wang, M. Pasta, S.W. Lee, N. Liu et al., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 5280 (2014). https://doi.org/10.1038/ncomms6280
- Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater 30(14), 1909530 (2020). https://doi.org/10.1002/adfm.201909530
- S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4(9), 3680–3688 (2011). https://doi.org/10.1039/C1EE01782A
- H. Lahan, R. Boruah, A. Hazarika, S.K. Das, Anatase TiO2 as an anode material for rechargeable aqueous aluminum-ion batteries: remarkable graphene induced aluminum ion storage phenomenon. J. Phys. Chem. C 121(47), 26241–26249 (2017). https://doi.org/10.1021/acs.jpcc.7b09494
- M. Kazazi, P. Abdollahi, M. Mirzaei-Moghadam, High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ion. 300, 32–37 (2017). https://doi.org/10.1016/j.ssi.2016.11.028
- D. Yuan, J. Zhao, W. Manalastas, S. Kumar, M. Srinivasan, Emerging rechargeable aqueous aluminum ion battery: status, challenges, and outlooks. Nano Mater. Sci. 2(3), 248–263 (2020). https://doi.org/10.1016/j.nanoms.2019.11.001
- Q. Zhao, M.J. Zachman, W.I.A. Sadat, J. Zheng, L.F. Kourkoutis et al., Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4(11), eaau8131 (2018). https://doi.org/10.1126/sciadv.aau8131
- Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30(38), 1706310 (2018). https://doi.org/10.1002/adma.201706310
- W. Xing, D. Du, T. Cai, X. Li, J. Zhou et al., Carbon-encapsulated CoSe nanops derived from metal-organic frameworks as advanced cathode material for Al-ion battery. J. Power Sources 401, 6–12 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.079
- J. Jiang, H. Li, J. Huang, K. Li, J. Zeng et al., Investigation of the reversible intercalation/deintercalation of Al into the novel Li3VO4@C microsphere composite cathode material for aluminum-ion batteries. ACS Appl. Mater. Interfaces 9(34), 28486–28494 (2017). https://doi.org/10.1021/acsami.7b07503
- H. Lu, Y. Wan, T. Wang, R. Jin, P. Ding et al., A high performance SnO2/C nanocomposite cathode for aluminum-ion batteries. J. Mater. Chem. A 7(12), 7213–7220 (2019). https://doi.org/10.1039/C8TA11132D
- C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10, 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
- L. Xing, K.A. Owusu, X. Liu, J. Meng, K. Wang et al., Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy 79, 105384 (2021). https://doi.org/10.1016/j.nanoen.2020.105384
- C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang et al., Architecting a stable high-energy aqueous Al-ion battery. J. Am. Chem. Soc. 142(36), 15295–15304 (2020). https://doi.org/10.1021/jacs.0c05054
- H. Li, H. Yang, Z. Sun, Y. Shi, H.M. Cheng et al., A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy 56, 100–108 (2019). https://doi.org/10.1016/j.nanoen.2018.11.045
- M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015). https://doi.org/10.1038/nature14340
- F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31(16), 1806510 (2019). https://doi.org/10.1002/adma.201806510
- V. Balland, M. Mateos, A. Singh, K.D. Harris, C. Laberty-Robert et al., The role of Al3+-based aqueous electrolytes in the charge storage mechanism of MnOx cathodes. Small 17(23), 2101515 (2021). https://doi.org/10.1002/smll.202101515
- Y. Kong, C. Tang, X. Huang, A.K. Nanjundan, J. Zou et al., Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries. Adv. Funct. Mater 31(17), 2010569 (2021). https://doi.org/10.1002/adfm.202010569
- X. Shen, T. Sun, L. Yang, A. Krasnoslobodtsev, R. Sabirianov et al., Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode. Nat. Commun. 12, 820 (2021). https://doi.org/10.1038/s41467-021-21108-4
- E. Faegh, B. Ng, D. Hayman, W.E. Mustain, Practical assessment of the performance of aluminium battery technologies. Nat. Energy 6, 21–29 (2021). https://doi.org/10.1038/s41560-020-00728-y
- D. Li, Y. Yuan, J. Liu, M. Fichtner, F. Pan, A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloys 8(4), 963–979 (2020). https://doi.org/10.1016/j.jma.2020.09.017
- R. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher et al., Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 4(2), 375–376 (2019). https://doi.org/10.1021/acsenergylett.8b02470
- D. Aurbach, Y. Gofer, A. Schechter, O. Chusid, H. Gizbar et al., A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes. J. Power Sources 97–98, 269–273 (2001). https://doi.org/10.1016/S0378-7753(01)00622-X
- J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui et al., Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5(3), 5941–5950 (2012). https://doi.org/10.1039/C2EE03029B
- R. Deivanayagam, B.J. Ingram, R. Shahbazian-Yassar, Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 21, 136–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.028
- Z. Liang, C. Ban, Strategies to enable reversible magnesium electrochemistry: from electrolytes to artificial solid–electrolyte interphases. Angew. Chem. Int. Ed. 60(20), 11036–11047 (2021). https://doi.org/10.1002/anie.202006472
- K.W. Nam, S. Kim, S. Lee, M. Salama, I. Shterenberg et al., The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071–4079 (2015). https://doi.org/10.1021/acs.nanolett.5b01109
- D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar et al., Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000). https://doi.org/10.1038/35037553
- M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015). https://doi.org/10.1016/j.ccr.2014.11.005
- M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47(23), 8804–8841 (2018). https://doi.org/10.1039/C8CS00319J
- Z. Ma, D.R. MacFarlane, M. Kar, Mg cathode materials and electrolytes for rechargeable Mg batteries: a review. Batteries Supercaps 2(2), 115–127 (2019). https://doi.org/10.1002/batt.201800102
- Z. Li, L. Han, Y. Wang, X. Li, J. Lu et al., Microstructure characteristics of cathode materials for rechargeable magnesium batteries. Small 15(32), 1900105 (2019). https://doi.org/10.1002/smll.201900105
- M. Rashad, M. Asif, I. Ahmed, Z. He, L. Yin et al., Quest for carbon and vanadium oxide based rechargeable magnesium-ion batteries. J. Magnes. Alloys 8(2), 364–373 (2020). https://doi.org/10.1016/j.jma.2019.09.010
- C. Ling, R. Zhang, Manganese dioxide As rechargeable magnesium battery cathode. Front. Energy Res. 5, 30 (2017). https://doi.org/10.3389/fenrg.2017.00030
- S.H. Lee, R.A. DiLeo, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries. ECS Electrochem. Lett. 3(8), A87 (2014). https://doi.org/10.1149/2.0021408eel
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
- T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/C9TA05053A
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
- M. Mateos, N. Makivic, Y.S. Kim, B. Limoges, V. Balland, Accessing the two-electron charge storage capacity of MnO2 in mild aqueous electrolytes. Adv. Energy Mater. 10(23), 2000332 (2020). https://doi.org/10.1002/aenm.202000332
- J. Yang, J. Cao, Y. Peng, W. Yang, S. Barg et al., Unravelling the mechanism of rechargeable aqueous Zn–MnO2 batteries: implementation of charging process by electrodeposition of MnO2. Chemsuschem 13(16), 4103–4110 (2020). https://doi.org/10.1002/cssc.202001216
- D. Wu, L.M. Housel, S.J. Kim, N. Sadique, C.D. Quilty et al., Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO2 batteries. Energy Environ. Sci. 13(11), 4322–4333 (2020). https://doi.org/10.1039/D0EE02168G
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He et al., Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci. Rep. 5, 18263 (2015). https://doi.org/10.1038/srep18263
- S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
- X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/D0EE02917C
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- M. Sha, L. Liu, H. Zhao, Y. Lei, Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy 2(3), 350–369 (2020). https://doi.org/10.1002/cey2.57
- L. Ma, Y. Lv, J. Wu, C. Xia, Q. Kang et al., Recent advances in anode materials for potassium-ion batteries: a review. Nano Res. 14, 4442–4470 (2021). https://doi.org/10.1007/s12274-021-3439-3
- W. Li, Z. Bi, W. Zhang, J. Wang, R. Rajagopalan et al., Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. J. Mater. Chem. A 9(13), 8221–8247 (2021). https://doi.org/10.1039/D0TA12129K
- Z. Wu, J. Zou, S. Chen, X. Niu, J. Liu et al., Potassium-ion battery cathodes: past, present, and prospects. J. Power Sources 484, 229307 (2021). https://doi.org/10.1016/j.jpowsour.2020.229307
- M.E.A. Dompablo, A. Ponrouch, P. Johansson, M.R. Palacín, Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120(14), 6331–6357 (2020). https://doi.org/10.1021/acs.chemrev.9b00339
- R.J. Gummow, G. Vamvounis, M.B. Kannan, Y. He, Calcium-ion batteries: current state-of-the-art and future perspectives. Adv. Mater. 30(39), 1801702 (2018). https://doi.org/10.1002/adma.201801702
- M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8(19), 1703320 (2018). https://doi.org/10.1002/aenm.201703320
- Y. Sui, C. Liu, R.C. Masse, Z.G. Neale, M. Atif et al., Dual-ion batteries: the emerging alternative rechargeable batteries. Energy Storage Mater. 25, 1–32 (2020). https://doi.org/10.1016/j.ensm.2019.11.003
- L. Zhang, H. Wang, X. Zhang, Y. Tang, A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31(20), 2010958 (2021). https://doi.org/10.1002/adfm.202010958
- F.A. Obrezkov, A.F. Shestakov, V.F. Traven, K.J. Stevenson, P.A. Troshin, An ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries. J. Mater. Chem. A 7(18), 11430–11437 (2019). https://doi.org/10.1039/C8TA11572A
- S. Dong, Z. Li, I.A. Rodríguez-Pérez, H. Jiang, J. Lu et al., A novel coronene//Na2Ti3O7 dual-ion battery. Nano Energy 40, 233–239 (2017). https://doi.org/10.1016/j.nanoen.2017.08.022
- M. Zhang, N. Garcia-Araez, A.L. Hector, Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries. J. Mater. Chem. A 6, 14483–14517 (2018). https://doi.org/10.1039/C8TA04063J
- A. Kraytsberg, Y. Ein-Eli, Higher, stronger, better… a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2(8), 922–939 (2012). https://doi.org/10.1002/aenm.201200068
- G. Liang, V.K. Peterson, K.W. See, Z. Guo, W.K. Pang, Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J. Mater. Chem. A 8(31), 15373–15398 (2020). https://doi.org/10.1039/D0TA02812F
- P. Rozier, J.M. Tarascon, Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162(14), A2490 (2015). https://doi.org/10.1149/2.0111514jes
- M.D. Bhatt, J.Y. Lee, High capacity conversion anodes in Li-ion batteries: a review. Int. J. Hydrog. 44(21), 10852–10905 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.015
- S. Fang, D. Bresser, S. Passerini, Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 10(1), 1902485 (2020). https://doi.org/10.1002/aenm.201902485
- X. Yang, H.J. Liang, H.Y. Yu, M.Y. Wang, X.X. Zhao et al., Recent progresses and challenges of metal sulfides as advanced anode materials in rechargeable sodium-ion batteries. J. Phys. Mater. 3(4), 042004 (2020). https://doi.org/10.1088/2515-7639/abb440
- Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5), 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
- P. Luo, C. Zheng, J. He, X. Tu, W. Sun et al., Structural engineering in graphite-based metal-ion batteries. Adv. Funct. Mater. 32(9), 2107277 (2022). https://doi.org/10.1002/adfm.202107277
- F. Wang, J. Yi, Y. Wang, C. Wang, J. Wang et al., Graphite intercalation compounds (GICs): a new type of promising anode material for lithium-ion batteries. Adv. Energy Mater. 4(4), 1300600 (2014). https://doi.org/10.1002/aenm.201300600
- M. Wang, F. Zhang, C.S. Lee, Y. Tang, Low-cost metallic anode materials for high performance rechargeable batteries. Adv. Energy Mater. 7(23), 1700536 (2017). https://doi.org/10.1002/aenm.201700536
- X. Chen, H. Li, Z. Yan, F. Cheng, J. Chen, Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 62, 1515–1536 (2019). https://doi.org/10.1007/s40843-019-9464-0
- X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
- K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018). https://doi.org/10.1002/smll.201702737
- J. Yang, M. Winter, J.O. Besenhard, Small p size multiphase Li-alloy anodes for lithium-ionbatteries. Solid State Ion. 90, 281–287 (1996). https://doi.org/10.1016/S0167-2738(96)00389-X
- R.A. Huggins, W.D. Nix, Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000). https://doi.org/10.1007/BF02375547
- S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 59(1), 110–135 (2020). https://doi.org/10.1002/anie.201902085
- A.M. Wilson, B.M. Way, J.R. Dahn, T. Buuren, Nanodispersed silicon in pregraphitic carbons. J. Appl. Phys. 77(6), 2363–2369 (1995). https://doi.org/10.1063/1.358759
- C.S. Wang, G.T. Wu, X.B. Zhang, Z.F. Qi, W.Z. Li, Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J. Electrochem. Soc. 145(8), 2751 (1998). https://doi.org/10.1149/1.1838709
- Y. Hwa, W.S. Kim, S.H. Hong, H.J. Sohn, High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim. Acta 71, 201–205 (2012). https://doi.org/10.1016/j.electacta.2012.03.138
- Y. Wen, Y. Zhu, A. Langrock, A. Manivannan, S.H. Ehrman et al., Graphene-bonded and -encapsulated Si nanops for lithium ion battery anodes. Small 9(16), 2810–2816 (2013). https://doi.org/10.1002/smll.201202512
- C. Zhang, T.H. Kang, J.S. Yu, Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Res. 11, 233–245 (2018). https://doi.org/10.1007/s12274-017-1624-1
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
- P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao et al., Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 15, 422–446 (2018). https://doi.org/10.1016/j.ensm.2018.07.014
- K. Peng, J. Jie, W. Zhang, S.T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 033105 (2008). https://doi.org/10.1063/1.2929373
- G. Zhao, Y. Meng, N. Zhang, K. Sun, Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater. Lett. 76, 55–58 (2012). https://doi.org/10.1016/j.matlet.2012.02.064
- Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11(7), 2949–2954 (2011). https://doi.org/10.1021/nl201470j
- I. Steinbach, Why solidification? Why phase-field? JOM 65, 1096–1102 (2013). https://doi.org/10.1007/s11837-013-0681-5
- G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1(6), 1247–1255 (2016). https://doi.org/10.1021/acsenergylett.6b00456
- H. Chen, H. Xu, B. Zheng, S. Wang, T. Huang et al., Oxide film efficiently suppresses dendrite growth in aluminum-ion battery. ACS Appl. Mater. Interfaces 9(27), 22628–22634 (2017). https://doi.org/10.1021/acsami.7b07024
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
- J. Zheng, T. Tang, Q. Zhao, X. Liu, Y. Deng et al., Physical orphaning versus chemical instability: is dendritic electrodeposition of Li fatal? ACS Energy Lett. 4(6), 1349–1355 (2019). https://doi.org/10.1021/acsenergylett.9b00750
- J.L. Barton, J.O. Bockris, The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. Lond. A 268, 485–505 (1962). https://doi.org/10.1098/rspa.1962.0154
- Y. He, X. Ren, Y. Xu, M.H. Engelhard, X. Li et al., Origin of lithium whisker formation and growth under stress. Nat. Nanotechnol. 14, 1042–1047 (2019). https://doi.org/10.1038/s41565-019-0558-z
- R. Wang, W. Cui, F. Chu, F. Wu, Lithium metal anodes: present and future. J. Energy Chem. 48, 145–159 (2020). https://doi.org/10.1016/j.jechem.2019.12.024
- P. Hundekar, R. Jain, A.S. Lakhnot, N. Koratkar, Recent advances in the mitigation of dendrites in lithium-metal batteries. J. Appl. Phys. 128, 010903 (2020). https://doi.org/10.1063/5.0015099
- D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang et al., Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3(1), 57–94 (2020). https://doi.org/10.1016/j.matt.2020.03.015
- F. Wu, G. Yushin, Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10(2), 435–459 (2017). https://doi.org/10.1039/C6EE02326F
- F. Badway, F. Cosandey, N. Pereira, G.G. Amatucci, Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318 (2003). https://doi.org/10.1149/1.1602454
- F. Badway, A.N. Mansour, N. Pereira, J.F. Al-Sharab, F. Cosandey et al., Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem. Mater. 19(17), 4129–4141 (2007). https://doi.org/10.1021/cm070421g
- F. Omenya, N.J. Zagarella, J. Rana, H. Zhang, C. Siu et al., Intrinsic challenges to the electrochemical reversibility of the high energy density copper(II) fluoride cathode material. ACS Appl. Energy Mater. 2(7), 5243–5253 (2019). https://doi.org/10.1021/acsaem.9b00938
- F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya et al., Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011). https://doi.org/10.1021/ja206268a
- Q. Huang, K. Turcheniuk, X. Ren, A. Magasinski, A.Y. Song et al., Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 18, 1343–1349 (2019). https://doi.org/10.1038/s41563-019-0472-7
- D.E. Conte, N. Pinna, A review on the application of iron(III) fluorides as positive electrodes for secondary cells. Mater. Renew. Sustain. Energy 3, 37 (2014). https://doi.org/10.1007/s40243-014-0037-2
- X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han et al., High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun. 9, 2324 (2018). https://doi.org/10.1038/s41467-018-04476-2
- M. Barghamadi, A. Kapoor, C. Wen, A review on Li-S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256 (2013). https://doi.org/10.1149/2.096308jes
- T. Li, X. Bai, U. Gulzar, Y.J. Bai, C. Capiglia et al., A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 29(32), 1901730 (2019). https://doi.org/10.1002/adfm.201901730
- S. Dörfler, S. Walus, J. Locke, A. Fotouhi, D.J. Auger et al., Recent progress and emerging application areas for lithium–sulfur battery technology. Energy Technol. 9(1), 2000694 (2021). https://doi.org/10.1002/ente.202000694
- G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen et al., Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), 1705590 (2018). https://doi.org/10.1002/adma.201705590
- D. Zheng, G. Wang, D. Liu, J. Si, T. Ding et al., The progress of Li–S batteries—understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes. Adv. Mater. Technol. 3(9), 1700233 (2018). https://doi.org/10.1002/admt.201700233
- J.R. Dahn, J.C. Burns, D.A. Stevens, Importance of coulombic efficiency measurements in R&D efforts to obtain long-lived Li-ion batteries. Electrochem. Soc. Interface 25(3), 75 (2016). https://doi.org/10.1149/2.F07163if
- S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou et al., Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). https://doi.org/10.1021/ja308170k
- G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang et al., Three-dimensional porous carbon composites containing high sulfur nanop content for high-performance lithium–sulfur batteries. Nat. Commun. 7, 10601 (2016). https://doi.org/10.1038/ncomms10601
- J. Yang, X. Yang, J.L. Cheong, K. Zaghib, M.L. Trudeau et al., Nanoboxes with a porous MnO core and amorphous TiO2 shell as a mediator for lithium–sulfur batteries. J. Mater. Chem. A 9(8), 4952–4961 (2021). https://doi.org/10.1039/D0TA09700D
- P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11(7), 2002893 (2021). https://doi.org/10.1002/aenm.202002893
- D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5(1), 1700270 (2018). https://doi.org/10.1002/advs.201700270
- T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
- A. Gupta, S. Sivaram, Separator membranes for lithium–sulfur batteries: design principles, structure, and performance. Energy Technol. 7(6), 1800819 (2019). https://doi.org/10.1002/ente.201800819
- M. Rana, M. Li, X. Huang, B. Luo, I. Gentle et al., Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 7(12), 6596–6615 (2019). https://doi.org/10.1039/C8TA12066H
- Q. Zhao, Z. Hao, J. Tang, X. Xu, J. Liu et al., Cation-selective separators for addressing the lithium–sulfur battery challenges. Chemsuschem 14(3), 792–807 (2021). https://doi.org/10.1002/cssc.202002152
- M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- N. Imanishi, O. Yamamoto, Perspectives and challenges of rechargeable lithium–air batteries. Mater. Today Adv. 4, 100031 (2019). https://doi.org/10.1016/j.mtadv.2019.100031
- A. Manthiram, L. Li, Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. 5(4), 1401302 (2015). https://doi.org/10.1002/aenm.201401302
- C.S. Li, Y. Sun, F. Gebert, S.L. Chou, Current progress on rechargeable magnesium–air battery. Adv. Energy Mater. 7(24), 1700869 (2017). https://doi.org/10.1002/aenm.201700869
- R. Mori, Recent developments for aluminum–air batteries. Electrochem. Energ. Rev. 3, 344–369 (2020). https://doi.org/10.1007/s41918-020-00065-4
- P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue et al., Rechargeable zinc–air batteries: a promising way to green energy. J. Mater. Chem. A 5(17), 7651–7666 (2017). https://doi.org/10.1039/C7TA01693J
- A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
- X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
- X. Tian, X.F. Lu, B.Y. Xia, X.W. Lou, Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4(1), 45–68 (2020). https://doi.org/10.1016/j.joule.2019.12.014
- S. Mitchell, J. Pérez-Ramírez, Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020). https://doi.org/10.1038/s41467-020-18182-5
- J. Han, J. Bian, C. Sun, Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research 2020, 9512763 (2020). https://doi.org/10.34133/2020/9512763
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/C6CS00328A
- W.H. Lee, Y.J. Ko, J.Y. Kim, B.K. Min, Y.J. Hwang et al., Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem. Commun. 56(84), 12687–12697 (2020). https://doi.org/10.1039/D0CC04752J
- G.M. Tomboc, P. Yu, T. Kwon, K. Lee, J. Li, Ideal design of air electrode—a step closer toward robust rechargeable Zn–air battery. APL Mater. 8, 050905 (2020). https://doi.org/10.1063/5.0005137
- Y.J. Wang, B. Fang, D. Zhang, A. Li, D.P. Wilkinson et al., A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries. Electrochem. Energ. Rev. 1, 1–34 (2018). https://doi.org/10.1007/s41918-018-0002-3
- S. Ren, X. Duan, S. Liang, M. Zhang, H. Zheng, Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. J. Mater. Chem. A 8(13), 6144–6182 (2020). https://doi.org/10.1039/C9TA14231B
- G.S. Park, J.S. Lee, S.T. Kim, S. Park, J. Cho, Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. J. Power Sources 243, 267–273 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.025
- J. Wang, H. Wu, D. Gao, S. Miao, G. Wang et al., High-density iron nanops encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 13, 387–396 (2015). https://doi.org/10.1016/j.nanoen.2015.02.025
- V. Neburchilov, H. Wang, J.J. Martin, W. Qu, A review on air cathodes for zinc–air fuel cells. J. Power Sources 195(5), 1271–1291 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.100
- J.W. Jung, S.H. Cho, J.S. Nam, I.D. Kim, Current and future cathode materials for non-aqueous Li-air (O2) battery technology—a focused review. Energy Storage Mater. 24, 512–528 (2020). https://doi.org/10.1016/j.ensm.2019.07.006
- X.P. Yin, H.J. Wang, S.F. Tang, X.L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(30), 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
- X. Guo, X. Hu, D. Wu, C. Jing, W. Liu et al., Tuning the bifunctional oxygen electrocatalytic properties of core–shell Co3O4@NiFe LDH catalysts for Zn–air batteries: effects of interfacial cation valences. ACS Appl. Mater. Interfaces 11(24), 21506–21514 (2019). https://doi.org/10.1021/acsami.9b04217
- Energizer zinc air prismatic handbook. (Energizer Battery Manufacturing). https://data.energizer.com/pdfs/zincairprismatichandbook.pdf. Accessed 25 July 2021
- O.E. Bankole, C. Gong, L. Lei, Battery recycling technologies: recycling waste lithium ion batteries with the impact on the environment in-view. J. Ecol. Environ. 4, 14–28 (2013). https://doi.org/10.5296/jee.v4i1.3257
- J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu et al., Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1(1), 34–50 (2011). https://doi.org/10.1002/aenm.201000010
- K. Deng, Q. Zeng, D. Wang, Z. Liu, G. Wang et al., Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 32, 425–447 (2020). https://doi.org/10.1016/j.ensm.2020.07.018
- R. Gond, W. Ekeren, R. Mogensen, A.J. Naylor, R. Younesi, Non-flammable liquid electrolytes for safe batteries. Mater. Horiz. 8(11), 2913–2928 (2021). https://doi.org/10.1039/D1MH00748C
- J. Chen, A. Naveed, Y. Nuli, J. Yang, J. Wang, Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Mater. 31, 382–400 (2020). https://doi.org/10.1016/j.ensm.2020.06.027
- Z. Pan, X. Liu, J. Yang, X. Li, Z. Liu et al., Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv. Energy Mater. 11(24), 2100608 (2021). https://doi.org/10.1002/aenm.202100608
- W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162), 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
- L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9(45), 1902446 (2019). https://doi.org/10.1002/aenm.201902446
- S.E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji et al., Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015). https://doi.org/10.1038/ncomms8818
- H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
- Y. Wang, X. Meng, J. Sun, Y. Liu, L. Hou, Recent progress in “water-in-salt” electrolytes toward non-lithium based rechargeable batteries. Front. Chem. 8, 595 (2020). https://doi.org/10.3389/fchem.2020.00595
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- C. Yang, J. Chen, T. Qing, X. Fan, W. Sun et al., 4.0 V Aqueous Li-ion batteries. Joule 1(1), 122–132 (2017). https://doi.org/10.1016/j.joule.2017.08.009
- Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
- E.J. Hansen, J. Liu, Materials and structure design for solid-state zinc-ion batteries: a mini-review. Front. Energy Res. 8, 368 (2021). https://doi.org/10.3389/fenrg.2020.616665
- Z. Li, P. Liu, K. Zhu, Z. Zhang, Y. Si et al., Solid-state electrolytes for sodium metal batteries. Energy Fuels 35(11), 9063–9079 (2021). https://doi.org/10.1021/acs.energyfuels.1c00347
- J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
- Y. Meesala, A. Jena, H. Chang, R.S. Liu, Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2(12), 2734–2751 (2017). https://doi.org/10.1021/acsenergylett.7b00849
- F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- Z.A. Grady, C.J. Wilkinson, C.A. Randall, J.C. Mauro, Emerging role of non-crystalline electrolytes in solid-state battery research. Front. Energy Res. 8, 218 (2020). https://doi.org/10.3389/fenrg.2020.00218
- T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
- W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28(1), 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
- A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120(14), 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
- W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram et al., Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138(30), 9385–9388 (2016). https://doi.org/10.1021/jacs.6b05341
- F. Du, N. Zhao, Y. Li, C. Chen, Z. Liu et al., All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J. Power Sources 300, 24–28 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.061
- Y. Zhang, F. Chen, D. Yang, W. Zha, J. Li et al., High capacity all-solid-state lithium battery using cathodes with three-dimensional Li+ conductive network. J. Electrochem. Soc. 164(7), A1695 (2017). https://doi.org/10.1149/2.1501707jes
- A. Gutiérrez-Pardo, A.I.P. Martinez, L. Otaegui, M. Schneider, A. Roters et al., Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte? Sustain. Energy Fuels 2(10), 2325–2334 (2018). https://doi.org/10.1039/C8SE00273H
- S.W. Song, K.C. Lee, H.Y. Park, High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride. J. Power Sources 328, 311–317 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.114
- M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5
- L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong et al., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016). https://doi.org/10.1016/j.ensm.2016.07.003
- A. Arya, A.L. Sharma, A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. J. Mater. Sci. 55, 6242–6304 (2020). https://doi.org/10.1007/s10853-020-04434-8
- K. Jeong, S. Park, S.Y. Lee, Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 7(5), 1917–1935 (2019). https://doi.org/10.1039/C8TA09056D
- C. Yi, W. Liu, L. Li, H. Dong, J. Liu, Polymer-in-salt solid electrolytes for lithium-ion batteries. Funct. Mater. Lett. 12(6), 1930006 (2019). https://doi.org/10.1142/S1793604719300068
- P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu et al., Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 7, 522 (2019). https://doi.org/10.3389/fchem.2019.00522
- Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/D0CS00305K
- Preliminary cell data sheet, 3D siliconTM lithium-ion rechargeable cell model EX1-395578A (Enovix, 2021). https://www.enovix.com/#products. Accessed 25 July 2021
- Ultra light lithium sulfur pouch cell (Oxis Energy, 2019). https://oxisenergy.com/products. Accessed 25 July 2021
- Achievements - research & development—HiNa battery technology Co. Ltd. (HiNa Battery, 2021). https://www.hinabattery.com/en/index.php?catid=15. Accessed 25 July 2021
- Strong performance (Faradion, 2021). https://www.faradion.co.uk/technology-benefits/strong-performance. Accessed 29 July 2021
- Fiche technique Pack LMP® 63 (Blue Solutions by Bolloré, 2019). https://blue-storage.com/en/our-files. Accessed 25 July 2021
- F.C. Krause, J.P. Ruiz, S.C. Jones, E.J. Brandon, E.C. Darcy et al., Performance of commercial Li-ion cells for future NASA missions and aerospace applications. J. Electrochem. Soc. 168(4), 040504 (2021). https://doi.org/10.1149/1945-7111/abf05f
- Powin stacks datasheet (Powin Energy, 2020). https://powin.com/products/stacks. Accessed 29 July 2021
- Tesla powerwall limited warranty (Tesla, 2021). https://www.tesla.com/support/energy/powerwall/documents. Accessed 29 July 2021
- Tesla powerwall technical specifications (Tesla, 2021). https://www.tesla.com/support/energy/powerwall/documents. Accessed 29 July 2021
- eZ8 (Cegasa, 2018). https://www.cegasa.com/en/ez8. Accessed 25 July 2021
- A. Rudola, A.J.R. Rennie, R. Heap, S.S. Meysami, A. Lowbridge et al., Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 9(13), 8279–8302 (2021). https://doi.org/10.1039/D1TA00376C
- BatPaC: battery manufacturing cost estimation (Argonne National Laboratory, 2021). https://www.anl.gov/partnerships/batpac-battery-manufacturing-cost-estimation. Accessed 25 July 2021
- J.F. Peters, A.P. Cruz, M. Weil, Exploring the economic potential of sodium-ion batteries. Batteries 5(1), 10 (2019). https://doi.org/10.3390/batteries5010010
- J. Smekens, R. Gopalakrishnan, N.V. Steen, N. Omar, O. Hegazy et al., Influence of electrode density on the performance of Li-ion batteries: experimental and simulation results. Energies 9(2), 104 (2016). https://doi.org/10.3390/en9020104
- W. Lv, Z. Wang, H. Cao, Y. Sun, Y. Zhang et al., A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6(2), 1504–1521 (2018). https://doi.org/10.1021/acssuschemeng.7b03811
- X. Zhao, H. Yang, Y. Wang, Z. Sha, Review on the electrochemical extraction of lithium from seawater/brine. J. Electroanal. Chem. 850, 113389 (2019). https://doi.org/10.1016/j.jelechem.2019.113389
- Z. Li, C. Li, X. Liu, L. Cao, P. Li et al., Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14(5), 3152–3159 (2021). https://doi.org/10.1039/D1EE00354B
- F. Cerdas, P. Titscher, N. Bognar, R. Schmuch, M. Winter et al., Exploring the effect of increased energy density on the environmental impacts of traction batteries: a comparison of energy optimized lithium-ion and lithium-sulfur batteries for mobility applications. Energies 11(1), 150 (2018). https://doi.org/10.3390/en11010150
- Z. Wang, X. Ning, K. Zhu, J. Hu, H. Yang et al., Evaluating the thermal failure risk of large-format lithium-ion batteries using a cone calorimeter. J. Fire Sci. 37, 81–95 (2019). https://doi.org/10.1177/0734904118816616
- A new breed of battery - investor presentation (Solid Power, 2021). https://investors.solidpowerbattery.com/home/default.aspx. Accessed 25 July 2021
- Toshiba develops world’s first aqueous lithium-ion battery with nonflammable electrolyte (Toshiba, 2020). https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/20/2011-01.html. Accessed 25 July 2021
- Zinc8 energy solutions (Zinc8 Energy Solutions, 2021). https://www.zinc8energy.com. Accessed 29 July 2021
- Form energy (Form Energy, 2021). https://formenergy.com. Accessed 29 July 2021
- Saft lithium batteries Selector guide (Saft Batteries, 2020). https://www.saftbatteries.com/products-solutions/products/ls-lsh-lsp. Accessed 29 July 2021
- Métalectrique (Métalectrique, 2021). https://www.metalectrique.com. Accessed 25 July 2021
- MGV (MGV, 2021). https://www.mgv.jp. Accessed 29 July 2021
- MgBOX magnesium air battery (Eco Marine Power, 2021). https://www.ecomarinepower.com/en/mgbox-air-battery. Accessed 29 July 2021
- Emergency magnesium air cell (Fujikura Composites, 2019). https://www.fujikuracomposites.jp/en/focus/research/wattsatt/. Accessed 29 July 2021
- J.B. Quinn, T. Waldmann, K. Richter, M. Kasper, M. Wohlfahrt-Mehrens, Energy density of cylindrical Li-ion cells: a comparison of commercial 18650 to the 21700 cells. J. Electrochem. Soc. 165(14), A3284 (2018). https://doi.org/10.1149/2.0281814jes
- T. Waldmann, R.G. Scurtu, K. Richter, M. Wohlfahrt-Mehrens, 18650 vs. 21700 Li-ion cells—a direct comparison of electrochemical, thermal, and geometrical properties. J. Power Sources 472, 228614 (2020). https://doi.org/10.1016/j.jpowsour.2020.228614
References
A. Volta, On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K. B. P. R. S. Proc. Royal Soc. Lond. 1, 27–29 (1832). https://doi.org/10.1098/rspl.1800.0016
Y. Zhao, O. Pohl, A.I. Bhatt, G.E. Collis, P.J. Mahon et al., A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2(1), 167–205 (2021). https://doi.org/10.3390/suschem2010011
Shanghai metals market (Shanghai Metals Market, 2021). https://www.metal.com. Accessed 24 July 2021
Preismonitor Mai 2021 (Deutsche Rohstoffagentur, 2021). https://www.deutsche-rohstoffagentur.de/DERA/DE/Produkte/Rohstoffpreise/Preismonitor/preismonitor_node.html. Accessed 25 July 2021
Mineral commodity summaries 2021 (U.S. Geological Survey, 2021). https://pubs.er.usgs.gov/publication/mcs2021. Accessed 25 July 2021
Average prices over the last few months for rare earth. (Institut für seltene Erden und Metalle AG, 2021). https://ise-metal-quotes.com. Accessed 26 July 2021
The future of hydrogen. (International Energy Agency, 2019). https://www.iea.org/reports/the-future-of-hydrogen. Accessed 25 July 2021
China: market price: monthly avg: inorganic chemical material: yellow phosphorus, 99.9% or above. (CEIC Data, 2021). https://www.ceicdata.com/en/china/china-petroleum--chemical-industry-association-petrochemical-price-inorganic-chemical-material/cn-market-price-monthly-avg-inorganic-chemical-material-yellow-phosphorus-999-or-above. Accessed 25 July 2021
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman et al., Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014). https://doi.org/10.1016/j.pmatsci.2014.04.001
H. Yang, H. Li, J. Li, Z. Sun, K. He et al., The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019). https://doi.org/10.1002/anie.201814031
J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56(3), 686–711 (2017). https://doi.org/10.1002/anie.201604925
M.A. Nowroozi, I. Mohammad, P. Molaiyan, K. Wissel, A.R. Munnangi et al., Fluoride ion batteries—past, present, and future. J. Mater. Chem. A 9(10), 5980–6012 (2021). https://doi.org/10.1039/D0TA11656D
G.G. Amatucci, N. Pereira, Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128(4), 243–262 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.016
M.A. Rahman, X. Wang, C. Wen, High energy density metal-air batteries: a review. J. Electrochem. Soc. 160, A1759 (2013). https://doi.org/10.1149/2.062310jes
A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020). https://doi.org/10.1038/s41467-020-15355-0
S.H. Chung, A. Manthiram, Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu et al., Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3(4), 1364–1387 (2014). https://doi.org/10.1039/C4TA05565A
Y. Fu, Q. Wei, G. Zhang, S. Sun, Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8(13), 1703058 (2018). https://doi.org/10.1002/aenm.201702849
K. Brandt, Historical development of secondary lithium batteries. Solid State Ion. 69, 173–183 (1994). https://doi.org/10.1016/0167-2738(94)90408-1
S. Schweidler, L. Biasi, A. Schiele, P. Hartmann, T. Brezesinski et al., Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C 122(16), 8829–8835 (2018). https://doi.org/10.1021/acs.jpcc.8b01873
J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020). https://doi.org/10.1039/D0SE00175A
C. Mao, R.E. Ruther, J. Li, Z. Du, I. Belharouak, Identifying the limiting electrode in lithium ion batteries for extreme fast charging. Electrochem. Commun. 97, 37–41 (2018). https://doi.org/10.1016/j.elecom.2018.10.007
T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995). https://doi.org/10.1149/1.2048592
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996). https://doi.org/10.1038/381499a0
G. Dutta, A. Manthiram, J.B. Goodenough, J.C. Grenier, Chemical synthesis and properties of Li1−δ−xNi1+δO2 and Li[Ni2]O4. J. Solid State Chem. 96(1), 123–131 (1992). https://doi.org/10.1016/S0022-4596(05)80304-4
A. Purwanto, C.S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi et al., NCA cathode material: synthesis methods and performance enhancement efforts. Mater. Res. Express 5(12), 122001 (2018). https://doi.org/10.1088/2053-1591/aae167
W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan et al., Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability. Adv. Energy Mater. 8(15), 1703154 (2018). https://doi.org/10.1002/aenm.201703154
G. Saldaña, J.I.S. Martín, I. Zamora, F.J. Asensio, O. Oñederra, Analysis of the current electric battery models for electric vehicle simulation. Energies 12(14), 2750 (2019). https://doi.org/10.3390/en12142750
R. Benedek, M.M. Thackeray, Reaction energy for LiMn2O4 spinel dissolution in acid. Electrochem. Solid State Lett. 9, A265 (2006). https://doi.org/10.1149/1.2188071
D.H. Doughty, E.P. Roth, A general discussion of Li ion battery safety. Electrochem. Soc. Interface 21(2), 37 (2012). https://doi.org/10.1149/2.F03122if
Y. Preger, H.M. Barkholtz, A. Fresquez, D.L. Campbell, B.W. Juba et al., Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J. Electrochem. Soc. 167(12), 120532 (2020). https://doi.org/10.1149/1945-7111/abae37
M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43(1), 185–204 (2013). https://doi.org/10.1039/C3CS60199D
M.J. Lain, J. Brandon, E. Kendrick, Design strategies for high power vs. high energy lithium ion cells. Batteries 5(4), 64 (2019). https://doi.org/10.3390/batteries5040064
R. Bugga, C. Krause, K. Billings, J.P. Ruiz, E. Brandon et al., Performance of commercial high energy and high power Li-ion cells in jovian missions encountering high radiation environments. NASA Battery Workshop, Huntsville, Alabama (2019). https://www.nasa.gov/sites/default/files/atoms/files/3-nasa_battery_workshop_nov_2019_high_power_li-ion_cells_final.pdf
ESS batteries by Samsung SDI (Samsung SDI, 2019). https://www.samsungsdi.com/ess/energy-storage-system-reference.html. Accessed 25 July 2021
F. Hall, J. Touzri, S. Wußler, H. Buqa, W.G. Bessler, Experimental investigation of the thermal and cycling behavior of a lithium titanate-based lithium-ion pouch cell. J. Energy Storage 17, 109–117 (2018). https://doi.org/10.1016/j.est.2018.02.012
P. Haidl, A. Buchroithner, B. Schweighofer, M. Bader, H. Wegleiter, Lifetime analysis of energy storage systems for sustainable transportation. Sustainability 11(23), 6731 (2019). https://doi.org/10.3390/su11236731
M.S. Ziegler, J.E. Trancik, Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 14(4), 1635–1651 (2021). https://doi.org/10.1039/D0EE02681F
Energy storage grand challenge (U.S. Department of Energy, 2020). https://www.energy.gov/energy-storage-grand-challenge/s/energy-storage-grand-challenge-roadmap. Accessed 25 July 2021
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
Rechargeable batteries (Cobalt Institute, 2021). https://www.cobaltinstitute.org/rechargeable-batteries.html. Accessed 25 July 2021
C. Depcik, T. Cassady, B. Collicott, S.P. Burugupally, X. Li et al., Comparison of lithium ion Batteries, hydrogen fueled combustion engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle. Energy Convers. Manag. 207, 112514 (2020). https://doi.org/10.1016/j.enconman.2020.112514
N.E. Galushkin, N.N. Yazvinskaya, D.N. Galushkin, Mechanism of thermal runaway in lithium-ion cells. J. Electrochem. Soc. 165, A1303 (2018). https://doi.org/10.1149/2.0611807jes
X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
B. Ji, H. He, W. Yao, Y. Tang, Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv. Mater. 33(2), 2005501 (2021). https://doi.org/10.1002/adma.202005501
H. Che, S. Chen, Y. Xie, H. Wang, K. Amine et al., Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10(5), 1075–1101 (2017). https://doi.org/10.1039/C7EE00524E
T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad et al., Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549
W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Sodium-ion battery anodes: status and future trends. EnergyChem 1(2), 100012 (2019). https://doi.org/10.1016/j.enchem.2019.100012
M.M. Doeff, Y. Ma, S.J. Visco, L.C.D. Jonghe, Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 140(12), L169 (1993). https://doi.org/10.1149/1.2221153
P. Thomas, J. Ghanbaja, D. Billaud, Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Electrochim. Acta 45(3), 423–430 (1999). https://doi.org/10.1016/S0013-4686(99)00276-5
Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu et al., Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014). https://doi.org/10.1038/ncomms5033
B. Jache, P. Adelhelm, Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014). https://doi.org/10.1002/anie.201403734
D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803 (2001). https://doi.org/10.1149/1.1379565
Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta et al., Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7(18), 1602894 (2017). https://doi.org/10.1002/aenm.201602894
J. Song, K. Wang, J. Zheng, M.H. Engelhard, B. Xiao et al., Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5(6), 1718–1725 (2020). https://doi.org/10.1021/acsenergylett.0c00700
K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5(11), 3544–3547 (2020). https://doi.org/10.1021/acsenergylett.0c02181
Y. Lyu, Y. Liu, Z.E. Yu, N. Su, Y. Liu et al., Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustain. Mater. Technol. 21, e00098 (2019). https://doi.org/10.1016/j.susmat.2019.e00098
J. Xiao, X. Li, K. Tang, D. Wang, M. Long et al., Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5(10), 3735–3764 (2021). https://doi.org/10.1039/D1QM00179E
J. Xu, F. Lin, M.M. Doeff, W. Tong, A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 5(3), 874–901 (2017). https://doi.org/10.1039/C6TA07991A
W. Tang, X. Song, Y. Du, C. Peng, M. Lin et al., High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. J. Mater. Chem. A 4(13), 4882–4892 (2016). https://doi.org/10.1039/C6TA01111J
J. Lu, S.C. Chung, S. Nishimura, A. Yamada, Phase diagram of olivine NaxFePO4 (0https://doi.org/10.1021/cm402617b
Y. Zhu, Y. Xu, Y. Liu, C. Luo, C. Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2), 780–787 (2012). https://doi.org/10.1039/C2NR32758A
J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang et al., Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8(17), 1702619 (2018). https://doi.org/10.1002/aenm.201702619
H.W. Lee, R.Y. Wang, M. Pasta, S.W. Lee, N. Liu et al., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 5280 (2014). https://doi.org/10.1038/ncomms6280
Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater 30(14), 1909530 (2020). https://doi.org/10.1002/adfm.201909530
S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4(9), 3680–3688 (2011). https://doi.org/10.1039/C1EE01782A
H. Lahan, R. Boruah, A. Hazarika, S.K. Das, Anatase TiO2 as an anode material for rechargeable aqueous aluminum-ion batteries: remarkable graphene induced aluminum ion storage phenomenon. J. Phys. Chem. C 121(47), 26241–26249 (2017). https://doi.org/10.1021/acs.jpcc.7b09494
M. Kazazi, P. Abdollahi, M. Mirzaei-Moghadam, High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ion. 300, 32–37 (2017). https://doi.org/10.1016/j.ssi.2016.11.028
D. Yuan, J. Zhao, W. Manalastas, S. Kumar, M. Srinivasan, Emerging rechargeable aqueous aluminum ion battery: status, challenges, and outlooks. Nano Mater. Sci. 2(3), 248–263 (2020). https://doi.org/10.1016/j.nanoms.2019.11.001
Q. Zhao, M.J. Zachman, W.I.A. Sadat, J. Zheng, L.F. Kourkoutis et al., Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4(11), eaau8131 (2018). https://doi.org/10.1126/sciadv.aau8131
Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30(38), 1706310 (2018). https://doi.org/10.1002/adma.201706310
W. Xing, D. Du, T. Cai, X. Li, J. Zhou et al., Carbon-encapsulated CoSe nanops derived from metal-organic frameworks as advanced cathode material for Al-ion battery. J. Power Sources 401, 6–12 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.079
J. Jiang, H. Li, J. Huang, K. Li, J. Zeng et al., Investigation of the reversible intercalation/deintercalation of Al into the novel Li3VO4@C microsphere composite cathode material for aluminum-ion batteries. ACS Appl. Mater. Interfaces 9(34), 28486–28494 (2017). https://doi.org/10.1021/acsami.7b07503
H. Lu, Y. Wan, T. Wang, R. Jin, P. Ding et al., A high performance SnO2/C nanocomposite cathode for aluminum-ion batteries. J. Mater. Chem. A 7(12), 7213–7220 (2019). https://doi.org/10.1039/C8TA11132D
C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10, 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
L. Xing, K.A. Owusu, X. Liu, J. Meng, K. Wang et al., Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy 79, 105384 (2021). https://doi.org/10.1016/j.nanoen.2020.105384
C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang et al., Architecting a stable high-energy aqueous Al-ion battery. J. Am. Chem. Soc. 142(36), 15295–15304 (2020). https://doi.org/10.1021/jacs.0c05054
H. Li, H. Yang, Z. Sun, Y. Shi, H.M. Cheng et al., A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy 56, 100–108 (2019). https://doi.org/10.1016/j.nanoen.2018.11.045
M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015). https://doi.org/10.1038/nature14340
F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31(16), 1806510 (2019). https://doi.org/10.1002/adma.201806510
V. Balland, M. Mateos, A. Singh, K.D. Harris, C. Laberty-Robert et al., The role of Al3+-based aqueous electrolytes in the charge storage mechanism of MnOx cathodes. Small 17(23), 2101515 (2021). https://doi.org/10.1002/smll.202101515
Y. Kong, C. Tang, X. Huang, A.K. Nanjundan, J. Zou et al., Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries. Adv. Funct. Mater 31(17), 2010569 (2021). https://doi.org/10.1002/adfm.202010569
X. Shen, T. Sun, L. Yang, A. Krasnoslobodtsev, R. Sabirianov et al., Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode. Nat. Commun. 12, 820 (2021). https://doi.org/10.1038/s41467-021-21108-4
E. Faegh, B. Ng, D. Hayman, W.E. Mustain, Practical assessment of the performance of aluminium battery technologies. Nat. Energy 6, 21–29 (2021). https://doi.org/10.1038/s41560-020-00728-y
D. Li, Y. Yuan, J. Liu, M. Fichtner, F. Pan, A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloys 8(4), 963–979 (2020). https://doi.org/10.1016/j.jma.2020.09.017
R. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher et al., Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 4(2), 375–376 (2019). https://doi.org/10.1021/acsenergylett.8b02470
D. Aurbach, Y. Gofer, A. Schechter, O. Chusid, H. Gizbar et al., A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes. J. Power Sources 97–98, 269–273 (2001). https://doi.org/10.1016/S0378-7753(01)00622-X
J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui et al., Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5(3), 5941–5950 (2012). https://doi.org/10.1039/C2EE03029B
R. Deivanayagam, B.J. Ingram, R. Shahbazian-Yassar, Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 21, 136–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.028
Z. Liang, C. Ban, Strategies to enable reversible magnesium electrochemistry: from electrolytes to artificial solid–electrolyte interphases. Angew. Chem. Int. Ed. 60(20), 11036–11047 (2021). https://doi.org/10.1002/anie.202006472
K.W. Nam, S. Kim, S. Lee, M. Salama, I. Shterenberg et al., The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071–4079 (2015). https://doi.org/10.1021/acs.nanolett.5b01109
D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar et al., Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000). https://doi.org/10.1038/35037553
M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015). https://doi.org/10.1016/j.ccr.2014.11.005
M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47(23), 8804–8841 (2018). https://doi.org/10.1039/C8CS00319J
Z. Ma, D.R. MacFarlane, M. Kar, Mg cathode materials and electrolytes for rechargeable Mg batteries: a review. Batteries Supercaps 2(2), 115–127 (2019). https://doi.org/10.1002/batt.201800102
Z. Li, L. Han, Y. Wang, X. Li, J. Lu et al., Microstructure characteristics of cathode materials for rechargeable magnesium batteries. Small 15(32), 1900105 (2019). https://doi.org/10.1002/smll.201900105
M. Rashad, M. Asif, I. Ahmed, Z. He, L. Yin et al., Quest for carbon and vanadium oxide based rechargeable magnesium-ion batteries. J. Magnes. Alloys 8(2), 364–373 (2020). https://doi.org/10.1016/j.jma.2019.09.010
C. Ling, R. Zhang, Manganese dioxide As rechargeable magnesium battery cathode. Front. Energy Res. 5, 30 (2017). https://doi.org/10.3389/fenrg.2017.00030
S.H. Lee, R.A. DiLeo, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries. ECS Electrochem. Lett. 3(8), A87 (2014). https://doi.org/10.1149/2.0021408eel
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/C9TA05053A
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
M. Mateos, N. Makivic, Y.S. Kim, B. Limoges, V. Balland, Accessing the two-electron charge storage capacity of MnO2 in mild aqueous electrolytes. Adv. Energy Mater. 10(23), 2000332 (2020). https://doi.org/10.1002/aenm.202000332
J. Yang, J. Cao, Y. Peng, W. Yang, S. Barg et al., Unravelling the mechanism of rechargeable aqueous Zn–MnO2 batteries: implementation of charging process by electrodeposition of MnO2. Chemsuschem 13(16), 4103–4110 (2020). https://doi.org/10.1002/cssc.202001216
D. Wu, L.M. Housel, S.J. Kim, N. Sadique, C.D. Quilty et al., Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO2 batteries. Energy Environ. Sci. 13(11), 4322–4333 (2020). https://doi.org/10.1039/D0EE02168G
B. Wu, G. Zhang, M. Yan, T. Xiong, P. He et al., Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
L. Zhang, L. Chen, X. Zhou, Z. Liu, Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci. Rep. 5, 18263 (2015). https://doi.org/10.1038/srep18263
S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/D0EE02917C
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
M. Sha, L. Liu, H. Zhao, Y. Lei, Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy 2(3), 350–369 (2020). https://doi.org/10.1002/cey2.57
L. Ma, Y. Lv, J. Wu, C. Xia, Q. Kang et al., Recent advances in anode materials for potassium-ion batteries: a review. Nano Res. 14, 4442–4470 (2021). https://doi.org/10.1007/s12274-021-3439-3
W. Li, Z. Bi, W. Zhang, J. Wang, R. Rajagopalan et al., Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. J. Mater. Chem. A 9(13), 8221–8247 (2021). https://doi.org/10.1039/D0TA12129K
Z. Wu, J. Zou, S. Chen, X. Niu, J. Liu et al., Potassium-ion battery cathodes: past, present, and prospects. J. Power Sources 484, 229307 (2021). https://doi.org/10.1016/j.jpowsour.2020.229307
M.E.A. Dompablo, A. Ponrouch, P. Johansson, M.R. Palacín, Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120(14), 6331–6357 (2020). https://doi.org/10.1021/acs.chemrev.9b00339
R.J. Gummow, G. Vamvounis, M.B. Kannan, Y. He, Calcium-ion batteries: current state-of-the-art and future perspectives. Adv. Mater. 30(39), 1801702 (2018). https://doi.org/10.1002/adma.201801702
M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8(19), 1703320 (2018). https://doi.org/10.1002/aenm.201703320
Y. Sui, C. Liu, R.C. Masse, Z.G. Neale, M. Atif et al., Dual-ion batteries: the emerging alternative rechargeable batteries. Energy Storage Mater. 25, 1–32 (2020). https://doi.org/10.1016/j.ensm.2019.11.003
L. Zhang, H. Wang, X. Zhang, Y. Tang, A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31(20), 2010958 (2021). https://doi.org/10.1002/adfm.202010958
F.A. Obrezkov, A.F. Shestakov, V.F. Traven, K.J. Stevenson, P.A. Troshin, An ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries. J. Mater. Chem. A 7(18), 11430–11437 (2019). https://doi.org/10.1039/C8TA11572A
S. Dong, Z. Li, I.A. Rodríguez-Pérez, H. Jiang, J. Lu et al., A novel coronene//Na2Ti3O7 dual-ion battery. Nano Energy 40, 233–239 (2017). https://doi.org/10.1016/j.nanoen.2017.08.022
M. Zhang, N. Garcia-Araez, A.L. Hector, Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries. J. Mater. Chem. A 6, 14483–14517 (2018). https://doi.org/10.1039/C8TA04063J
A. Kraytsberg, Y. Ein-Eli, Higher, stronger, better… a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2(8), 922–939 (2012). https://doi.org/10.1002/aenm.201200068
G. Liang, V.K. Peterson, K.W. See, Z. Guo, W.K. Pang, Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J. Mater. Chem. A 8(31), 15373–15398 (2020). https://doi.org/10.1039/D0TA02812F
P. Rozier, J.M. Tarascon, Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162(14), A2490 (2015). https://doi.org/10.1149/2.0111514jes
M.D. Bhatt, J.Y. Lee, High capacity conversion anodes in Li-ion batteries: a review. Int. J. Hydrog. 44(21), 10852–10905 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.015
S. Fang, D. Bresser, S. Passerini, Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 10(1), 1902485 (2020). https://doi.org/10.1002/aenm.201902485
X. Yang, H.J. Liang, H.Y. Yu, M.Y. Wang, X.X. Zhao et al., Recent progresses and challenges of metal sulfides as advanced anode materials in rechargeable sodium-ion batteries. J. Phys. Mater. 3(4), 042004 (2020). https://doi.org/10.1088/2515-7639/abb440
Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5), 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
P. Luo, C. Zheng, J. He, X. Tu, W. Sun et al., Structural engineering in graphite-based metal-ion batteries. Adv. Funct. Mater. 32(9), 2107277 (2022). https://doi.org/10.1002/adfm.202107277
F. Wang, J. Yi, Y. Wang, C. Wang, J. Wang et al., Graphite intercalation compounds (GICs): a new type of promising anode material for lithium-ion batteries. Adv. Energy Mater. 4(4), 1300600 (2014). https://doi.org/10.1002/aenm.201300600
M. Wang, F. Zhang, C.S. Lee, Y. Tang, Low-cost metallic anode materials for high performance rechargeable batteries. Adv. Energy Mater. 7(23), 1700536 (2017). https://doi.org/10.1002/aenm.201700536
X. Chen, H. Li, Z. Yan, F. Cheng, J. Chen, Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 62, 1515–1536 (2019). https://doi.org/10.1007/s40843-019-9464-0
X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018). https://doi.org/10.1002/smll.201702737
J. Yang, M. Winter, J.O. Besenhard, Small p size multiphase Li-alloy anodes for lithium-ionbatteries. Solid State Ion. 90, 281–287 (1996). https://doi.org/10.1016/S0167-2738(96)00389-X
R.A. Huggins, W.D. Nix, Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000). https://doi.org/10.1007/BF02375547
S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 59(1), 110–135 (2020). https://doi.org/10.1002/anie.201902085
A.M. Wilson, B.M. Way, J.R. Dahn, T. Buuren, Nanodispersed silicon in pregraphitic carbons. J. Appl. Phys. 77(6), 2363–2369 (1995). https://doi.org/10.1063/1.358759
C.S. Wang, G.T. Wu, X.B. Zhang, Z.F. Qi, W.Z. Li, Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J. Electrochem. Soc. 145(8), 2751 (1998). https://doi.org/10.1149/1.1838709
Y. Hwa, W.S. Kim, S.H. Hong, H.J. Sohn, High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim. Acta 71, 201–205 (2012). https://doi.org/10.1016/j.electacta.2012.03.138
Y. Wen, Y. Zhu, A. Langrock, A. Manivannan, S.H. Ehrman et al., Graphene-bonded and -encapsulated Si nanops for lithium ion battery anodes. Small 9(16), 2810–2816 (2013). https://doi.org/10.1002/smll.201202512
C. Zhang, T.H. Kang, J.S. Yu, Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Res. 11, 233–245 (2018). https://doi.org/10.1007/s12274-017-1624-1
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao et al., Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 15, 422–446 (2018). https://doi.org/10.1016/j.ensm.2018.07.014
K. Peng, J. Jie, W. Zhang, S.T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 033105 (2008). https://doi.org/10.1063/1.2929373
G. Zhao, Y. Meng, N. Zhang, K. Sun, Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater. Lett. 76, 55–58 (2012). https://doi.org/10.1016/j.matlet.2012.02.064
Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11(7), 2949–2954 (2011). https://doi.org/10.1021/nl201470j
I. Steinbach, Why solidification? Why phase-field? JOM 65, 1096–1102 (2013). https://doi.org/10.1007/s11837-013-0681-5
G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1(6), 1247–1255 (2016). https://doi.org/10.1021/acsenergylett.6b00456
H. Chen, H. Xu, B. Zheng, S. Wang, T. Huang et al., Oxide film efficiently suppresses dendrite growth in aluminum-ion battery. ACS Appl. Mater. Interfaces 9(27), 22628–22634 (2017). https://doi.org/10.1021/acsami.7b07024
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
J. Zheng, T. Tang, Q. Zhao, X. Liu, Y. Deng et al., Physical orphaning versus chemical instability: is dendritic electrodeposition of Li fatal? ACS Energy Lett. 4(6), 1349–1355 (2019). https://doi.org/10.1021/acsenergylett.9b00750
J.L. Barton, J.O. Bockris, The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. Lond. A 268, 485–505 (1962). https://doi.org/10.1098/rspa.1962.0154
Y. He, X. Ren, Y. Xu, M.H. Engelhard, X. Li et al., Origin of lithium whisker formation and growth under stress. Nat. Nanotechnol. 14, 1042–1047 (2019). https://doi.org/10.1038/s41565-019-0558-z
R. Wang, W. Cui, F. Chu, F. Wu, Lithium metal anodes: present and future. J. Energy Chem. 48, 145–159 (2020). https://doi.org/10.1016/j.jechem.2019.12.024
P. Hundekar, R. Jain, A.S. Lakhnot, N. Koratkar, Recent advances in the mitigation of dendrites in lithium-metal batteries. J. Appl. Phys. 128, 010903 (2020). https://doi.org/10.1063/5.0015099
D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang et al., Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3(1), 57–94 (2020). https://doi.org/10.1016/j.matt.2020.03.015
F. Wu, G. Yushin, Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10(2), 435–459 (2017). https://doi.org/10.1039/C6EE02326F
F. Badway, F. Cosandey, N. Pereira, G.G. Amatucci, Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318 (2003). https://doi.org/10.1149/1.1602454
F. Badway, A.N. Mansour, N. Pereira, J.F. Al-Sharab, F. Cosandey et al., Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem. Mater. 19(17), 4129–4141 (2007). https://doi.org/10.1021/cm070421g
F. Omenya, N.J. Zagarella, J. Rana, H. Zhang, C. Siu et al., Intrinsic challenges to the electrochemical reversibility of the high energy density copper(II) fluoride cathode material. ACS Appl. Energy Mater. 2(7), 5243–5253 (2019). https://doi.org/10.1021/acsaem.9b00938
F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya et al., Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011). https://doi.org/10.1021/ja206268a
Q. Huang, K. Turcheniuk, X. Ren, A. Magasinski, A.Y. Song et al., Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 18, 1343–1349 (2019). https://doi.org/10.1038/s41563-019-0472-7
D.E. Conte, N. Pinna, A review on the application of iron(III) fluorides as positive electrodes for secondary cells. Mater. Renew. Sustain. Energy 3, 37 (2014). https://doi.org/10.1007/s40243-014-0037-2
X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han et al., High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun. 9, 2324 (2018). https://doi.org/10.1038/s41467-018-04476-2
M. Barghamadi, A. Kapoor, C. Wen, A review on Li-S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256 (2013). https://doi.org/10.1149/2.096308jes
T. Li, X. Bai, U. Gulzar, Y.J. Bai, C. Capiglia et al., A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 29(32), 1901730 (2019). https://doi.org/10.1002/adfm.201901730
S. Dörfler, S. Walus, J. Locke, A. Fotouhi, D.J. Auger et al., Recent progress and emerging application areas for lithium–sulfur battery technology. Energy Technol. 9(1), 2000694 (2021). https://doi.org/10.1002/ente.202000694
G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen et al., Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), 1705590 (2018). https://doi.org/10.1002/adma.201705590
D. Zheng, G. Wang, D. Liu, J. Si, T. Ding et al., The progress of Li–S batteries—understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes. Adv. Mater. Technol. 3(9), 1700233 (2018). https://doi.org/10.1002/admt.201700233
J.R. Dahn, J.C. Burns, D.A. Stevens, Importance of coulombic efficiency measurements in R&D efforts to obtain long-lived Li-ion batteries. Electrochem. Soc. Interface 25(3), 75 (2016). https://doi.org/10.1149/2.F07163if
S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou et al., Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). https://doi.org/10.1021/ja308170k
G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang et al., Three-dimensional porous carbon composites containing high sulfur nanop content for high-performance lithium–sulfur batteries. Nat. Commun. 7, 10601 (2016). https://doi.org/10.1038/ncomms10601
J. Yang, X. Yang, J.L. Cheong, K. Zaghib, M.L. Trudeau et al., Nanoboxes with a porous MnO core and amorphous TiO2 shell as a mediator for lithium–sulfur batteries. J. Mater. Chem. A 9(8), 4952–4961 (2021). https://doi.org/10.1039/D0TA09700D
P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11(7), 2002893 (2021). https://doi.org/10.1002/aenm.202002893
D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5(1), 1700270 (2018). https://doi.org/10.1002/advs.201700270
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
A. Gupta, S. Sivaram, Separator membranes for lithium–sulfur batteries: design principles, structure, and performance. Energy Technol. 7(6), 1800819 (2019). https://doi.org/10.1002/ente.201800819
M. Rana, M. Li, X. Huang, B. Luo, I. Gentle et al., Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 7(12), 6596–6615 (2019). https://doi.org/10.1039/C8TA12066H
Q. Zhao, Z. Hao, J. Tang, X. Xu, J. Liu et al., Cation-selective separators for addressing the lithium–sulfur battery challenges. Chemsuschem 14(3), 792–807 (2021). https://doi.org/10.1002/cssc.202002152
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
N. Imanishi, O. Yamamoto, Perspectives and challenges of rechargeable lithium–air batteries. Mater. Today Adv. 4, 100031 (2019). https://doi.org/10.1016/j.mtadv.2019.100031
A. Manthiram, L. Li, Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. 5(4), 1401302 (2015). https://doi.org/10.1002/aenm.201401302
C.S. Li, Y. Sun, F. Gebert, S.L. Chou, Current progress on rechargeable magnesium–air battery. Adv. Energy Mater. 7(24), 1700869 (2017). https://doi.org/10.1002/aenm.201700869
R. Mori, Recent developments for aluminum–air batteries. Electrochem. Energ. Rev. 3, 344–369 (2020). https://doi.org/10.1007/s41918-020-00065-4
P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue et al., Rechargeable zinc–air batteries: a promising way to green energy. J. Mater. Chem. A 5(17), 7651–7666 (2017). https://doi.org/10.1039/C7TA01693J
A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
X. Tian, X.F. Lu, B.Y. Xia, X.W. Lou, Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4(1), 45–68 (2020). https://doi.org/10.1016/j.joule.2019.12.014
S. Mitchell, J. Pérez-Ramírez, Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020). https://doi.org/10.1038/s41467-020-18182-5
J. Han, J. Bian, C. Sun, Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research 2020, 9512763 (2020). https://doi.org/10.34133/2020/9512763
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/C6CS00328A
W.H. Lee, Y.J. Ko, J.Y. Kim, B.K. Min, Y.J. Hwang et al., Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem. Commun. 56(84), 12687–12697 (2020). https://doi.org/10.1039/D0CC04752J
G.M. Tomboc, P. Yu, T. Kwon, K. Lee, J. Li, Ideal design of air electrode—a step closer toward robust rechargeable Zn–air battery. APL Mater. 8, 050905 (2020). https://doi.org/10.1063/5.0005137
Y.J. Wang, B. Fang, D. Zhang, A. Li, D.P. Wilkinson et al., A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries. Electrochem. Energ. Rev. 1, 1–34 (2018). https://doi.org/10.1007/s41918-018-0002-3
S. Ren, X. Duan, S. Liang, M. Zhang, H. Zheng, Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. J. Mater. Chem. A 8(13), 6144–6182 (2020). https://doi.org/10.1039/C9TA14231B
G.S. Park, J.S. Lee, S.T. Kim, S. Park, J. Cho, Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. J. Power Sources 243, 267–273 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.025
J. Wang, H. Wu, D. Gao, S. Miao, G. Wang et al., High-density iron nanops encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 13, 387–396 (2015). https://doi.org/10.1016/j.nanoen.2015.02.025
V. Neburchilov, H. Wang, J.J. Martin, W. Qu, A review on air cathodes for zinc–air fuel cells. J. Power Sources 195(5), 1271–1291 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.100
J.W. Jung, S.H. Cho, J.S. Nam, I.D. Kim, Current and future cathode materials for non-aqueous Li-air (O2) battery technology—a focused review. Energy Storage Mater. 24, 512–528 (2020). https://doi.org/10.1016/j.ensm.2019.07.006
X.P. Yin, H.J. Wang, S.F. Tang, X.L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(30), 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
X. Guo, X. Hu, D. Wu, C. Jing, W. Liu et al., Tuning the bifunctional oxygen electrocatalytic properties of core–shell Co3O4@NiFe LDH catalysts for Zn–air batteries: effects of interfacial cation valences. ACS Appl. Mater. Interfaces 11(24), 21506–21514 (2019). https://doi.org/10.1021/acsami.9b04217
Energizer zinc air prismatic handbook. (Energizer Battery Manufacturing). https://data.energizer.com/pdfs/zincairprismatichandbook.pdf. Accessed 25 July 2021
O.E. Bankole, C. Gong, L. Lei, Battery recycling technologies: recycling waste lithium ion batteries with the impact on the environment in-view. J. Ecol. Environ. 4, 14–28 (2013). https://doi.org/10.5296/jee.v4i1.3257
J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu et al., Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1(1), 34–50 (2011). https://doi.org/10.1002/aenm.201000010
K. Deng, Q. Zeng, D. Wang, Z. Liu, G. Wang et al., Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 32, 425–447 (2020). https://doi.org/10.1016/j.ensm.2020.07.018
R. Gond, W. Ekeren, R. Mogensen, A.J. Naylor, R. Younesi, Non-flammable liquid electrolytes for safe batteries. Mater. Horiz. 8(11), 2913–2928 (2021). https://doi.org/10.1039/D1MH00748C
J. Chen, A. Naveed, Y. Nuli, J. Yang, J. Wang, Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Mater. 31, 382–400 (2020). https://doi.org/10.1016/j.ensm.2020.06.027
Z. Pan, X. Liu, J. Yang, X. Li, Z. Liu et al., Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv. Energy Mater. 11(24), 2100608 (2021). https://doi.org/10.1002/aenm.202100608
W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162), 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115
L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9(45), 1902446 (2019). https://doi.org/10.1002/aenm.201902446
S.E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji et al., Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015). https://doi.org/10.1038/ncomms8818
H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
Y. Wang, X. Meng, J. Sun, Y. Liu, L. Hou, Recent progress in “water-in-salt” electrolytes toward non-lithium based rechargeable batteries. Front. Chem. 8, 595 (2020). https://doi.org/10.3389/fchem.2020.00595
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
C. Yang, J. Chen, T. Qing, X. Fan, W. Sun et al., 4.0 V Aqueous Li-ion batteries. Joule 1(1), 122–132 (2017). https://doi.org/10.1016/j.joule.2017.08.009
Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
E.J. Hansen, J. Liu, Materials and structure design for solid-state zinc-ion batteries: a mini-review. Front. Energy Res. 8, 368 (2021). https://doi.org/10.3389/fenrg.2020.616665
Z. Li, P. Liu, K. Zhu, Z. Zhang, Y. Si et al., Solid-state electrolytes for sodium metal batteries. Energy Fuels 35(11), 9063–9079 (2021). https://doi.org/10.1021/acs.energyfuels.1c00347
J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
Y. Meesala, A. Jena, H. Chang, R.S. Liu, Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2(12), 2734–2751 (2017). https://doi.org/10.1021/acsenergylett.7b00849
F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
Z.A. Grady, C.J. Wilkinson, C.A. Randall, J.C. Mauro, Emerging role of non-crystalline electrolytes in solid-state battery research. Front. Energy Res. 8, 218 (2020). https://doi.org/10.3389/fenrg.2020.00218
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28(1), 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120(14), 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram et al., Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138(30), 9385–9388 (2016). https://doi.org/10.1021/jacs.6b05341
F. Du, N. Zhao, Y. Li, C. Chen, Z. Liu et al., All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J. Power Sources 300, 24–28 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.061
Y. Zhang, F. Chen, D. Yang, W. Zha, J. Li et al., High capacity all-solid-state lithium battery using cathodes with three-dimensional Li+ conductive network. J. Electrochem. Soc. 164(7), A1695 (2017). https://doi.org/10.1149/2.1501707jes
A. Gutiérrez-Pardo, A.I.P. Martinez, L. Otaegui, M. Schneider, A. Roters et al., Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte? Sustain. Energy Fuels 2(10), 2325–2334 (2018). https://doi.org/10.1039/C8SE00273H
S.W. Song, K.C. Lee, H.Y. Park, High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride. J. Power Sources 328, 311–317 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.114
M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5
L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong et al., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016). https://doi.org/10.1016/j.ensm.2016.07.003
A. Arya, A.L. Sharma, A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. J. Mater. Sci. 55, 6242–6304 (2020). https://doi.org/10.1007/s10853-020-04434-8
K. Jeong, S. Park, S.Y. Lee, Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 7(5), 1917–1935 (2019). https://doi.org/10.1039/C8TA09056D
C. Yi, W. Liu, L. Li, H. Dong, J. Liu, Polymer-in-salt solid electrolytes for lithium-ion batteries. Funct. Mater. Lett. 12(6), 1930006 (2019). https://doi.org/10.1142/S1793604719300068
P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu et al., Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 7, 522 (2019). https://doi.org/10.3389/fchem.2019.00522
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/D0CS00305K
Preliminary cell data sheet, 3D siliconTM lithium-ion rechargeable cell model EX1-395578A (Enovix, 2021). https://www.enovix.com/#products. Accessed 25 July 2021
Ultra light lithium sulfur pouch cell (Oxis Energy, 2019). https://oxisenergy.com/products. Accessed 25 July 2021
Achievements - research & development—HiNa battery technology Co. Ltd. (HiNa Battery, 2021). https://www.hinabattery.com/en/index.php?catid=15. Accessed 25 July 2021
Strong performance (Faradion, 2021). https://www.faradion.co.uk/technology-benefits/strong-performance. Accessed 29 July 2021
Fiche technique Pack LMP® 63 (Blue Solutions by Bolloré, 2019). https://blue-storage.com/en/our-files. Accessed 25 July 2021
F.C. Krause, J.P. Ruiz, S.C. Jones, E.J. Brandon, E.C. Darcy et al., Performance of commercial Li-ion cells for future NASA missions and aerospace applications. J. Electrochem. Soc. 168(4), 040504 (2021). https://doi.org/10.1149/1945-7111/abf05f
Powin stacks datasheet (Powin Energy, 2020). https://powin.com/products/stacks. Accessed 29 July 2021
Tesla powerwall limited warranty (Tesla, 2021). https://www.tesla.com/support/energy/powerwall/documents. Accessed 29 July 2021
Tesla powerwall technical specifications (Tesla, 2021). https://www.tesla.com/support/energy/powerwall/documents. Accessed 29 July 2021
eZ8 (Cegasa, 2018). https://www.cegasa.com/en/ez8. Accessed 25 July 2021
A. Rudola, A.J.R. Rennie, R. Heap, S.S. Meysami, A. Lowbridge et al., Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 9(13), 8279–8302 (2021). https://doi.org/10.1039/D1TA00376C
BatPaC: battery manufacturing cost estimation (Argonne National Laboratory, 2021). https://www.anl.gov/partnerships/batpac-battery-manufacturing-cost-estimation. Accessed 25 July 2021
J.F. Peters, A.P. Cruz, M. Weil, Exploring the economic potential of sodium-ion batteries. Batteries 5(1), 10 (2019). https://doi.org/10.3390/batteries5010010
J. Smekens, R. Gopalakrishnan, N.V. Steen, N. Omar, O. Hegazy et al., Influence of electrode density on the performance of Li-ion batteries: experimental and simulation results. Energies 9(2), 104 (2016). https://doi.org/10.3390/en9020104
W. Lv, Z. Wang, H. Cao, Y. Sun, Y. Zhang et al., A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6(2), 1504–1521 (2018). https://doi.org/10.1021/acssuschemeng.7b03811
X. Zhao, H. Yang, Y. Wang, Z. Sha, Review on the electrochemical extraction of lithium from seawater/brine. J. Electroanal. Chem. 850, 113389 (2019). https://doi.org/10.1016/j.jelechem.2019.113389
Z. Li, C. Li, X. Liu, L. Cao, P. Li et al., Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14(5), 3152–3159 (2021). https://doi.org/10.1039/D1EE00354B
F. Cerdas, P. Titscher, N. Bognar, R. Schmuch, M. Winter et al., Exploring the effect of increased energy density on the environmental impacts of traction batteries: a comparison of energy optimized lithium-ion and lithium-sulfur batteries for mobility applications. Energies 11(1), 150 (2018). https://doi.org/10.3390/en11010150
Z. Wang, X. Ning, K. Zhu, J. Hu, H. Yang et al., Evaluating the thermal failure risk of large-format lithium-ion batteries using a cone calorimeter. J. Fire Sci. 37, 81–95 (2019). https://doi.org/10.1177/0734904118816616
A new breed of battery - investor presentation (Solid Power, 2021). https://investors.solidpowerbattery.com/home/default.aspx. Accessed 25 July 2021
Toshiba develops world’s first aqueous lithium-ion battery with nonflammable electrolyte (Toshiba, 2020). https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/20/2011-01.html. Accessed 25 July 2021
Zinc8 energy solutions (Zinc8 Energy Solutions, 2021). https://www.zinc8energy.com. Accessed 29 July 2021
Form energy (Form Energy, 2021). https://formenergy.com. Accessed 29 July 2021
Saft lithium batteries Selector guide (Saft Batteries, 2020). https://www.saftbatteries.com/products-solutions/products/ls-lsh-lsp. Accessed 29 July 2021
Métalectrique (Métalectrique, 2021). https://www.metalectrique.com. Accessed 25 July 2021
MGV (MGV, 2021). https://www.mgv.jp. Accessed 29 July 2021
MgBOX magnesium air battery (Eco Marine Power, 2021). https://www.ecomarinepower.com/en/mgbox-air-battery. Accessed 29 July 2021
Emergency magnesium air cell (Fujikura Composites, 2019). https://www.fujikuracomposites.jp/en/focus/research/wattsatt/. Accessed 29 July 2021
J.B. Quinn, T. Waldmann, K. Richter, M. Kasper, M. Wohlfahrt-Mehrens, Energy density of cylindrical Li-ion cells: a comparison of commercial 18650 to the 21700 cells. J. Electrochem. Soc. 165(14), A3284 (2018). https://doi.org/10.1149/2.0281814jes
T. Waldmann, R.G. Scurtu, K. Richter, M. Wohlfahrt-Mehrens, 18650 vs. 21700 Li-ion cells—a direct comparison of electrochemical, thermal, and geometrical properties. J. Power Sources 472, 228614 (2020). https://doi.org/10.1016/j.jpowsour.2020.228614