Improved Plasmonic Hot-Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad-Spectrum Photocatalytic H2 Evolution
Corresponding Author: Yongsheng Yu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 129
Abstract
Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a “holy grail” for researchers, but is still a challenging issue. Herein, based on the common polymeric carbon nitride (PCN), a hybrid co-catalysts system comprising plasmonic Au nanoparticles (NPs) and atomically dispersed Pt single atoms (PtSAs) with different functions was constructed to address this challenge. For the dual co-catalysts decorated PCN (PtSAs–Au2.5/PCN), the PCN is photoexcited to generate electrons under UV and short-wavelength visible light, and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H2 evolution. Furthermore, the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance, and the adjacent PtSAs trap the plasmonic hot-electrons for H2 evolution via direct electron transfer effect. Consequently, the PtSAs–Au2.5/PCN exhibits excellent broad-spectrum photocatalytic H2 evolution activity with the H2 evolution rate of 8.8 mmol g−1 h−1 at 420 nm and 264 μmol g−1 h−1 at 550 nm, much higher than that of Au2.5/PCN and PtSAs–PCN, respectively. This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
Highlights:
1 A hybrid co-catalysts system comprising Au nanoparticles (NPs) and PtSAs with different functions was constructed on the polymeric carbon nitride (PCN) surface by double-solvent method.
2 For the dual co-catalysts, the Au NPs absorb relatively long-wavelength light to produce plasmonic hot-electrons, and the adjacent Pt single atoms (PtSAs) can trap the plasmonic hot-electrons effectively for H2 evolution.
3 The PtSAs–Au2.5/PCN exhibits excellent broad-spectrum photocatalytic H2 evolution activity with the H2 evolution rate of 8.8 mmol g−1 h−1 at 420 nm and 264 μmol g−1 h−1 at 550 nm, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Tao, Y. Zhao, S. Wang, C. Li, R. Li, Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 51(9), 3561–3608 (2022). https://doi.org/10.1039/D1CS01182K
- Y. Fang, Y. Hou, X. Fu, X. Wang, Semiconducting polymers for oxygen evolution reaction under light illumination. Chem. Rev. 122(3), 4204–4256 (2022). https://doi.org/10.1021/acs.chemrev.1c00686
- C. Feng, Z.-P. Wu, K.-W. Huang, J. Ye, H. Zhang, Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 34(23), 2200180 (2022). https://doi.org/10.1002/adma.202200180
- P. Niu, J. Dai, X. Zhi, Z. Xia, S. Wang et al., Photocatalytic overall water splitting by graphitic carbon nitride. InfoMat 3(9), 931–961 (2021). https://doi.org/10.1002/inf2.12219
- J. Abdul Nasir, A. Munir, N. Ahmad, T.U. Haq, Z. Khan et al., Photocatalytic Z-scheme overall water splitting: recent advances in theory and experiments. Adv. Mater. 33(52), 2105195 (2021). https://doi.org/10.1002/adma.202105195
- C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
- I.F. Teixeira, E.C.M. Barbosa, S.C.E. Tsang, P.H.C. Camargo, Carbon nitrides and metal nanops: from controlled synthesis to design principles for improved photocatalysis. Chem. Soc. Rev. 47(20), 7783–7817 (2018). https://doi.org/10.1039/C8CS00479J
- S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
- W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- P. Kumar, D. Laishram, R.K. Sharma, A. Vinu, J. Hu et al., Boosting photocatalytic activity using carbon nitride based 2D/2D van der waals heterojunctions. Chem. Mater. 33(23), 9012–9092 (2021). https://doi.org/10.1021/acs.chemmater.1c03166
- S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian et al., Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(5), 1830–1834 (2016). https://doi.org/10.1002/anie.201508505
- G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26(5), 805–809 (2014). https://doi.org/10.1002/adma.201303611
- D. Zhao, C.-L. Dong, B. Wang, C. Chen, Y.-C. Huang et al., Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 31(43), 1903545 (2019). https://doi.org/10.1002/adma.201903545
- D. Zhao, Y. Wang, C.-L. Dong, Y.-C. Huang, J. Chen et al., Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6(4), 388–397 (2021). https://doi.org/10.1038/s41560-021-00795-9
- H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
- Y. Wang, P. Du, H. Pan, L. Fu, Y. Zhang et al., Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Adv. Mater. 31(40), 1807540 (2019). https://doi.org/10.1002/adma.201807540
- L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 6(6), 3921–3931 (2016). https://doi.org/10.1021/acscatal.6b00922
- L. Lin, Z. Yu, X. Wang, Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58(19), 6164–6175 (2019). https://doi.org/10.1002/anie.201809897
- L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin et al., Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalytic overall water splitting. Nat. Catal. 3(8), 649–655 (2020). https://doi.org/10.1038/s41929-020-0476-3
- L. Zhang, N. Ding, L. Lou, K. Iwasaki, H. Wu et al., Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@Au NRs/C3N4 nanotubes under visible-light irradiation. Adv. Funct. Mater. 29(3), 1806774 (2019). https://doi.org/10.1002/adfm.201806774
- W. Cheng, H. Su, F. Tang, W. Che, Y. Huang et al., Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanop/C3N4 for photocatalytic hydrogen evolution. J. Mater. Chem. A. 5(37), 19649–19655 (2017). https://doi.org/10.1039/C7TA03808A
- H. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic au modified g-C3N4 photocatalyst under UV–vis light irradiation. Appl. Surf. Sci. 439, 552–559 (2018). https://doi.org/10.1016/j.apsusc.2018.01.071
- D. Ruan, J. Xue, M. Fujitsuka, T. Majima, Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C3N4 for photocatalytic H2 production. Chem. Commun. 55(43), 6014–6017 (2019). https://doi.org/10.1039/C9CC02574J
- Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Mater. Lett. 3(6), 663–697 (2021). https://doi.org/10.1021/acsmaterialslett.1c00160
- Y. Fu, T. Huang, B. Jia, J. Zhu, X. Wang, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl. Catal. B Environ. 202, 430–437 (2017). https://doi.org/10.1016/j.apcatb.2016.09.051
- M. Gao, W. Yang, Y. Yu, J. Li, Y. Liu, N-hexane-assisted synthesis of plasmonic au-mediated polymeric carbon nitride photocatalyst for remarkable H2 evolution under visible-light irradiation. J. Colloid Interface Sci. 627, 398–404 (2022). https://doi.org/10.1016/j.jcis.2022.07.056
- H. Tian, X. Liu, Z. Liang, P. Qiu, X. Qian et al., Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible and near-infrared light. J. Colloid Interface Sci. 557, 700–708 (2019). https://doi.org/10.1016/j.jcis.2019.09.075
- Y. Guo, H. Jia, J. Yang, H. Yin, Z. Yang et al., Understanding the roles of plasmonic au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C3N4 hybrid nanostructures for photocatalytic hydrogen generation. Phys. Chem. Chem. Phys. 20(34), 22296–22307 (2018). https://doi.org/10.1039/C8CP04241A
- A. Zada, M. Humayun, F. Raziq, X. Zhang, Y. Qu et al., Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well-designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 6(21), 1601190 (2016). https://doi.org/10.1002/aenm.201601190
- Q. Zhou, Y. Guo, Z. Ye, Y. Fu, Y. Guo et al., Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting. Mater. Today 58, 100–109 (2022). https://doi.org/10.1016/j.mattod.2022.06.009
- M. Gao, F. Tian, Z. Guo, X. Zhang, Z. Li et al., Mutual-modification effect in adjacent pt nanops and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem. Eng. J. 446, 137127 (2022). https://doi.org/10.1016/j.cej.2022.137127
- J. Ran, H. Wang, H. Jin, C. Ling, X. Zhang et al., Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H2 production. J. Mater. Chem. A 6(46), 23278–23282 (2018). https://doi.org/10.1039/C8TA09358J
- P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu et al., Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56, 127–137 (2019). https://doi.org/10.1016/j.nanoen.2018.11.033
- Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang et al., Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 141(6), 2508–2515 (2019). https://doi.org/10.1021/jacs.8b12428
- W. Wang, J. Fang, X. Huang, Different behaviors between interband and intraband transitions generated hot carriers on g-C3N4/Au for photocatalytic H2 production. Appl. Surf. Sci. 513, 145830 (2020). https://doi.org/10.1016/j.apsusc.2020.145830
- B. Zeng, S. Wang, Y. Gao, G. Li, W. Tian et al., Interfacial modulation with aluminum oxide for efficient plasmon-induced water oxidation. Adv. Funct. Mater. 31(6), 2005688 (2021). https://doi.org/10.1002/adfm.202005688
- C.-C. Nguyen, M. Sakar, M.-H. Vu, T.-O. Do, Nitrogen vacancies-assisted enhanced plasmonic photoactivities of Au/g-C3N4 crumpled nanolayers: a novel pathway toward efficient solar light-driven photocatalysts. Ind. Eng. Chem. Res. 58(9), 3698–3706 (2019). https://doi.org/10.1021/acs.iecr.8b05792
- S. Bai, X. Li, Q. Kong, R. Long, C. Wang et al., Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection. Adv. Mater. 27(22), 3444–3452 (2015). https://doi.org/10.1002/adma.201501200
- X. Li, W. Bi, L. Zhang, S. Tao, W. Chu et al., Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28(12), 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
- P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv et al., Thermolysis of noble metal nanops into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58(40), 14184–14188 (2019). https://doi.org/10.1002/anie.201908351
- Z. Zeng, Y. Su, X. Quan, W. Choi, G. Zhang et al., Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy 69, 104409 (2020). https://doi.org/10.1016/j.nanoen.2019.104409
- X. Bao, M. Liu, Z. Wang, D. Dai, P. Wang et al., Photocatalytic selective oxidation of hmf coupled with H2 evolution on flexible ultrathin g-C3N4 nanosheets with enhanced n–h interaction. ACS Catal. 12(3), 1919–1929 (2022). https://doi.org/10.1021/acscatal.1c05357
- D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y-C, Huang, et al., Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
- M. Gao, F. Tian, X. Zhang, Y. Liu, Z. Chen et al., Fast charge separation and transfer strategy in polymeric carbon nitride for efficient photocatalytic H2 evolution: coupling surface Schottky junctions and interlayer charge transfer channels. Nano Energy 103, 107767 (2022). https://doi.org/10.1016/j.nanoen.2022.107767
References
X. Tao, Y. Zhao, S. Wang, C. Li, R. Li, Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 51(9), 3561–3608 (2022). https://doi.org/10.1039/D1CS01182K
Y. Fang, Y. Hou, X. Fu, X. Wang, Semiconducting polymers for oxygen evolution reaction under light illumination. Chem. Rev. 122(3), 4204–4256 (2022). https://doi.org/10.1021/acs.chemrev.1c00686
C. Feng, Z.-P. Wu, K.-W. Huang, J. Ye, H. Zhang, Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 34(23), 2200180 (2022). https://doi.org/10.1002/adma.202200180
P. Niu, J. Dai, X. Zhi, Z. Xia, S. Wang et al., Photocatalytic overall water splitting by graphitic carbon nitride. InfoMat 3(9), 931–961 (2021). https://doi.org/10.1002/inf2.12219
J. Abdul Nasir, A. Munir, N. Ahmad, T.U. Haq, Z. Khan et al., Photocatalytic Z-scheme overall water splitting: recent advances in theory and experiments. Adv. Mater. 33(52), 2105195 (2021). https://doi.org/10.1002/adma.202105195
C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
I.F. Teixeira, E.C.M. Barbosa, S.C.E. Tsang, P.H.C. Camargo, Carbon nitrides and metal nanops: from controlled synthesis to design principles for improved photocatalysis. Chem. Soc. Rev. 47(20), 7783–7817 (2018). https://doi.org/10.1039/C8CS00479J
S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
P. Kumar, D. Laishram, R.K. Sharma, A. Vinu, J. Hu et al., Boosting photocatalytic activity using carbon nitride based 2D/2D van der waals heterojunctions. Chem. Mater. 33(23), 9012–9092 (2021). https://doi.org/10.1021/acs.chemmater.1c03166
S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian et al., Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(5), 1830–1834 (2016). https://doi.org/10.1002/anie.201508505
G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26(5), 805–809 (2014). https://doi.org/10.1002/adma.201303611
D. Zhao, C.-L. Dong, B. Wang, C. Chen, Y.-C. Huang et al., Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 31(43), 1903545 (2019). https://doi.org/10.1002/adma.201903545
D. Zhao, Y. Wang, C.-L. Dong, Y.-C. Huang, J. Chen et al., Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 6(4), 388–397 (2021). https://doi.org/10.1038/s41560-021-00795-9
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
Y. Wang, P. Du, H. Pan, L. Fu, Y. Zhang et al., Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Adv. Mater. 31(40), 1807540 (2019). https://doi.org/10.1002/adma.201807540
L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 6(6), 3921–3931 (2016). https://doi.org/10.1021/acscatal.6b00922
L. Lin, Z. Yu, X. Wang, Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58(19), 6164–6175 (2019). https://doi.org/10.1002/anie.201809897
L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin et al., Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalytic overall water splitting. Nat. Catal. 3(8), 649–655 (2020). https://doi.org/10.1038/s41929-020-0476-3
L. Zhang, N. Ding, L. Lou, K. Iwasaki, H. Wu et al., Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@Au NRs/C3N4 nanotubes under visible-light irradiation. Adv. Funct. Mater. 29(3), 1806774 (2019). https://doi.org/10.1002/adfm.201806774
W. Cheng, H. Su, F. Tang, W. Che, Y. Huang et al., Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanop/C3N4 for photocatalytic hydrogen evolution. J. Mater. Chem. A. 5(37), 19649–19655 (2017). https://doi.org/10.1039/C7TA03808A
H. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic au modified g-C3N4 photocatalyst under UV–vis light irradiation. Appl. Surf. Sci. 439, 552–559 (2018). https://doi.org/10.1016/j.apsusc.2018.01.071
D. Ruan, J. Xue, M. Fujitsuka, T. Majima, Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C3N4 for photocatalytic H2 production. Chem. Commun. 55(43), 6014–6017 (2019). https://doi.org/10.1039/C9CC02574J
Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Mater. Lett. 3(6), 663–697 (2021). https://doi.org/10.1021/acsmaterialslett.1c00160
Y. Fu, T. Huang, B. Jia, J. Zhu, X. Wang, Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl. Catal. B Environ. 202, 430–437 (2017). https://doi.org/10.1016/j.apcatb.2016.09.051
M. Gao, W. Yang, Y. Yu, J. Li, Y. Liu, N-hexane-assisted synthesis of plasmonic au-mediated polymeric carbon nitride photocatalyst for remarkable H2 evolution under visible-light irradiation. J. Colloid Interface Sci. 627, 398–404 (2022). https://doi.org/10.1016/j.jcis.2022.07.056
H. Tian, X. Liu, Z. Liang, P. Qiu, X. Qian et al., Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible and near-infrared light. J. Colloid Interface Sci. 557, 700–708 (2019). https://doi.org/10.1016/j.jcis.2019.09.075
Y. Guo, H. Jia, J. Yang, H. Yin, Z. Yang et al., Understanding the roles of plasmonic au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C3N4 hybrid nanostructures for photocatalytic hydrogen generation. Phys. Chem. Chem. Phys. 20(34), 22296–22307 (2018). https://doi.org/10.1039/C8CP04241A
A. Zada, M. Humayun, F. Raziq, X. Zhang, Y. Qu et al., Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well-designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 6(21), 1601190 (2016). https://doi.org/10.1002/aenm.201601190
Q. Zhou, Y. Guo, Z. Ye, Y. Fu, Y. Guo et al., Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting. Mater. Today 58, 100–109 (2022). https://doi.org/10.1016/j.mattod.2022.06.009
M. Gao, F. Tian, Z. Guo, X. Zhang, Z. Li et al., Mutual-modification effect in adjacent pt nanops and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem. Eng. J. 446, 137127 (2022). https://doi.org/10.1016/j.cej.2022.137127
J. Ran, H. Wang, H. Jin, C. Ling, X. Zhang et al., Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H2 production. J. Mater. Chem. A 6(46), 23278–23282 (2018). https://doi.org/10.1039/C8TA09358J
P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu et al., Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56, 127–137 (2019). https://doi.org/10.1016/j.nanoen.2018.11.033
Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang et al., Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 141(6), 2508–2515 (2019). https://doi.org/10.1021/jacs.8b12428
W. Wang, J. Fang, X. Huang, Different behaviors between interband and intraband transitions generated hot carriers on g-C3N4/Au for photocatalytic H2 production. Appl. Surf. Sci. 513, 145830 (2020). https://doi.org/10.1016/j.apsusc.2020.145830
B. Zeng, S. Wang, Y. Gao, G. Li, W. Tian et al., Interfacial modulation with aluminum oxide for efficient plasmon-induced water oxidation. Adv. Funct. Mater. 31(6), 2005688 (2021). https://doi.org/10.1002/adfm.202005688
C.-C. Nguyen, M. Sakar, M.-H. Vu, T.-O. Do, Nitrogen vacancies-assisted enhanced plasmonic photoactivities of Au/g-C3N4 crumpled nanolayers: a novel pathway toward efficient solar light-driven photocatalysts. Ind. Eng. Chem. Res. 58(9), 3698–3706 (2019). https://doi.org/10.1021/acs.iecr.8b05792
S. Bai, X. Li, Q. Kong, R. Long, C. Wang et al., Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection. Adv. Mater. 27(22), 3444–3452 (2015). https://doi.org/10.1002/adma.201501200
X. Li, W. Bi, L. Zhang, S. Tao, W. Chu et al., Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28(12), 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv et al., Thermolysis of noble metal nanops into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58(40), 14184–14188 (2019). https://doi.org/10.1002/anie.201908351
Z. Zeng, Y. Su, X. Quan, W. Choi, G. Zhang et al., Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy 69, 104409 (2020). https://doi.org/10.1016/j.nanoen.2019.104409
X. Bao, M. Liu, Z. Wang, D. Dai, P. Wang et al., Photocatalytic selective oxidation of hmf coupled with H2 evolution on flexible ultrathin g-C3N4 nanosheets with enhanced n–h interaction. ACS Catal. 12(3), 1919–1929 (2022). https://doi.org/10.1021/acscatal.1c05357
D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y-C, Huang, et al., Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
M. Gao, F. Tian, X. Zhang, Y. Liu, Z. Chen et al., Fast charge separation and transfer strategy in polymeric carbon nitride for efficient photocatalytic H2 evolution: coupling surface Schottky junctions and interlayer charge transfer channels. Nano Energy 103, 107767 (2022). https://doi.org/10.1016/j.nanoen.2022.107767