12.6 μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries
Corresponding Author: Haihui Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 181
Abstract
Solid-state lithium metal batteries (SSLMBs) show great promise in terms of high-energy–density and high-safety performance. However, there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes, and to minimize the electrolyte thickness to achieve high-energy–density of SSLMBs. Herein, we develop an ultrathin (12.6 µm) asymmetric composite solid-state electrolyte with ultralight areal density (1.69 mg cm−2) for SSLMBs. The electrolyte combining a garnet (LLZO) layer and a metal organic framework (MOF) layer, which are fabricated on both sides of the polyethylene (PE) separator separately by tape casting. The PE separator endows the electrolyte with flexibility and excellent mechanical properties. The LLZO layer on the cathode side ensures high chemical stability at high voltage. The MOF layer on the anode side achieves a stable electric field and uniform Li flux, thus promoting uniform Li+ deposition. Thanks to the well-designed structure, the Li symmetric battery exhibits an ultralong cycle life (5000 h), and high-voltage SSLMBs achieve stable cycle performance. The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg−1/773.1 Wh L−1. This simple operation allows for large-scale preparation, and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.
Highlights:
1 Ultra-thin asymmetric composite solid-state electrolytes with ultralight areal density were designed for solid-state lithium metal batteries, achieving interfacial stability to Li metal and high-voltage cathode.
2 The improved mechanical properties of the electrolyte contribute to the inhibition of Li dendrite growth was demonstrated by both experimental and theoretical simulations.
3 The assembled pouch cell exhibited a high gravimetric/volume energy density of 344.0 Wh kg−1/773.1 Wh L−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023). https://doi.org/10.1002/adma.202110423
- J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022). https://doi.org/10.1039/D1EE03466A
- H. Zhang, L. Huang, H. Xu, X. Zhang, Z. Chen et al., A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2, 201–208 (2022). https://doi.org/10.1016/j.esci.2022.03.001
- Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
- L. Nie, S. Chen, C. Zhang, L. Dong, Y. He et al., Integration of a low-tortuous electrode and an in-situ-polymerized electrolyte for all-solid-state lithium-metal batteries. Cell Rep. Phys. Sci. 3, 100851 (2022). https://doi.org/10.1016/j.xcrp.2022.100851
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- S. Wang, Q. Sun, Q. Zhang, C. Li, C. Xu et al., Li-ion transfer mechanism of ambient-temperature solid polymer electrolyte toward lithium metal battery. Adv. Energy Mater. 13, 2204036 (2023). https://doi.org/10.1002/aenm.202204036
- X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15, 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
- B. Jiang, Y. Wei, J. Wu, H. Cheng, L. Yuan et al., Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem 3, 100058 (2021). https://doi.org/10.1016/j.enchem.2021.100058
- M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13, 2203640 (2023). https://doi.org/10.1002/aenm.202203640
- J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021). https://doi.org/10.1039/D0EE02241A
- X. Yang, K.R. Adair, X. Gao, X. Sun, Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 14, 643–671 (2021). https://doi.org/10.1039/D0EE02714F
- J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
- J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li et al., Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019). https://doi.org/10.1002/aenm.201902767
- Q. Liang, L. Chen, J. Tang, X. Liu, J. Liu et al., Large-scale preparation of ultrathin composite polymer electrolytes with excellent mechanical properties and high thermal stability for solid-state lithium-metal batteries. Energy Storage Mater. 55, 847–856 (2023). https://doi.org/10.1016/j.ensm.2022.12.039
- Y. Ma, J. Wan, Y. Yang, Y. Ye, X. Xiao et al., Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 12, 2103720 (2022). https://doi.org/10.1002/aenm.202103720
- C. Bao, C. Zheng, M. Wu, Y. Zhang, J. Jin et al., 12µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204028 (2023). https://doi.org/10.1002/aenm.202204028
- L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 52, 210–217 (2021). https://doi.org/10.1016/j.jechem.2020.03.052
- L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022). https://doi.org/10.1002/adsu.202100389
- X.-L. Zhang, F.-Y. Shen, X. Long, S. Zheng, Z. Ruan et al., Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Mater. 52, 201–209 (2022). https://doi.org/10.1016/j.ensm.2022.07.045
- S. Liu, X. Shen, L. Wei, R. Wang, B. Ding et al., Molecular coordination induced high ionic conductivity of composite electrolytes and stable LiF/Li3N interface in long-term cycling all-solid-state lithium metal batteries. Energy Storage Mater. 59, 102773 (2023). https://doi.org/10.1016/j.ensm.2023.102773
- W. Fan, Y. Huang, M. Yu, K. She, J. Gou et al., Designing metal-organic framework fiber network reinforced polymer electrolytes to provide continuous ion transport in solid state lithium metal batteries. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6135-7
- Z. Wang, J. Ma, P. Cui, X. Yao, High-rate solid polymer electrolyte based flexible all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 14, 34649–34655 (2022). https://doi.org/10.1021/acsami.2c06204
- Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33, e2100353 (2021). https://doi.org/10.1002/adma.202100353
- C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 (2023). https://doi.org/10.1002/smll.202300066
- Q. Hu, Z. Sun, L. Nie, S. Chen, J. Yu et al., High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries. Mater. Today Energy 27, 101052 (2022). https://doi.org/10.1016/j.mtener.2022.101052
- J. Sun, C. He, X. Yao, A. Song, Y. Li et al., Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31, 2006381 (2021). https://doi.org/10.1002/adfm.202006381
- G. Wang, Y. Liang, H. Liu, C. Wang, D. Li et al., Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip. Mater. 1, 434–444 (2022). https://doi.org/10.1002/idm2.12045
- B. Yuan, B. Zhao, Q. Wang, Y. Bai, Z. Cheng et al., A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries. Energy Storage Mater. 47, 288–296 (2022). https://doi.org/10.1016/j.ensm.2022.01.052
- J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
- K. Liu, M. Wu, H. Jiang, Y. Lin, T. Zhao, An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries. J. Mater. Chem. A 8, 18802–18809 (2020). https://doi.org/10.1039/D0TA05644H
- N. Peng, W. Kou, W. Wu, S. Guo, Y. Wang et al., Laminar composite solid electrolyte with poly(ethylene oxide)-threaded metal-organic framework nanosheets for high-performance all-solid-state lithium battery. Energy Environ. Mater. 6, 12280 (2023). https://doi.org/10.1002/eem2.12280
- G. Wang, P. He, L.-Z. Fan, Asymmetric polymer electrolyte constructed by metal–organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 31, 2007198 (2021). https://doi.org/10.1002/adfm.202007198
- Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
- Z. Zhang, Y. Huang, G. Zhang, L. Chao, Three–dimensional fiber network reinforced polymer electrolyte for dendrite–free all–solid–state lithium metal batteries. Energy Storage Mater. 41, 631–641 (2021). https://doi.org/10.1016/j.ensm.2021.06.030
- J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu et al., Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers. Energy Storage Mater. 53, 192–203 (2022). https://doi.org/10.1016/j.ensm.2022.09.005
- C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui et al., Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6, 1901036 (2019). https://doi.org/10.1002/advs.201901036
- R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13, 2386–2403 (2020). https://doi.org/10.1039/D0EE00153H
- X. Zhang, Q. Su, G. Du, B. Xu, S. Wang et al., Stabilizing solid-state lithium metal batteries through in situ generated janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes. Angew. Chem. Int. Ed. 62, e202304947 (2023). https://doi.org/10.1002/anie.202304947
- J. Sun, X. Yao, Y. Li, Q. Zhang, C. Hou et al., Composite solid electrolytes: facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 10, 2070131 (2020). https://doi.org/10.1002/aenm.202070131
- M.S. Kim, Z. Zhang, J. Wang, S.T. Oyakhire, S.C. Kim et al., Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023). https://doi.org/10.1021/acsnano.2c12470
- T. Hu, J. Tian, F. Dai, X. Wang, R. Wen et al., Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases. J. Am. Chem. Soc. 145, 1327–1333 (2023). https://doi.org/10.1021/jacs.2c11521
- M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
- L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi et al., Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power. Sources 300, 376–385 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.055
- J. Gou, W. Liu, A. Tang, L. Wu, Interfacially stable and high-safety lithium batteries enabled by porosity engineering toward cellulose separators. J. Membr. Sci. 659, 120807 (2022). https://doi.org/10.1016/j.memsci.2022.120807
- H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge et al., Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019). https://doi.org/10.1016/j.ensm.2019.01.007
- K. Zhang, F. Wu, X. Wang, S. Weng, X. Yang et al., 8.5µm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv. Energy Mater. 12, 2270100 (2022). https://doi.org/10.1002/aenm.202270100
- Y. Lin, M. Wu, J. Sun, L. Zhang, Q. Jian et al., A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte. Adv. Energy Mater. 11, 2101612 (2021). https://doi.org/10.1002/aenm.202101612
- L. Han, Y. Liu, C. Liao, Y. Zhao, Y. Cao et al., Noncombustible 7µm-thick solid polymer electrolyte for highly energy density solid state lithium batteries. Nano Energy 112, 108448 (2023). https://doi.org/10.1016/j.nanoen.2023.108448
- Y. Ma, C. Wang, K. Yang, B. Li, Y. Li et al., Ultrathin and robust composite electrolyte for stable solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 15, 17978–17985 (2023). https://doi.org/10.1021/acsami.3c02084
- J. Gou, Z. Zhang, S. Wang, J. Huang, K. Cui et al., An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries. Adv. Mater. 36, e2309677 (2024). https://doi.org/10.1002/adma.202309677
- Z. Zhang, J. Wang, H. Ying, S. Zhang, P. Huang et al., The role of active passivated interface in poly (ethylene oxide) electrolyte for 4.2V solid-state lithium metal batteries. Chem. Eng. J. 451, 138680 (2023). https://doi.org/10.1016/j.cej.2022.138680
- P. Pan, M. Zhang, Z. Cheng, L. Jiang, J. Mao et al., Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable All-Solid-State lithium metal batteries. Energy Storage Mater. 47, 279–287 (2022). https://doi.org/10.1016/j.ensm.2022.02.018
- Q. Yang, G. Li, D. Shi, L. Gao, N. Deng et al., Composite solid electrolyte with continuous and fast organic-inorganic ion transport highways created by 3D crimped nanofibers@functional ceramic nanowires. Small 19, e2301521 (2023). https://doi.org/10.1002/smll.202301521
- J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3PS4 in the SEI layer. Adv. Mater. 34, e2203281 (2022). https://doi.org/10.1002/adma.202203281
- X. Zhang, C. Fu, S. Cheng, C. Zhang, L. Zhang et al., Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Mater. 56, 121–131 (2023). https://doi.org/10.1016/j.ensm.2022.12.048
- Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30, 1704436 (2018). https://doi.org/10.1002/adma.201704436
- S. Mo, H. An, Q. Liu, J. Zhu, C. Fu et al., Multistage bridge engineering for electrolyte and interface enables quasi-solid batteries to operate at -40 °C. Energy Storage Mater. 65, 103179 (2024). https://doi.org/10.1016/j.ensm.2024.103179
- F. Fu, Y. Liu, C. Sun, L. Cong, Y. Liu et al., Unveiling and alleviating chemical “crosstalk” of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries. Energy Environ. Mater. 6, 12367 (2023). https://doi.org/10.1002/eem2.12367
References
S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023). https://doi.org/10.1002/adma.202110423
J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022). https://doi.org/10.1039/D1EE03466A
H. Zhang, L. Huang, H. Xu, X. Zhang, Z. Chen et al., A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2, 201–208 (2022). https://doi.org/10.1016/j.esci.2022.03.001
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
L. Nie, S. Chen, C. Zhang, L. Dong, Y. He et al., Integration of a low-tortuous electrode and an in-situ-polymerized electrolyte for all-solid-state lithium-metal batteries. Cell Rep. Phys. Sci. 3, 100851 (2022). https://doi.org/10.1016/j.xcrp.2022.100851
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
S. Wang, Q. Sun, Q. Zhang, C. Li, C. Xu et al., Li-ion transfer mechanism of ambient-temperature solid polymer electrolyte toward lithium metal battery. Adv. Energy Mater. 13, 2204036 (2023). https://doi.org/10.1002/aenm.202204036
X. Yang, J. Liu, N. Pei, Z. Chen, R. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15, 74 (2023). https://doi.org/10.1007/s40820-023-01051-3
B. Jiang, Y. Wei, J. Wu, H. Cheng, L. Yuan et al., Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem 3, 100058 (2021). https://doi.org/10.1016/j.enchem.2021.100058
M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13, 2203640 (2023). https://doi.org/10.1002/aenm.202203640
J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021). https://doi.org/10.1039/D0EE02241A
X. Yang, K.R. Adair, X. Gao, X. Sun, Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 14, 643–671 (2021). https://doi.org/10.1039/D0EE02714F
J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li et al., Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019). https://doi.org/10.1002/aenm.201902767
Q. Liang, L. Chen, J. Tang, X. Liu, J. Liu et al., Large-scale preparation of ultrathin composite polymer electrolytes with excellent mechanical properties and high thermal stability for solid-state lithium-metal batteries. Energy Storage Mater. 55, 847–856 (2023). https://doi.org/10.1016/j.ensm.2022.12.039
Y. Ma, J. Wan, Y. Yang, Y. Ye, X. Xiao et al., Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 12, 2103720 (2022). https://doi.org/10.1002/aenm.202103720
C. Bao, C. Zheng, M. Wu, Y. Zhang, J. Jin et al., 12µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204028 (2023). https://doi.org/10.1002/aenm.202204028
L. Chen, X. Qiu, Z. Bai, L.-Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 52, 210–217 (2021). https://doi.org/10.1016/j.jechem.2020.03.052
L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2022). https://doi.org/10.1002/adsu.202100389
X.-L. Zhang, F.-Y. Shen, X. Long, S. Zheng, Z. Ruan et al., Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Mater. 52, 201–209 (2022). https://doi.org/10.1016/j.ensm.2022.07.045
S. Liu, X. Shen, L. Wei, R. Wang, B. Ding et al., Molecular coordination induced high ionic conductivity of composite electrolytes and stable LiF/Li3N interface in long-term cycling all-solid-state lithium metal batteries. Energy Storage Mater. 59, 102773 (2023). https://doi.org/10.1016/j.ensm.2023.102773
W. Fan, Y. Huang, M. Yu, K. She, J. Gou et al., Designing metal-organic framework fiber network reinforced polymer electrolytes to provide continuous ion transport in solid state lithium metal batteries. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6135-7
Z. Wang, J. Ma, P. Cui, X. Yao, High-rate solid polymer electrolyte based flexible all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 14, 34649–34655 (2022). https://doi.org/10.1021/acsami.2c06204
Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33, e2100353 (2021). https://doi.org/10.1002/adma.202100353
C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 (2023). https://doi.org/10.1002/smll.202300066
Q. Hu, Z. Sun, L. Nie, S. Chen, J. Yu et al., High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries. Mater. Today Energy 27, 101052 (2022). https://doi.org/10.1016/j.mtener.2022.101052
J. Sun, C. He, X. Yao, A. Song, Y. Li et al., Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31, 2006381 (2021). https://doi.org/10.1002/adfm.202006381
G. Wang, Y. Liang, H. Liu, C. Wang, D. Li et al., Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip. Mater. 1, 434–444 (2022). https://doi.org/10.1002/idm2.12045
B. Yuan, B. Zhao, Q. Wang, Y. Bai, Z. Cheng et al., A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries. Energy Storage Mater. 47, 288–296 (2022). https://doi.org/10.1016/j.ensm.2022.01.052
J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
K. Liu, M. Wu, H. Jiang, Y. Lin, T. Zhao, An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries. J. Mater. Chem. A 8, 18802–18809 (2020). https://doi.org/10.1039/D0TA05644H
N. Peng, W. Kou, W. Wu, S. Guo, Y. Wang et al., Laminar composite solid electrolyte with poly(ethylene oxide)-threaded metal-organic framework nanosheets for high-performance all-solid-state lithium battery. Energy Environ. Mater. 6, 12280 (2023). https://doi.org/10.1002/eem2.12280
G. Wang, P. He, L.-Z. Fan, Asymmetric polymer electrolyte constructed by metal–organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 31, 2007198 (2021). https://doi.org/10.1002/adfm.202007198
Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
Z. Zhang, Y. Huang, G. Zhang, L. Chao, Three–dimensional fiber network reinforced polymer electrolyte for dendrite–free all–solid–state lithium metal batteries. Energy Storage Mater. 41, 631–641 (2021). https://doi.org/10.1016/j.ensm.2021.06.030
J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu et al., Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers. Energy Storage Mater. 53, 192–203 (2022). https://doi.org/10.1016/j.ensm.2022.09.005
C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui et al., Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6, 1901036 (2019). https://doi.org/10.1002/advs.201901036
R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13, 2386–2403 (2020). https://doi.org/10.1039/D0EE00153H
X. Zhang, Q. Su, G. Du, B. Xu, S. Wang et al., Stabilizing solid-state lithium metal batteries through in situ generated janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes. Angew. Chem. Int. Ed. 62, e202304947 (2023). https://doi.org/10.1002/anie.202304947
J. Sun, X. Yao, Y. Li, Q. Zhang, C. Hou et al., Composite solid electrolytes: facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 10, 2070131 (2020). https://doi.org/10.1002/aenm.202070131
M.S. Kim, Z. Zhang, J. Wang, S.T. Oyakhire, S.C. Kim et al., Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023). https://doi.org/10.1021/acsnano.2c12470
T. Hu, J. Tian, F. Dai, X. Wang, R. Wen et al., Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases. J. Am. Chem. Soc. 145, 1327–1333 (2023). https://doi.org/10.1021/jacs.2c11521
M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi et al., Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power. Sources 300, 376–385 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.055
J. Gou, W. Liu, A. Tang, L. Wu, Interfacially stable and high-safety lithium batteries enabled by porosity engineering toward cellulose separators. J. Membr. Sci. 659, 120807 (2022). https://doi.org/10.1016/j.memsci.2022.120807
H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge et al., Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019). https://doi.org/10.1016/j.ensm.2019.01.007
K. Zhang, F. Wu, X. Wang, S. Weng, X. Yang et al., 8.5µm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv. Energy Mater. 12, 2270100 (2022). https://doi.org/10.1002/aenm.202270100
Y. Lin, M. Wu, J. Sun, L. Zhang, Q. Jian et al., A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte. Adv. Energy Mater. 11, 2101612 (2021). https://doi.org/10.1002/aenm.202101612
L. Han, Y. Liu, C. Liao, Y. Zhao, Y. Cao et al., Noncombustible 7µm-thick solid polymer electrolyte for highly energy density solid state lithium batteries. Nano Energy 112, 108448 (2023). https://doi.org/10.1016/j.nanoen.2023.108448
Y. Ma, C. Wang, K. Yang, B. Li, Y. Li et al., Ultrathin and robust composite electrolyte for stable solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 15, 17978–17985 (2023). https://doi.org/10.1021/acsami.3c02084
J. Gou, Z. Zhang, S. Wang, J. Huang, K. Cui et al., An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries. Adv. Mater. 36, e2309677 (2024). https://doi.org/10.1002/adma.202309677
Z. Zhang, J. Wang, H. Ying, S. Zhang, P. Huang et al., The role of active passivated interface in poly (ethylene oxide) electrolyte for 4.2V solid-state lithium metal batteries. Chem. Eng. J. 451, 138680 (2023). https://doi.org/10.1016/j.cej.2022.138680
P. Pan, M. Zhang, Z. Cheng, L. Jiang, J. Mao et al., Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable All-Solid-State lithium metal batteries. Energy Storage Mater. 47, 279–287 (2022). https://doi.org/10.1016/j.ensm.2022.02.018
Q. Yang, G. Li, D. Shi, L. Gao, N. Deng et al., Composite solid electrolyte with continuous and fast organic-inorganic ion transport highways created by 3D crimped nanofibers@functional ceramic nanowires. Small 19, e2301521 (2023). https://doi.org/10.1002/smll.202301521
J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3PS4 in the SEI layer. Adv. Mater. 34, e2203281 (2022). https://doi.org/10.1002/adma.202203281
X. Zhang, C. Fu, S. Cheng, C. Zhang, L. Zhang et al., Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Mater. 56, 121–131 (2023). https://doi.org/10.1016/j.ensm.2022.12.048
Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30, 1704436 (2018). https://doi.org/10.1002/adma.201704436
S. Mo, H. An, Q. Liu, J. Zhu, C. Fu et al., Multistage bridge engineering for electrolyte and interface enables quasi-solid batteries to operate at -40 °C. Energy Storage Mater. 65, 103179 (2024). https://doi.org/10.1016/j.ensm.2024.103179
F. Fu, Y. Liu, C. Sun, L. Cong, Y. Liu et al., Unveiling and alleviating chemical “crosstalk” of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries. Energy Environ. Mater. 6, 12367 (2023). https://doi.org/10.1002/eem2.12367