Defect Engineering: Can it Mitigate Strong Coulomb Effect of Mg2+ in Cathode Materials for Rechargeable Magnesium Batteries?
Corresponding Author: Xiaowei Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 4
Abstract
Rechargeable magnesium batteries (RMBs) have been considered a promising “post lithium-ion battery” system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market. However, the sluggish diffusion kinetics of bivalent Mg2+ in the host material, related to the strong Coulomb effect between Mg2+ and host anion lattices, hinders their further development toward practical applications. Defect engineering, regarded as an effective strategy to break through the slow migration puzzle, has been validated in various cathode materials for RMBs. In this review, we first thoroughly understand the intrinsic mechanism of Mg2+ diffusion in cathode materials, from which the key factors affecting ion diffusion are further presented. Then, the positive effects of purposely introduced defects, including vacancy and doping, and the corresponding strategies for introducing various defects are discussed. The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized. Finally, the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
Highlights:
1 The underlying migration mechanism of Mg2+ in cathode materials and roles of defects in Mg2+ migration in cathode materials were studied.
2 Applications of defect engineering to Mg2+ migration in cathode materials and the strategies for introducing various defects were summarized.
3 New development directions of defect engineering in cathode materials for rechargeable magnesium battery were prospected.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Bednar, M. Obersteiner, A. Baklanov, M. Thomson, F. Wagner et al., Operationalizing the net-negative carbon economy. Nature 596, 377–383 (2021). https://doi.org/10.1038/s41586-021-03723-9
- J. Xu, J. Ma, Q. Fan, S. Guo, S. Dou, Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X=O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 29, 1606454 (2017). https://doi.org/10.1002/adma.201606454
- S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin, Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60, 600–619 (2019). https://doi.org/10.1016/j.nanoen.2019.03.074
- Z. Ye, P. Li, W. Wei, C. Huang, L. Mi et al., In situ anchoring anion-rich and multi-cavity NiS2 nanops on NCNTs for advanced magnesium-ion batteries. Adv. Sci. 9, e2200067 (2022). https://doi.org/10.1002/advs.202200067
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu et al., Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4
- J. Liu, M. Yue, S. Wang, Y. Zhao, J. Zhang, A review of performance attenuation and mitigation strategies of lithium-ion batteries. Adv. Funct. Mater. 32, 2107769 (2022). https://doi.org/10.1002/adfm.202107769
- M. Zhang, D.A. Kitchaev, Z. Lebens-Higgins, J. Vinckeviciute, M. Zuba et al., Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022). https://doi.org/10.1038/s41578-022-00416-1
- F. Xiong, S. Tan, X. Yao, Q. An, L. Mai, Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Mater. Today 45, 169–190 (2021). https://doi.org/10.1016/j.mattod.2020.12.002
- Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9
- Y. Chen, S. Liu, Z. Bi, Z. Li, F. Zhou et al., Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion, lithium-metal and post-lithium-ion batteries for green and safe energy. Green Energy Environ. 9, 966–991 (2024). https://doi.org/10.1016/j.gee.2023.05.002
- M. Rashad, M. Asif, Y. Wang, Z. He, I. Ahmed, Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater. 25, 342–375 (2020). https://doi.org/10.1016/j.ensm.2019.10.004
- P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu et al., Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287–4341 (2017). https://doi.org/10.1021/acs.chemrev.6b00614
- X. Xue, R. Chen, X. Song, A. Tao, W. Yan et al., Electrochemical Mg2+ displacement driven reversible copper extrusion/intrusion reactions for high-rate rechargeable magnesium batteries. Adv. Funct. Mater. 31, 2009394 (2021). https://doi.org/10.1002/adfm.202009394
- S. Tao, W. Huang, Y. Liu, S. Chen, B. Qian et al., Three-dimensional hollow spheres of the tetragonal-spinel MgMn2O4 cathode for high-performance magnesium ion batteries. J. Mater. Chem. A 6, 8210–8214 (2018). https://doi.org/10.1039/c8ta02284d
- X. Lei, X. Liang, R. Yang, F. Zhang, C. Wang et al., Rational design strategy of novel energy storage systems: toward high-performance rechargeable magnesium batteries. Small 18, e2200418 (2022). https://doi.org/10.1002/smll.202200418
- S. Hou, X. Ji, K. Gaskell, P.-F. Wang, L. Wang et al., Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374, 172–178 (2021). https://doi.org/10.1126/science.abg3954
- Y. Shen, Y. Wang, Y. Miao, M. Yang, X. Zhao et al., High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries. Adv. Mater. 32, e1905524 (2020). https://doi.org/10.1002/adma.201905524
- Y. Zhang, J. Li, W. Zhao, H. Dou, X. Zhao et al., Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv. Mater. 34, e2108114 (2022). https://doi.org/10.1002/adma.202108114
- W. Zhao, Z. Pan, Y. Zhang, Y. Liu, H. Dou et al., Tailoring coordination in conventional ether-based electrolytes for reversible magnesium-metal anodes. Angew. Chem. Int. Ed. 61, 2205187 (2022). https://doi.org/10.1002/anie.202205187
- Y. Liu, W. Zhao, Z. Pan, Z. Fan, M. Zhang et al., Interfacial engineering of magnesiophilic coordination layer stabilizes Mg metal anode. Angew. Chem. Int. Ed. 62, e202302617 (2023). https://doi.org/10.1002/anie.202302617
- W. Zhao, Y. Liu, X. Zhao, Z. Pan, J. Chen et al., Chloride-free electrolytes for high-voltage magnesium metal batteries: challenges, strategies, and perspectives. Chemistry 29, e202203334 (2023). https://doi.org/10.1002/chem.202203334
- Y. Sun, Y. Wang, L. Jiang, D. Dong, W. Wang et al., Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries. Energy Environ. Sci. 16, 265–274 (2023). https://doi.org/10.1039/d2ee03235j
- J. Zhang, J. Liu, M. Wang, Z. Zhang, Z. Zhou et al., The origin of anode–electrolyte interfacial passivation in rechargeable Mg-metal batteries. Energy Environ. Sci. 16, 1111–1124 (2023). https://doi.org/10.1039/d2ee03270h
- L. Li, Y. Lu, Q. Zhang, S. Zhao, Z. Hu et al., Recent progress on layered cathode materials for nonaqueous rechargeable magnesium batteries. Small 17, e1902767 (2021). https://doi.org/10.1002/smll.201902767
- P. Li, Z. Shao, W. Fu, W. Ma, K. Yang et al., Enhancing corrosion resistance of magnesium alloys via combining green chicory extracts and metal cations as organic-inorganic composite inhibitor. Corros. Commun. 9, 44–56 (2023). https://doi.org/10.1016/j.corcom.2022.06.002
- Y. Yang, S. Cao, T. Ying, F. Cao, J. Wang et al., The effects of a corrosion product film on the corrosion behavior of Mg–Al alloy with micro-alloying of yttrium in a chloride solution. Corros. Commun. 11, 12–22 (2023). https://doi.org/10.1016/j.corcom.2022.10.002
- C. Wang, Y. Huang, Y. Lu, H. Pan, B.B. Xu et al., Reversible magnesium metal anode enabled by cooperative solvation/surface engineering in carbonate electrolytes. Nano-Micro Lett. 13, 195 (2021). https://doi.org/10.1007/s40820-021-00716-1
- Z. Ma, M. Forsyth, D.R. MacFarlane, M. Kar, Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable Mg batteries. Green Energy Environ. 4, 146–153 (2019). https://doi.org/10.1016/j.gee.2018.10.003
- Z. Li, L. Han, Y. Wang, X. Li, J. Lu et al., Microstructure characteristics of cathode materials for rechargeable magnesium batteries. Small 15, 1900105 (2019). https://doi.org/10.1002/smll.201900105
- R. Ruiz, C. Pérez-Vicente, S. Rubio, R. Stoyanova, W. Zuo et al., A cubic Mg2MnO4 cathode for non-aqueous magnesium batteries. Energy Storage Mater. 48, 12–19 (2022). https://doi.org/10.1016/j.ensm.2022.02.047
- H. Dong, Y. Liang, O. Tutusaus, R. Mohtadi, Y. Zhang et al., Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 3, 782–793 (2019). https://doi.org/10.1016/j.joule.2018.11.022
- Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2300682 (2023). https://doi.org/10.1002/aenm.202300682
- M. Kotobuki, B. Yan, L. Lu, Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Mater. 54, 227–253 (2023). https://doi.org/10.1016/j.ensm.2022.10.034
- M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015). https://doi.org/10.1016/j.ccr.2014.11.005
- S. Kang, K.G. Reeves, T. Koketsu, J. Ma, O.J. Borkiewicz et al., Multivalent Mg2+-, Zn2+-, and Ca2+-ion intercalation chemistry in a disordered layered structure. ACS Appl. Energy Mater. 3, 9143–9150 (2020). https://doi.org/10.1021/acsaem.0c01530
- Y. Ren, L. Hardwick, P. Bruce, Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem. Int. Ed. 49, 2570–2574 (2010). https://doi.org/10.1002/anie.200907099
- W. Li, D. Corradini, M. Body, C. Legein, M. Salanne et al., High substitution rate in TiO2 anatase nanops with cationic vacancies for fast lithium storage. Chem. Mater. 27, 5014–5019 (2015). https://doi.org/10.1021/acs.chemmater.5b01407
- S. Su, Z. Huang, Y. NuLi, F. Tuerxun, J. Yang et al., A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51, 2641–2644 (2015). https://doi.org/10.1039/C4CC08774G
- M. Zhang, A.C. MacRae, H. Liu, Y.S. Meng, Communication—investigation of anatase-TiO2 as an efficient electrode material for magnesium-ion batteries. J. Electrochem. Soc. 163, A2368–A2370 (2016). https://doi.org/10.1149/2.1091610jes
- A. Michail, B. Silván, N. Tapia-Ruiz, Progress in high-voltage MgMn2O4 oxyspinel cathode materials for Mg batteries. Curr. Opin. Electrochem. 31, 100817 (2022). https://doi.org/10.1016/j.coelec.2021.100817
- J. Zhang, Z. Chang, Z. Zhang, A. Du, S. Dong et al., Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15, 15594–15624 (2021). https://doi.org/10.1021/acsnano.1c06530
- V. Duffort, X. Sun, L.F. Nazar, Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. Chem. Commun. 52, 12458–12461 (2016). https://doi.org/10.1039/c6cc05363g
- X. Fan, F. Wang, X. Ji, R. Wang, T. Gao et al., A universal organic cathode for ultrafast lithium and multivalent metal batteries. Angew. Chem. Int. Ed. 57, 7146–7150 (2018). https://doi.org/10.1002/anie.201803703
- Y. Lu, Q. Zhang, L. Li, Z. Niu, J. Chen, Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4, 2786–2813 (2018). https://doi.org/10.1016/j.chempr.2018.09.005
- Y. Chen, C. Wang, Designing high performance organic batteries. Acc. Chem. Res. 53, 2636–2647 (2020). https://doi.org/10.1021/acs.accounts.0c00465
- H. Dong, O. Tutusaus, Y. Liang, Y. Zhang, Z. Lebens-Higgins et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5, 1043–1050 (2020). https://doi.org/10.1038/s41560-020-00734-0
- Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022). https://doi.org/10.1002/adma.202200662
- H. Wang, M. Mao, C. Wang, Storing Mg ions in polymers: a perspective. Macromol. Rapid Commun. 43, 2200198 (2022). https://doi.org/10.1002/marc.202200198
- Z. Liu, L. Qin, X. Cao, J. Zhou, A. Pan et al., Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog. Mater. Sci. 125, 100911 (2022). https://doi.org/10.1016/j.pmatsci.2021.100911
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
- Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang et al., Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 (2020). https://doi.org/10.1002/aenm.202000927
- C. Ling, K. Suto, Thermodynamic origin of irreversible magnesium trapping in chevrel phase Mo6S8: importance of magnesium and vacancy ordering. Chem. Mater. 29, 3731–3739 (2017). https://doi.org/10.1021/acs.chemmater.7b00772
- M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47, 8804–8841 (2018). https://doi.org/10.1039/c8cs00319j
- E. Levi, E. Lancry, A. Mitelman, D. Aurbach, G. Ceder et al., Phase diagram of Mg insertion into chevrel phases, MgxMo6T8 (T=S, Se). 1. crystal structure of the sulfides. Chem. Mater. 18, 5492–5503 (2006). https://doi.org/10.1021/cm061656f
- E. Levi, G. Gershinsky, D. Aurbach, O. Isnard, G. Ceder, New insight on the unusually high ionic mobility in chevrel phases. Chem. Mater. 21, 1390–1399 (2009). https://doi.org/10.1021/cm900033v
- Z. Rong, R. Malik, P. Canepa, G. Sai Gautam, M. Liu et al., Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27, 6016–6021 (2015). https://doi.org/10.1021/acs.chemmater.5b02342
- A. Van der Ven, J. Bhattacharya, A.A. Belak, Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013). https://doi.org/10.1021/ar200329r
- K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, I. Tanaka, First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound. Phys. Rev. B 78, 214303 (2008). https://doi.org/10.1103/physrevb.78.214303
- A. Torres, M.E. Arroyo-de Dompablo, Comparative investigation of MgMnSiO4 and olivine-type MgMnSiS4 as cathode materials for Mg batteries. J. Phys. Chem. C 122, 9356–9362 (2018). https://doi.org/10.1021/acs.jpcc.8b02369
- M. Smeu, M.S. Hossain, Z. Wang, V. Timoshevskii, K.H. Bevan et al., Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2+ ions. J. Power. Sources 306, 431–436 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.009
- M.D. Regulacio, D.T. Nguyen, R. Horia, Z.W. Seh, Designing nanostructured metal chalcogenides as cathode materials for rechargeable magnesium batteries. Small 17, e2007683 (2021). https://doi.org/10.1002/smll.202007683
- L. Zhou, F. Xiong, S. Tan, Q. An, Z. Wang et al., Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy 54, 360–366 (2018). https://doi.org/10.1016/j.nanoen.2018.10.033
- P. Canepa, S.H. Bo, G. Sai Gautam, B. Key, W.D. Richards et al., High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017). https://doi.org/10.1038/s41467-017-01772-1
- G.S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson et al., First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun. 51, 13619–13622 (2015). https://doi.org/10.1039/C5CC04947D
- K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006). https://doi.org/10.1126/science.1122152
- E. Uchaker, G. Cao, The role of intentionally introduced defects on electrode materials for alkali-ion batteries. Chem 10, 1608–1617 (2015). https://doi.org/10.1002/asia.201500401
- W. Wang, Y. Jiang, Y. Yang, F. Xiong, S. Zhu et al., Basal planes unlocking and interlayer engineering endows proton doped-MoO2.8F0.2 with fast and stable magnesium storage. ACS Nano 16, 17097–17106 (2022). https://doi.org/10.1021/acsnano.2c07399
- Y. Wang, X. Xue, P. Liu, C. Wang, X. Yi et al., Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2-x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12, 12492–12502 (2018). https://doi.org/10.1021/acsnano.8b06917
- S. Ding, Z. Li, X. Dai, C. Sun, A. Meng, Mo-doped VS4 with interlayer-expanded and engineering sulfur vacancies as cathode for advanced magnesium storage. Chem. Eng. J. 417, 129328 (2021). https://doi.org/10.1016/j.cej.2021.129328
- T. Koketsu, J. Ma, B.J. Morgan, M. Body, C. Legein et al., Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017). https://doi.org/10.1038/nmat4976
- Y. Xu, Y. Fo, H. Lv, X. Cui, G. Liu et al., Anderson-type polyoxometalate-assisted synthesis of defect-rich doped 1T/2H-MoSe2 nanosheets for efficient seawater splitting and Mg/seawater batteries. ACS Appl. Mater. Interfaces 14, 10246–10256 (2022). https://doi.org/10.1021/acsami.1c20459
- Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong et al., Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5, 1194–1209 (2019). https://doi.org/10.1016/j.chempr.2019.02.014
- S. Chen, S. Fan, H. Li, Y. Shi, H. Yang, Recent advances in kinetic optimizations of cathode materials for rechargeable magnesium batteries. Coord. Chem. Rev. 466, 214597 (2022). https://doi.org/10.1016/j.ccr.2022.214597
- K. Shimokawa, T. Atsumi, N.L. Okamoto, T. Kawaguchi, S. Imashuku et al., Structure design of long-life spinel-oxide cathode materials for magnesium rechargeable batteries. Adv. Mater. 33, 2007539 (2021). https://doi.org/10.1002/adma.202007539
- X. Yang, C. Du, Y. Zhu, H. Peng, B. Liu et al., Constructing defect-rich unconventional phase Cu7.2S4 nanotubes via microwave-induced selective etching for ultra-stable rechargeable magnesium batteries. Chem. Eng. J. 430, 133108 (2022). https://doi.org/10.1016/j.cej.2021.133108
- H. Zhang, D. Cao, X. Bai, Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance. Inorg. Chem. Front. 7, 2168–2177 (2020). https://doi.org/10.1039/d0qi00067a
- X. Yao, Y. Zhao, F.A. Castro, L. Mai, Rational design of preintercalated electrodes for rechargeable batteries. ACS Energy Lett. 4, 771–778 (2019). https://doi.org/10.1021/acsenergylett.8b02555
- F. Chen, B.-Q. Zhao, K. Huang, X.-F. Ma, H.-Y. Li et al., Dual-defect engineering strategy enables high-durability rechargeable magnesium-metal batteries. Nano-Micro Lett. 16, 184 (2024). https://doi.org/10.1007/s40820-024-01410-8
- D. Wu, Y. Zhuang, F. Wang, Y. Yang, J. Zeng et al., High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16, 4880–4887 (2023). https://doi.org/10.1007/s12274-021-3679-2
- S. Ding, X. Dai, Y. Tian, G. Song, Z. Li et al., Synergy strategy of electrical conductivity enhancement and vacancy introduction for improving the performance of VS4 magnesium-ion battery cathode. ACS Appl. Mater. Interfaces 13, 54005–54017 (2021). https://doi.org/10.1021/acsami.1c17023
- S. Okamoto, T. Ichitsubo, T. Kawaguchi, Y. Kumagai, F. Oba et al., Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv. Sci. 2, 1500072 (2015). https://doi.org/10.1002/advs.201500072
- F. Legrain, O. Malyi, S. Manzhos, Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J. Power. Sources 278, 197–202 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.058
- B. Lee, E. Jo, J. Choi, J.H. Kim, W. Chang et al., Cr-doped lithium titanate nanocrystals as Mg ion insertion materials for Mg batteries. J. Mater. Chem. A 7, 25619–25627 (2019). https://doi.org/10.1039/c9ta08362f
- S. Zhuo, G. Huang, R. Sougrat, J. Guo, N. Wei et al., Hierarchical nanocapsules of Cu-doped MoS2@H-substituted graphdiyne for magnesium storage. ACS Nano 16, 3955–3964 (2022). https://doi.org/10.1021/acsnano.1c09405
- Y. Liang, H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon et al., Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194–2202 (2015). https://doi.org/10.1021/acs.nanolett.5b00388
- L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong et al., Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 30, e1801984 (2018). https://doi.org/10.1002/adma.201801984
- Y. Zhao, D. Wang, D. Yang, L. Wei, B. Liu et al., Superior Mg2+ storage properties of VS2 nanosheets by using an APC-PP14Cl/THF electrolyte. Energy Storage Mater. 23, 749–756 (2019). https://doi.org/10.1016/j.ensm.2019.04.004
- X. Ji, J. Chen, F. Wang, W. Sun, Y. Ruan et al., Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 18, 6441–6448 (2018). https://doi.org/10.1021/acs.nanolett.8b02854
- J. Yang, J. Li, W. Gong, F. Geng, Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature. Proc. Natl. Acad. Sci. U.S.A. 118, e2111549118 (2021). https://doi.org/10.1073/pnas.2111549118
References
J. Bednar, M. Obersteiner, A. Baklanov, M. Thomson, F. Wagner et al., Operationalizing the net-negative carbon economy. Nature 596, 377–383 (2021). https://doi.org/10.1038/s41586-021-03723-9
J. Xu, J. Ma, Q. Fan, S. Guo, S. Dou, Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X=O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 29, 1606454 (2017). https://doi.org/10.1002/adma.201606454
S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin, Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60, 600–619 (2019). https://doi.org/10.1016/j.nanoen.2019.03.074
Z. Ye, P. Li, W. Wei, C. Huang, L. Mi et al., In situ anchoring anion-rich and multi-cavity NiS2 nanops on NCNTs for advanced magnesium-ion batteries. Adv. Sci. 9, e2200067 (2022). https://doi.org/10.1002/advs.202200067
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu et al., Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020). https://doi.org/10.1007/s41918-019-00060-4
J. Liu, M. Yue, S. Wang, Y. Zhao, J. Zhang, A review of performance attenuation and mitigation strategies of lithium-ion batteries. Adv. Funct. Mater. 32, 2107769 (2022). https://doi.org/10.1002/adfm.202107769
M. Zhang, D.A. Kitchaev, Z. Lebens-Higgins, J. Vinckeviciute, M. Zuba et al., Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022). https://doi.org/10.1038/s41578-022-00416-1
F. Xiong, S. Tan, X. Yao, Q. An, L. Mai, Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Mater. Today 45, 169–190 (2021). https://doi.org/10.1016/j.mattod.2020.12.002
Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9
Y. Chen, S. Liu, Z. Bi, Z. Li, F. Zhou et al., Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion, lithium-metal and post-lithium-ion batteries for green and safe energy. Green Energy Environ. 9, 966–991 (2024). https://doi.org/10.1016/j.gee.2023.05.002
M. Rashad, M. Asif, Y. Wang, Z. He, I. Ahmed, Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater. 25, 342–375 (2020). https://doi.org/10.1016/j.ensm.2019.10.004
P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu et al., Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287–4341 (2017). https://doi.org/10.1021/acs.chemrev.6b00614
X. Xue, R. Chen, X. Song, A. Tao, W. Yan et al., Electrochemical Mg2+ displacement driven reversible copper extrusion/intrusion reactions for high-rate rechargeable magnesium batteries. Adv. Funct. Mater. 31, 2009394 (2021). https://doi.org/10.1002/adfm.202009394
S. Tao, W. Huang, Y. Liu, S. Chen, B. Qian et al., Three-dimensional hollow spheres of the tetragonal-spinel MgMn2O4 cathode for high-performance magnesium ion batteries. J. Mater. Chem. A 6, 8210–8214 (2018). https://doi.org/10.1039/c8ta02284d
X. Lei, X. Liang, R. Yang, F. Zhang, C. Wang et al., Rational design strategy of novel energy storage systems: toward high-performance rechargeable magnesium batteries. Small 18, e2200418 (2022). https://doi.org/10.1002/smll.202200418
S. Hou, X. Ji, K. Gaskell, P.-F. Wang, L. Wang et al., Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374, 172–178 (2021). https://doi.org/10.1126/science.abg3954
Y. Shen, Y. Wang, Y. Miao, M. Yang, X. Zhao et al., High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries. Adv. Mater. 32, e1905524 (2020). https://doi.org/10.1002/adma.201905524
Y. Zhang, J. Li, W. Zhao, H. Dou, X. Zhao et al., Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv. Mater. 34, e2108114 (2022). https://doi.org/10.1002/adma.202108114
W. Zhao, Z. Pan, Y. Zhang, Y. Liu, H. Dou et al., Tailoring coordination in conventional ether-based electrolytes for reversible magnesium-metal anodes. Angew. Chem. Int. Ed. 61, 2205187 (2022). https://doi.org/10.1002/anie.202205187
Y. Liu, W. Zhao, Z. Pan, Z. Fan, M. Zhang et al., Interfacial engineering of magnesiophilic coordination layer stabilizes Mg metal anode. Angew. Chem. Int. Ed. 62, e202302617 (2023). https://doi.org/10.1002/anie.202302617
W. Zhao, Y. Liu, X. Zhao, Z. Pan, J. Chen et al., Chloride-free electrolytes for high-voltage magnesium metal batteries: challenges, strategies, and perspectives. Chemistry 29, e202203334 (2023). https://doi.org/10.1002/chem.202203334
Y. Sun, Y. Wang, L. Jiang, D. Dong, W. Wang et al., Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries. Energy Environ. Sci. 16, 265–274 (2023). https://doi.org/10.1039/d2ee03235j
J. Zhang, J. Liu, M. Wang, Z. Zhang, Z. Zhou et al., The origin of anode–electrolyte interfacial passivation in rechargeable Mg-metal batteries. Energy Environ. Sci. 16, 1111–1124 (2023). https://doi.org/10.1039/d2ee03270h
L. Li, Y. Lu, Q. Zhang, S. Zhao, Z. Hu et al., Recent progress on layered cathode materials for nonaqueous rechargeable magnesium batteries. Small 17, e1902767 (2021). https://doi.org/10.1002/smll.201902767
P. Li, Z. Shao, W. Fu, W. Ma, K. Yang et al., Enhancing corrosion resistance of magnesium alloys via combining green chicory extracts and metal cations as organic-inorganic composite inhibitor. Corros. Commun. 9, 44–56 (2023). https://doi.org/10.1016/j.corcom.2022.06.002
Y. Yang, S. Cao, T. Ying, F. Cao, J. Wang et al., The effects of a corrosion product film on the corrosion behavior of Mg–Al alloy with micro-alloying of yttrium in a chloride solution. Corros. Commun. 11, 12–22 (2023). https://doi.org/10.1016/j.corcom.2022.10.002
C. Wang, Y. Huang, Y. Lu, H. Pan, B.B. Xu et al., Reversible magnesium metal anode enabled by cooperative solvation/surface engineering in carbonate electrolytes. Nano-Micro Lett. 13, 195 (2021). https://doi.org/10.1007/s40820-021-00716-1
Z. Ma, M. Forsyth, D.R. MacFarlane, M. Kar, Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable Mg batteries. Green Energy Environ. 4, 146–153 (2019). https://doi.org/10.1016/j.gee.2018.10.003
Z. Li, L. Han, Y. Wang, X. Li, J. Lu et al., Microstructure characteristics of cathode materials for rechargeable magnesium batteries. Small 15, 1900105 (2019). https://doi.org/10.1002/smll.201900105
R. Ruiz, C. Pérez-Vicente, S. Rubio, R. Stoyanova, W. Zuo et al., A cubic Mg2MnO4 cathode for non-aqueous magnesium batteries. Energy Storage Mater. 48, 12–19 (2022). https://doi.org/10.1016/j.ensm.2022.02.047
H. Dong, Y. Liang, O. Tutusaus, R. Mohtadi, Y. Zhang et al., Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 3, 782–793 (2019). https://doi.org/10.1016/j.joule.2018.11.022
Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2300682 (2023). https://doi.org/10.1002/aenm.202300682
M. Kotobuki, B. Yan, L. Lu, Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Mater. 54, 227–253 (2023). https://doi.org/10.1016/j.ensm.2022.10.034
M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015). https://doi.org/10.1016/j.ccr.2014.11.005
S. Kang, K.G. Reeves, T. Koketsu, J. Ma, O.J. Borkiewicz et al., Multivalent Mg2+-, Zn2+-, and Ca2+-ion intercalation chemistry in a disordered layered structure. ACS Appl. Energy Mater. 3, 9143–9150 (2020). https://doi.org/10.1021/acsaem.0c01530
Y. Ren, L. Hardwick, P. Bruce, Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem. Int. Ed. 49, 2570–2574 (2010). https://doi.org/10.1002/anie.200907099
W. Li, D. Corradini, M. Body, C. Legein, M. Salanne et al., High substitution rate in TiO2 anatase nanops with cationic vacancies for fast lithium storage. Chem. Mater. 27, 5014–5019 (2015). https://doi.org/10.1021/acs.chemmater.5b01407
S. Su, Z. Huang, Y. NuLi, F. Tuerxun, J. Yang et al., A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51, 2641–2644 (2015). https://doi.org/10.1039/C4CC08774G
M. Zhang, A.C. MacRae, H. Liu, Y.S. Meng, Communication—investigation of anatase-TiO2 as an efficient electrode material for magnesium-ion batteries. J. Electrochem. Soc. 163, A2368–A2370 (2016). https://doi.org/10.1149/2.1091610jes
A. Michail, B. Silván, N. Tapia-Ruiz, Progress in high-voltage MgMn2O4 oxyspinel cathode materials for Mg batteries. Curr. Opin. Electrochem. 31, 100817 (2022). https://doi.org/10.1016/j.coelec.2021.100817
J. Zhang, Z. Chang, Z. Zhang, A. Du, S. Dong et al., Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15, 15594–15624 (2021). https://doi.org/10.1021/acsnano.1c06530
V. Duffort, X. Sun, L.F. Nazar, Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. Chem. Commun. 52, 12458–12461 (2016). https://doi.org/10.1039/c6cc05363g
X. Fan, F. Wang, X. Ji, R. Wang, T. Gao et al., A universal organic cathode for ultrafast lithium and multivalent metal batteries. Angew. Chem. Int. Ed. 57, 7146–7150 (2018). https://doi.org/10.1002/anie.201803703
Y. Lu, Q. Zhang, L. Li, Z. Niu, J. Chen, Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4, 2786–2813 (2018). https://doi.org/10.1016/j.chempr.2018.09.005
Y. Chen, C. Wang, Designing high performance organic batteries. Acc. Chem. Res. 53, 2636–2647 (2020). https://doi.org/10.1021/acs.accounts.0c00465
H. Dong, O. Tutusaus, Y. Liang, Y. Zhang, Z. Lebens-Higgins et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5, 1043–1050 (2020). https://doi.org/10.1038/s41560-020-00734-0
Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022). https://doi.org/10.1002/adma.202200662
H. Wang, M. Mao, C. Wang, Storing Mg ions in polymers: a perspective. Macromol. Rapid Commun. 43, 2200198 (2022). https://doi.org/10.1002/marc.202200198
Z. Liu, L. Qin, X. Cao, J. Zhou, A. Pan et al., Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog. Mater. Sci. 125, 100911 (2022). https://doi.org/10.1016/j.pmatsci.2021.100911
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang et al., Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 (2020). https://doi.org/10.1002/aenm.202000927
C. Ling, K. Suto, Thermodynamic origin of irreversible magnesium trapping in chevrel phase Mo6S8: importance of magnesium and vacancy ordering. Chem. Mater. 29, 3731–3739 (2017). https://doi.org/10.1021/acs.chemmater.7b00772
M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47, 8804–8841 (2018). https://doi.org/10.1039/c8cs00319j
E. Levi, E. Lancry, A. Mitelman, D. Aurbach, G. Ceder et al., Phase diagram of Mg insertion into chevrel phases, MgxMo6T8 (T=S, Se). 1. crystal structure of the sulfides. Chem. Mater. 18, 5492–5503 (2006). https://doi.org/10.1021/cm061656f
E. Levi, G. Gershinsky, D. Aurbach, O. Isnard, G. Ceder, New insight on the unusually high ionic mobility in chevrel phases. Chem. Mater. 21, 1390–1399 (2009). https://doi.org/10.1021/cm900033v
Z. Rong, R. Malik, P. Canepa, G. Sai Gautam, M. Liu et al., Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27, 6016–6021 (2015). https://doi.org/10.1021/acs.chemmater.5b02342
A. Van der Ven, J. Bhattacharya, A.A. Belak, Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013). https://doi.org/10.1021/ar200329r
K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, I. Tanaka, First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound. Phys. Rev. B 78, 214303 (2008). https://doi.org/10.1103/physrevb.78.214303
A. Torres, M.E. Arroyo-de Dompablo, Comparative investigation of MgMnSiO4 and olivine-type MgMnSiS4 as cathode materials for Mg batteries. J. Phys. Chem. C 122, 9356–9362 (2018). https://doi.org/10.1021/acs.jpcc.8b02369
M. Smeu, M.S. Hossain, Z. Wang, V. Timoshevskii, K.H. Bevan et al., Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2+ ions. J. Power. Sources 306, 431–436 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.009
M.D. Regulacio, D.T. Nguyen, R. Horia, Z.W. Seh, Designing nanostructured metal chalcogenides as cathode materials for rechargeable magnesium batteries. Small 17, e2007683 (2021). https://doi.org/10.1002/smll.202007683
L. Zhou, F. Xiong, S. Tan, Q. An, Z. Wang et al., Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy 54, 360–366 (2018). https://doi.org/10.1016/j.nanoen.2018.10.033
P. Canepa, S.H. Bo, G. Sai Gautam, B. Key, W.D. Richards et al., High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017). https://doi.org/10.1038/s41467-017-01772-1
G.S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson et al., First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun. 51, 13619–13622 (2015). https://doi.org/10.1039/C5CC04947D
K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006). https://doi.org/10.1126/science.1122152
E. Uchaker, G. Cao, The role of intentionally introduced defects on electrode materials for alkali-ion batteries. Chem 10, 1608–1617 (2015). https://doi.org/10.1002/asia.201500401
W. Wang, Y. Jiang, Y. Yang, F. Xiong, S. Zhu et al., Basal planes unlocking and interlayer engineering endows proton doped-MoO2.8F0.2 with fast and stable magnesium storage. ACS Nano 16, 17097–17106 (2022). https://doi.org/10.1021/acsnano.2c07399
Y. Wang, X. Xue, P. Liu, C. Wang, X. Yi et al., Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2-x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12, 12492–12502 (2018). https://doi.org/10.1021/acsnano.8b06917
S. Ding, Z. Li, X. Dai, C. Sun, A. Meng, Mo-doped VS4 with interlayer-expanded and engineering sulfur vacancies as cathode for advanced magnesium storage. Chem. Eng. J. 417, 129328 (2021). https://doi.org/10.1016/j.cej.2021.129328
T. Koketsu, J. Ma, B.J. Morgan, M. Body, C. Legein et al., Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017). https://doi.org/10.1038/nmat4976
Y. Xu, Y. Fo, H. Lv, X. Cui, G. Liu et al., Anderson-type polyoxometalate-assisted synthesis of defect-rich doped 1T/2H-MoSe2 nanosheets for efficient seawater splitting and Mg/seawater batteries. ACS Appl. Mater. Interfaces 14, 10246–10256 (2022). https://doi.org/10.1021/acsami.1c20459
Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong et al., Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5, 1194–1209 (2019). https://doi.org/10.1016/j.chempr.2019.02.014
S. Chen, S. Fan, H. Li, Y. Shi, H. Yang, Recent advances in kinetic optimizations of cathode materials for rechargeable magnesium batteries. Coord. Chem. Rev. 466, 214597 (2022). https://doi.org/10.1016/j.ccr.2022.214597
K. Shimokawa, T. Atsumi, N.L. Okamoto, T. Kawaguchi, S. Imashuku et al., Structure design of long-life spinel-oxide cathode materials for magnesium rechargeable batteries. Adv. Mater. 33, 2007539 (2021). https://doi.org/10.1002/adma.202007539
X. Yang, C. Du, Y. Zhu, H. Peng, B. Liu et al., Constructing defect-rich unconventional phase Cu7.2S4 nanotubes via microwave-induced selective etching for ultra-stable rechargeable magnesium batteries. Chem. Eng. J. 430, 133108 (2022). https://doi.org/10.1016/j.cej.2021.133108
H. Zhang, D. Cao, X. Bai, Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance. Inorg. Chem. Front. 7, 2168–2177 (2020). https://doi.org/10.1039/d0qi00067a
X. Yao, Y. Zhao, F.A. Castro, L. Mai, Rational design of preintercalated electrodes for rechargeable batteries. ACS Energy Lett. 4, 771–778 (2019). https://doi.org/10.1021/acsenergylett.8b02555
F. Chen, B.-Q. Zhao, K. Huang, X.-F. Ma, H.-Y. Li et al., Dual-defect engineering strategy enables high-durability rechargeable magnesium-metal batteries. Nano-Micro Lett. 16, 184 (2024). https://doi.org/10.1007/s40820-024-01410-8
D. Wu, Y. Zhuang, F. Wang, Y. Yang, J. Zeng et al., High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16, 4880–4887 (2023). https://doi.org/10.1007/s12274-021-3679-2
S. Ding, X. Dai, Y. Tian, G. Song, Z. Li et al., Synergy strategy of electrical conductivity enhancement and vacancy introduction for improving the performance of VS4 magnesium-ion battery cathode. ACS Appl. Mater. Interfaces 13, 54005–54017 (2021). https://doi.org/10.1021/acsami.1c17023
S. Okamoto, T. Ichitsubo, T. Kawaguchi, Y. Kumagai, F. Oba et al., Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv. Sci. 2, 1500072 (2015). https://doi.org/10.1002/advs.201500072
F. Legrain, O. Malyi, S. Manzhos, Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J. Power. Sources 278, 197–202 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.058
B. Lee, E. Jo, J. Choi, J.H. Kim, W. Chang et al., Cr-doped lithium titanate nanocrystals as Mg ion insertion materials for Mg batteries. J. Mater. Chem. A 7, 25619–25627 (2019). https://doi.org/10.1039/c9ta08362f
S. Zhuo, G. Huang, R. Sougrat, J. Guo, N. Wei et al., Hierarchical nanocapsules of Cu-doped MoS2@H-substituted graphdiyne for magnesium storage. ACS Nano 16, 3955–3964 (2022). https://doi.org/10.1021/acsnano.1c09405
Y. Liang, H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon et al., Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194–2202 (2015). https://doi.org/10.1021/acs.nanolett.5b00388
L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong et al., Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 30, e1801984 (2018). https://doi.org/10.1002/adma.201801984
Y. Zhao, D. Wang, D. Yang, L. Wei, B. Liu et al., Superior Mg2+ storage properties of VS2 nanosheets by using an APC-PP14Cl/THF electrolyte. Energy Storage Mater. 23, 749–756 (2019). https://doi.org/10.1016/j.ensm.2019.04.004
X. Ji, J. Chen, F. Wang, W. Sun, Y. Ruan et al., Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 18, 6441–6448 (2018). https://doi.org/10.1021/acs.nanolett.8b02854
J. Yang, J. Li, W. Gong, F. Geng, Genuine divalent magnesium-ion storage and fast diffusion kinetics in metal oxides at room temperature. Proc. Natl. Acad. Sci. U.S.A. 118, e2111549118 (2021). https://doi.org/10.1073/pnas.2111549118