A Thermoregulatory Flexible Phase Change Nonwoven for All-Season High-Efficiency Wearable Thermal Management
Corresponding Author: Quan Shi
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 29
Abstract
Phase change materials have a key role for wearable thermal management, but suffer from poor water vapor permeability, low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid–liquid phase change materials. Herein, we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens (GB-PCN) by wet-spinning hybrid graphene-boron nitride (GB) fiber and subsequent impregnating paraffins (e.g., eicosane, octadecane). As a result, our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g−1, excellent thermal reliability and anti-leakage capacity, superb thermal cycling ability of 97.6% after 1000 cycles, and ultrahigh water vapor permeability (close to the cotton), outperforming the reported PCM films and fibers to date. Notably, the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated, which can maintain the human body at a comfortable temperature range for a significantly long time. Therefore, our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios.
Highlights:
1 The first assembled flexible phase change nonwoven is reported by wet-spinning.
2 The unprecedented thermal properties of such flexible phase change nonwoven are achieved.
3 Such phase change nonwoven is highly applicable for mask and cloth intelligent temperature control.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521
- Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong et al., Disruptive, soft, wearable sensors. Adv. Mater. 32(18), 1904664 (2020). https://doi.org/10.1002/adma.201904664
- X. Shi, Z.S. Wu, J. Qin, S. Zheng, S. Wang et al., Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output. Adv. Mater. 29(44), 1703034 (2017). https://doi.org/10.1002/adma.201703034
- F. Zhou, H. Huang, C. Xiao, S. Zheng, X. Shi et al., Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J. Am. Chem. Soc. 140(26), 8198–8205 (2018). https://doi.org/10.1021/jacs.8b03235
- G. Li, G. Hong, D. Dong, W. Song, X. Zhang, Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv. Mater. 30(30), 1801754 (2018). https://doi.org/10.1002/adma.201801754
- L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), 1802152 (2018). https://doi.org/10.1002/adma.201802152
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- Y. Li, K. Sun, Y. Kou, H. Liu, L. Wang et al., One-step synthesis of graphene-based composite phase change materials with high solar-thermal conversion efficiency. Chem. Eng. J. 429, 132439 (2022). https://doi.org/10.1016/j.cej.2021.132439
- H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
- K. Sun, H. Dong, Y. Kou, H. Yang, H. Liu et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem. Eng. J. 419, 129637 (2021). https://doi.org/10.1016/j.cej.2021.129637
- T. Chen, C. Liu, P. Mu, H. Sun, Z. Zhu et al., Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage. Chem. Eng. J. 382, 122831 (2020). https://doi.org/10.1016/j.cej.2019.122831
- H. Liu, K. Sun, X. Shi, H. Yang, H. Dong et al., Two-dimensional materials and their derivatives for high performance phase change materials: emerging trends and challenges. Energy Storage Mater. 42, 845–870 (2021). https://doi.org/10.1016/j.ensm.2021.08.022
- X. Chen, H. Gao, Z. Tang, W. Dong, A. Li et al., Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ. Sci. 13(12), 4498–4535 (2020). https://doi.org/10.1039/d0ee01355b
- J. Qiu, D. Huo, Y. Xia, Phase-change materials for controlled release and related applications. Adv. Mater. 32(25), 2000660 (2020). https://doi.org/10.1002/adma.202000660
- K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao et al., The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 9, 1213–1220 (2020). https://doi.org/10.1039/d0ta09035b
- X. Chen, Z. Tang, P. Liu, H. Gao, Y. Chang et al., Smart utilization of multifunctional metal oxides in phase change materials. Matter 3(3), 708–741 (2020). https://doi.org/10.1016/j.matt.2020.05.016
- X. Chen, H. Gao, G. Hai, D. Jia, L. Xing et al., Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater. 26, 129–137 (2020). https://doi.org/10.1016/j.ensm.2019.12.029
- D.C. Hyun, N.S. Levinson, U. Jeong, Y. Xia, Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew. Chem. Int. Ed. 53(15), 3780–3795 (2014). https://doi.org/10.1002/anie.201305201
- P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
- K. Yuan, J. Shi, W. Aftab, M. Qin, A. Usman et al., Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv. Funct. Mater. 30, 1904228 (2019). https://doi.org/10.1002/adfm.201904228
- W. Aftab, A. Mahmood, W. Guo, M. Yousaf, H. Tabassum et al., Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater. 20, 401–409 (2019). https://doi.org/10.1016/j.ensm.2018.10.014
- W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood et al., Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 11(6), 1392–1424 (2018). https://doi.org/10.1039/c7ee03587j
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- Y. Kou, K. Sun, J. Luo, F. Zhou, H. Huang et al., An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 34, 508–514 (2020). https://doi.org/10.1016/j.ensm.2020.10.014
- C. Chen, Y. Zhao, W. Liu, Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage. Renew. Energy 60, 222–225 (2013). https://doi.org/10.1016/j.renene.2013.05.020
- Y. Lu, X. Xiao, Y. Zhan, C. Huan, S. Qi et al., Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage. ACS Appl. Mater. Interfaces 10(15), 12759–12767 (2018). https://doi.org/10.1021/acsami.8b02057
- Y. Wan, P. Zhou, Y. Liu, H. Chen, Novel wearable polyacrylonitrile/phase-change material sheath/core nano-fibers fabricated by coaxial electro-spinning. RSC Adv. 6(25), 21204–21209 (2016). https://doi.org/10.1039/c6ra00281a
- Y. Lu, X. Xiao, J. Fu, C. Huan, S. Qi et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 355, 532–539 (2019). https://doi.org/10.1016/j.cej.2018.08.189
- J.T. McCann, M. Marquez, Y. Xia, Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett. 6(12), 2868–2872 (2006). https://doi.org/10.1021/nl0620839
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
- T. Xing, S. Mateti, L.H. Li, F. Ma, A. Du et al., Gas protection of two-dimensional nanomaterials from high-energy impacts. Sci. Rep. 6, 35532 (2016). https://doi.org/10.1038/srep35532
- W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi et al., Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015). https://doi.org/10.1038/ncomms9849
- M.J. Hokkanen, M. Backholm, M. Vuckovac, Q. Zhou, R.H.A. Ras, Force-based wetting characterization of stochastic superhydrophobic coatings at nanonewton sensitivity. Adv. Mater. 33(42), 2105130 (2021). https://doi.org/10.1002/adma.202105130
- Q. Zhang, Z. He, X. Fang, X. Zhang, Z. Zhang, Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater. 6, 36–45 (2017). https://doi.org/10.1016/j.ensm.2016.09.006
- Y. Wang, B. Tang, S. Zhang, Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv. Funct. Mater. 23(35), 4354–4360 (2013). https://doi.org/10.1002/adfm.201203728
- H. Su, P. Lin, H. Lu, X. Zhao, X. Sheng et al., Janus-type hydroxyapatite-incorporated kevlar aerogel@Kevlar aerogel supported phase-change material gel toward wearable personal thermal management. ACS Appl. Mater. Interfaces 14(10), 12617–12629 (2022). https://doi.org/10.1021/acsami.1c23774
- R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10(17), 1903921 (2020). https://doi.org/10.1002/aenm.201903921
- P.C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
References
C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521
Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong et al., Disruptive, soft, wearable sensors. Adv. Mater. 32(18), 1904664 (2020). https://doi.org/10.1002/adma.201904664
X. Shi, Z.S. Wu, J. Qin, S. Zheng, S. Wang et al., Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output. Adv. Mater. 29(44), 1703034 (2017). https://doi.org/10.1002/adma.201703034
F. Zhou, H. Huang, C. Xiao, S. Zheng, X. Shi et al., Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J. Am. Chem. Soc. 140(26), 8198–8205 (2018). https://doi.org/10.1021/jacs.8b03235
G. Li, G. Hong, D. Dong, W. Song, X. Zhang, Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv. Mater. 30(30), 1801754 (2018). https://doi.org/10.1002/adma.201801754
L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), 1802152 (2018). https://doi.org/10.1002/adma.201802152
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
Y. Li, K. Sun, Y. Kou, H. Liu, L. Wang et al., One-step synthesis of graphene-based composite phase change materials with high solar-thermal conversion efficiency. Chem. Eng. J. 429, 132439 (2022). https://doi.org/10.1016/j.cej.2021.132439
H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
K. Sun, H. Dong, Y. Kou, H. Yang, H. Liu et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem. Eng. J. 419, 129637 (2021). https://doi.org/10.1016/j.cej.2021.129637
T. Chen, C. Liu, P. Mu, H. Sun, Z. Zhu et al., Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage. Chem. Eng. J. 382, 122831 (2020). https://doi.org/10.1016/j.cej.2019.122831
H. Liu, K. Sun, X. Shi, H. Yang, H. Dong et al., Two-dimensional materials and their derivatives for high performance phase change materials: emerging trends and challenges. Energy Storage Mater. 42, 845–870 (2021). https://doi.org/10.1016/j.ensm.2021.08.022
X. Chen, H. Gao, Z. Tang, W. Dong, A. Li et al., Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ. Sci. 13(12), 4498–4535 (2020). https://doi.org/10.1039/d0ee01355b
J. Qiu, D. Huo, Y. Xia, Phase-change materials for controlled release and related applications. Adv. Mater. 32(25), 2000660 (2020). https://doi.org/10.1002/adma.202000660
K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao et al., The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 9, 1213–1220 (2020). https://doi.org/10.1039/d0ta09035b
X. Chen, Z. Tang, P. Liu, H. Gao, Y. Chang et al., Smart utilization of multifunctional metal oxides in phase change materials. Matter 3(3), 708–741 (2020). https://doi.org/10.1016/j.matt.2020.05.016
X. Chen, H. Gao, G. Hai, D. Jia, L. Xing et al., Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater. 26, 129–137 (2020). https://doi.org/10.1016/j.ensm.2019.12.029
D.C. Hyun, N.S. Levinson, U. Jeong, Y. Xia, Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew. Chem. Int. Ed. 53(15), 3780–3795 (2014). https://doi.org/10.1002/anie.201305201
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
K. Yuan, J. Shi, W. Aftab, M. Qin, A. Usman et al., Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv. Funct. Mater. 30, 1904228 (2019). https://doi.org/10.1002/adfm.201904228
W. Aftab, A. Mahmood, W. Guo, M. Yousaf, H. Tabassum et al., Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater. 20, 401–409 (2019). https://doi.org/10.1016/j.ensm.2018.10.014
W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood et al., Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 11(6), 1392–1424 (2018). https://doi.org/10.1039/c7ee03587j
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
Y. Kou, K. Sun, J. Luo, F. Zhou, H. Huang et al., An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 34, 508–514 (2020). https://doi.org/10.1016/j.ensm.2020.10.014
C. Chen, Y. Zhao, W. Liu, Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage. Renew. Energy 60, 222–225 (2013). https://doi.org/10.1016/j.renene.2013.05.020
Y. Lu, X. Xiao, Y. Zhan, C. Huan, S. Qi et al., Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage. ACS Appl. Mater. Interfaces 10(15), 12759–12767 (2018). https://doi.org/10.1021/acsami.8b02057
Y. Wan, P. Zhou, Y. Liu, H. Chen, Novel wearable polyacrylonitrile/phase-change material sheath/core nano-fibers fabricated by coaxial electro-spinning. RSC Adv. 6(25), 21204–21209 (2016). https://doi.org/10.1039/c6ra00281a
Y. Lu, X. Xiao, J. Fu, C. Huan, S. Qi et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 355, 532–539 (2019). https://doi.org/10.1016/j.cej.2018.08.189
J.T. McCann, M. Marquez, Y. Xia, Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett. 6(12), 2868–2872 (2006). https://doi.org/10.1021/nl0620839
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
T. Xing, S. Mateti, L.H. Li, F. Ma, A. Du et al., Gas protection of two-dimensional nanomaterials from high-energy impacts. Sci. Rep. 6, 35532 (2016). https://doi.org/10.1038/srep35532
W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi et al., Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015). https://doi.org/10.1038/ncomms9849
M.J. Hokkanen, M. Backholm, M. Vuckovac, Q. Zhou, R.H.A. Ras, Force-based wetting characterization of stochastic superhydrophobic coatings at nanonewton sensitivity. Adv. Mater. 33(42), 2105130 (2021). https://doi.org/10.1002/adma.202105130
Q. Zhang, Z. He, X. Fang, X. Zhang, Z. Zhang, Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater. 6, 36–45 (2017). https://doi.org/10.1016/j.ensm.2016.09.006
Y. Wang, B. Tang, S. Zhang, Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv. Funct. Mater. 23(35), 4354–4360 (2013). https://doi.org/10.1002/adfm.201203728
H. Su, P. Lin, H. Lu, X. Zhao, X. Sheng et al., Janus-type hydroxyapatite-incorporated kevlar aerogel@Kevlar aerogel supported phase-change material gel toward wearable personal thermal management. ACS Appl. Mater. Interfaces 14(10), 12617–12629 (2022). https://doi.org/10.1021/acsami.1c23774
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10(17), 1903921 (2020). https://doi.org/10.1002/aenm.201903921
P.C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471