PtNi-W/C with Atomically Dispersed Tungsten Sites Toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices
Corresponding Author: Yujing Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 143
Abstract
The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings. This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method. Single-atomic W can be found on the carbon surface, which can form protonic acid sites and establish an extended proton transport network at the catalyst surface. When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm−2, the peak power density of the cell is enhanced by 64.4% compared to that with the commercial Pt/C catalyst. The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of *OOH whereby the intermediates can be efficiently converted and further reduced to water, revealing a interfacial cascade catalysis facilitated by the single-atomic W. This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level.
Highlights:
1 A hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites was realized.
2 Single-atomic W formed protonic acid sites and established an extended proton transport network at the catalyst surface.
3 Peak power density is enhanced by 64.4% compared to that with the commercial Pt/C catalyst in fuel cell as cathode at ultra-low loading of 0.05 mgPt cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, Y. Pang, H. Xu, A. Martinez, K.S. Chen, Pem fuel cell and electrolysis cell technologies and hydrogen infrastructure development – a review. Energy Environ. Sci. 15, 2288–2328 (2022). https://doi.org/10.1039/D2EE00790H
- J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye et al., Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6, 475–486 (2021). https://doi.org/10.1038/s41560-021-00824-7
- S. Srinivasan, O.A. Velev, A. Parthasarathy, D.J. Manko, A.J. Appleby, High energy efficiency and high power density proton exchange membrane fuel cells—electrode kinetics and mass transport. J. Power Sour. 36, 299–320 (1991). https://doi.org/10.1016/0378-7753(91)87009-Z
- J.-P. Jones, M.C. Smart, F.C. Krause, W.C. West, E.J. Brandon, Batteries for robotic spacecraft. Joule 6, 923–928 (2022). https://doi.org/10.1016/j.joule.2022.04.004
- K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004). https://doi.org/10.1021/cr020715f
- S.M. Haile, Fuel cell materials and components. Acta. Mater. 51, 5981–6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
- M.T.Y. Paul, B.D. Gates, Mesoporous platinum prepared by electrodeposition for ultralow loading proton exchange membrane fuel cells. Sci. Rep. 9, 4161 (2019). https://doi.org/10.1038/s41598-019-38855-6
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
- X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu et al., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765
- L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li et al., Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016). https://doi.org/10.1126/science.aah6133
- M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen et al., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016). https://doi.org/10.1126/science.aaf9050
- Z. Qiao, C. Wang, C. Li, Y. Zeng, S. Hwang et al., Atomically dispersed single iron sites for promoting pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021). https://doi.org/10.1039/D1EE01675J
- F. Xiao, Q. Wang, G.-L. Xu, X. Qin, I. Hwang et al., Atomically dispersed pt and fe sites and Pt–Fe nanops for durable proton exchange membrane fuel cells. Nat. Catal. 5, 503–512 (2022). https://doi.org/10.1038/s41929-022-00796-1
- L. Chong, J. Wen, J. Kubal, F.G. Sen, J. Zou et al., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018). https://doi.org/10.1126/science.aau0630
- W. Wu, Z. Zhang, Z. Lei, X. Wang, Y. Tan et al., Encapsulating Pt nanops inside a derived two-dimensional metal–organic frameworks for the enhancement of catalytic activity. ACS Appl. Mater. Interfaces 12, 10359–10368 (2020). https://doi.org/10.1021/acsami.9b20781
- L. Cui, Z. Li, H. Wang, L. Cui, J. Zhang et al., Atomically dispersed Cu–N–C as a promising support for low-Pt loading cathode catalysts of fuel cells. ACS Appl. Energy Mater. 3, 3807–3814 (2020). https://doi.org/10.1021/acsaem.0c00255
- B. Yuan, Z. Yao, C. Qiu, H. Zheng, Y. Yan et al., Synergistic effect of size-dependent PtZn nanops and zinc single-atom sites for electrochemical ozone production in neutral media. J. Energy Chem. 51, 312–322 (2020). https://doi.org/10.1016/j.jechem.2020.03.066
- X. Ao, W. Zhang, B. Zhao, Y. Ding, G. Nam et al., Atomically dispersed Fe-N-C decorated with Pt-alloy core–shell nanops for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 13, 3032–3040 (2020). https://doi.org/10.1039/D0EE00832J
- S. Ott, A. Orfanidi, H. Schmies, B. Anke, H.N. Nong et al., Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020). https://doi.org/10.1038/s41563-019-0487-0
- Z. Zhao, M.D. Hossain, C. Xu, Z. Lu, Y.-S. Liu et al., Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 3, 1774–1790 (2020). https://doi.org/10.1016/j.matt.2020.09.025
- S. Khoobiar, P to p migration of hydrogen atoms on platinum—alumina catalysts from p to neighboring ps. J. Phys. Chem. 68, 411–412 (1964). https://doi.org/10.1021/j100784a503
- R. Prins, Hydrogen spillover. Facts and fiction. Chem. Rev. 112, 2714–2738 (2012). https://doi.org/10.1021/cr200346z
- S.-M. Jung, S.-W. Yun, J.-H. Kim, S.-H. You, J. Park et al., Selective electrocatalysis imparted by metal–insulator transition for durability enhancement of automotive fuel cells. Nat. Catal. 3, 639–648 (2020). https://doi.org/10.1038/s41929-020-0475-4
- J. Fu, S. Liu, W. Zheng, R. Huang, C. Wang et al., Modulating the dynamics of brønsted acid sites on ptwox inverse catalyst. Nat. Catal. 5, 144–153 (2022). https://doi.org/10.1038/s41929-022-00745-y
- L. Zu, J. He, X. Liu, L. Zhang, K. Zhou, Effect of pore orientation on the catalytic performance of porous nimo electrode for hydrogen evolution in alkaline solutions. Int. J. Hydrog. Energy 44, 4650–4655 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.224
- B. Chen, X. Zeng, Y. Liu, F. Xiao, M. Huang et al., Thermal decomposition kinetics of M−BTC (M = Cu Co, Zn, and Ce) and M−BTC/Pt composites under oxidative and reductive environments. Chem. Eng. J. 450, 138470 (2022). https://doi.org/10.1016/j.cej.2022.138470
- J. Wang, C. Bian, J. Tong, J. Sun, S. Xia, Simultaneous detection of copper, lead and zinc on tin film/gold nanops/gold microelectrode by square wave stripping voltammetry. Electroanalysis 24, 1783–1790 (2012). https://doi.org/10.1002/elan.201200131
- C. Zhang, S.Y. Hwang, A. Trout, Z. Peng, Solid-state chemistry-enabled scalable production of octahedral Pt–Ni alloy electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 136, 7805–7808 (2014). https://doi.org/10.1021/ja501293x
- N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140, 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
- Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang et al., An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 7, 394–400 (2012). https://doi.org/10.1038/nnano.2012.72
- F. Kong, Z. Ren, M.N. Banis, L. Du, X. Zhou et al., Active and stable Pt–Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 10, 4205–4214 (2020). https://doi.org/10.1021/acscatal.9b05133
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- J.D. Pack, H.J. Monkhorst, “ Special points for brillouin-zone integrations”—a reply. Phys. Rev. B 16, 1748 (1977). https://doi.org/10.1103/PhysRevB.16.1748
- G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224
- T. Sun, J. Wang, X. Chi, Y. Lin, Z. Chen et al., Engineering the electronic structure of MoS2 nanorods by n and mn dopants for ultra-efficient hydrogen production. ACS Catal. 8, 7585–7592 (2018). https://doi.org/10.1021/acscatal.8b00783
- F. Zhang, Y. Zhu, C. Tang, Y. Chen, B. Qian et al., High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 32, 2110224 (2022). https://doi.org/10.1002/adfm.202110224
- Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng et al., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 60, 394–403 (2019). https://doi.org/10.1016/j.nanoen.2019.03.045
- W. Guo, Z. Wang, X. Wang, Y. Wu, General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021). https://doi.org/10.1002/adma.202004287
- H. Wang, W. Luo, L. Zhu, Z. Zhao, B.E.W. Tu et al., Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts. Adv. Funct. Mater. 28, 1707219 (2018). https://doi.org/10.1002/adfm.201707219
- K. Jiang, P. Wang, S. Guo, X. Zhang, X. Shen et al., Ordered PdCu-based nanops as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem. Int. Ed. 128(31), 9176–9181 (2016). https://doi.org/10.1002/ange.201603022
- G.-R. Xu, M.-L. Xu, J.-M. Zhang, S. Kim, Z.-U. Bae, Electropolymerization of negatively charged Ni(ii) complex for the selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemistry 72(1), 87–93 (2008). https://doi.org/10.1016/j.bioelechem.2007.11.007
- R. Vinoth, P. Karthik, K. Devan, B. Neppolian, M. Ashokkumar, TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35, 655–663 (2017). https://doi.org/10.1016/j.ultsonch.2016.03.005
- Y.J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi et al., Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: P size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015). https://doi.org/10.1021/cr500519c
- W. Tu, K. Chen, L. Zhu, H. Zai, B.E.X. Ke et al., Tungsten-doping-induced surface reconstruction of porous ternary Pt-based alloy electrocatalyst for oxygen reduction. Adv. Funct. Mater. 29, 1807070 (2019). https://doi.org/10.1002/adfm.201807070
- W. Tu, W. Luo, C. Chen, K. Chen, E. Zhu et al., Tungsten as “adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis. Adv. Funct. Mater. 30, 1908230 (2020). https://doi.org/10.1002/adfm.201908230
- X. Zhang, H. Wang, J. Key, V. Linkov, S. Ji et al., Strain effect of core-shell Co@Pt/C nanop catalyst with enhanced electrocatalytic activity for methanol oxidation. J. Electrochem. Soc. 159, B270–B276 (2012). https://doi.org/10.1149/2.015203jes
- B.Y. Xia, H.B. Wu, N. Li, Y. Yan, X.W. Lou et al., One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 54, 3797–3801 (2015). https://doi.org/10.1002/anie.201411544
- J. Schröder, R.K. Pittkowski, I. Martens, R. Chattot, J. Drnec et al., Tracking the catalyst layer depth-dependent electrochemical degradation of a bimodal Pt/c fuel cell catalyst: a combined operando small- and wide-angle x-ray scattering study. ACS Catal. 12, 2077–2085 (2022). https://doi.org/10.1021/acscatal.1c04365
- R. Chattot, O. Le Bacq, V. Beermann, S. Kühl, J. Herranz et al., Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018). https://doi.org/10.1038/s41563-018-0133-2
- M. Hu, D. Poulikakos, C.P. Grigoropoulos, H. Pan, Recrystallization of picosecond laser-melted ZnO nanops in a liquid: A molecular dynamics study. J. Chem. Phys. 132(16), 164504 (2010). https://doi.org/10.1063/1.3407438
- Y.-C. Hsieh, Y. Zhang, D. Su, V. Volkov, R. Si et al., Ordered bilayer ruthenium–platinum core-shell nanops as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 4, 2466 (2013). https://doi.org/10.1038/ncomms3466
- J. Choi, Y.J. Lee, D. Park, H. Jeong, S. Shin et al., Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow pt loadings. Energy Environ. Sci. 13, 4921–4929 (2020). https://doi.org/10.1039/D0EE01095B
- Z. Zhao, Z. Liu, A. Zhang, X. Yan, W. Xue et al., Graphene-nanopocket-encaged ptco nanocatalysts for highly durable fuel cell operation under demanding ultralow-pt-loading conditions. Nat. Nanotechnol. 17, 968–975 (2022). https://doi.org/10.1038/s41565-022-01170-9
- Office of Energy Efficiency & Renewable Energy, US DRIVE Fuel Cell Technical Team Roadmap. https://www.energy.gov/eere/vehicles/downloads/us-drive-fuel-cell-technical-team-roadmap. Accessed November 2017
- J. Park, S. Lee, H.-E. Kim, A. Cho, S. Kim et al., Investigation of the support effect in atomically dispersed pt on WO3−x for utilization of pt in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16038–16042 (2019). https://doi.org/10.1002/anie.201908122
- X. Duan, F. Cao, R. Ding, X. Li, Q. Li et al., Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading pemfc cathode. Adv. Energy. Mater. 12, 2103144 (2022). https://doi.org/10.1002/aenm.202103144
- C.-L. Yang, L.-N. Wang, P. Yin, J. Liu, M.-X. Chen et al., Sulfur-anchoring synthesis of platinum intermetallic nanop catalysts for fuel cells. Science 374(6566), 459–464 (2021). https://doi.org/10.1126/science.abj9980
- J. Liu, S. Liu, F. Yan, Z. Wen, W. Chen et al., Ultrathin nanotube structure for mass-efficient and durable oxygen reduction reaction catalysts in pem fuel cells. J. Am. Chem. Soc. 144(41), 19106–19114 (2022). https://doi.org/10.1021/jacs.2c08361
- F. Chen, M.-H. Chang, C.-F. Fang, Analysis of water transport in a five-layer model of pemfc. J. Power Sour. 164, 649–658 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.072
- Q. Liu, F. Lan, J. Chen, C. Zeng, J. Wang, A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. J. Power Sour. 517, 230723 (2022). https://doi.org/10.1016/j.jpowsour.2021.230723
- M. Prasanna, H.Y. Ha, E.A. Cho, S.A. Hong, I.H. Oh, Investigation of oxygen gain in polymer electrolyte membrane fuel cells. J. Power Sour. 137, 1–8 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.034
- K. O’Neil, J.P. Meyers, R.M. Darling, M.L. Perry, Oxygen gain analysis for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 37, 373–382 (2012). https://doi.org/10.1016/j.ijhydene.2011.08.085
- Y. Dong, M. Zhou, W. Tu, E. Zhu, Y. Chen et al., Hollow loofah-like n, o-co-doped carbon tube for electrocatalysis of oxygen reduction. Adv. Funct. Mater. 29, 1900015 (2019). https://doi.org/10.1002/adfm.201900015
- X. Lyu, Y. Jia, X. Mao, D. Li, G. Li et al., Gradient-concentration design of stable core–shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 32, 2003493 (2020). https://doi.org/10.1002/adma.202003493
- W. Zhang, X. Feng, Z.X. Mao, J. Li, Z. Wei, Stably immobilizing sub-3 nm high-entropy pt alloy nanocrystals in porous carbon as durable oxygen reduction electrocatalyst. Adv. Funct. Mater. 32, 2204110 (2022). https://doi.org/10.1002/adfm.202204110
- X. Tang, Y. Wei, W. Zhai, Y. Wu, T. Hu et al., Carbon nanocage with maximum utilization of atomically dispersed iron as efficient oxygen electroreduction nanoreactor. Adv. Mater. 35(5), 2208942 (2023). https://doi.org/10.1002/adma.202208942
- M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127(13), 4976–4983 (2005). https://doi.org/10.1021/ja045155b
- B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321(5889), 671–674 (2008). https://doi.org/10.1126/science.1159267
- J. Lim, K. Shin, J. Bak, J. Roh, S. Lee et al., Outstanding oxygen reduction reaction catalytic performance of in–PtNi octahedral nanops designed via computational dopant screening. Chem. Mater. 33, 8895–8903 (2021). https://doi.org/10.1021/acs.chemmater.1c03196
- S. Gupta, S. Zhao, X.X. Wang, S. Hwang, S. Karakalos et al., Quaternary feconimn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catal. 7, 8386–8393 (2017). https://doi.org/10.1021/acscatal.7b02949
- V. Briega-Martos, E. Herrero, J.M. Feliu, Effect of ph and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017). https://doi.org/10.1016/j.electacta.2017.04.162
- W. Chen, M.-L. Xu, M.-F. Li, Z. Wei, J. Cai et al., Quantifying intrinsic kinetics of electrochemical reaction controlled by mass transfer of multiple species under rotating disk electrode configuration. J. Electroanal. Chem. 872, 114042 (2020). https://doi.org/10.1016/j.jelechem.2020.114042
- W. Chen, L.W. Liao, J. Cai, Y.-X. Chen, U. Stimming, Unraveling complex electrode processes by differential electrochemical mass spectrometry and the rotating ring-disk electrode technique. J. Phys. Chem. C 123, 29630–29637 (2019). https://doi.org/10.1021/acs.jpcc.9b09952
- M.F. Li, L.W. Liao, D.F. Yuan, D. Mei, Y.-X. Chen, Ph effect on oxygen reduction reaction at Pt(111) electrode. Electrochim. Acta 110, 780–789 (2013). https://doi.org/10.1016/j.electacta.2013.04.096
- J. Liu, J. Bak, J. Roh, K.-S. Lee, A. Cho et al., Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction. ACS Catal. 11, 466–475 (2021). https://doi.org/10.1021/acscatal.0c03330
- X. Zhang, L. Truong-Phuoc, X. Liao, G. Tuci, E. Fonda et al., An open gate for high-density metal ions in N-doped carbon networks: Powering Fe–N–C catalyst efficiency in the oxygen reduction reaction. ACS Catal. 11, 8915–8928 (2021). https://doi.org/10.1021/acscatal.1c01638
- M.T. Anwar, X. Yan, M.R. Asghar, N. Husnain, S. Shen et al., Recent advances in hybrid support material for Pt-based electrocatalysts of proton exchange membrane fuel cells. Int. J. Energy Res. 43(7), 2694–2721 (2019). https://doi.org/10.1002/er.4322
- N. Ramaswamy, W. Gu, J.M. Ziegelbauer, S. Kumaraguru, Carbon support microstructure impact on high current density transport resistances in pemfc cathode. J. Electrochem. Soc. 167(6), 064515 (2020). https://doi.org/10.1149/1945-7111/ab819c
- T.R. Garrick, T.E. Moylan, M.K. Carpenter, A. Kongkanand, Editors’ choice—electrochemically active surface area measurement of aged Pt alloy catalysts in pem fuel cells by CO stripping. J. Electrochem. Soc. 164, F55 (2017). https://doi.org/10.1149/2.0381702jes
- H. Wang, S. Hua, R. Lin, S. Liu, X. Cai et al., Ionomer distribution control by self-assembled monolayers for high-power and low pt-loaded proton exchange membrane fuel cells. J. Power. Sources 542, 231793 (2022). https://doi.org/10.1016/j.jpowsour.2022.231793
- M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li et al., Stable high-index faceted pt skin on zigzag-like ptfe nanowires enhances oxygen reduction catalysis. Adv. Mater. 30, 1705515 (2018). https://doi.org/10.1002/adma.201705515
- D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy, Measurement of oxygen transport resistance in pem fuel cells by limiting current methods. J. Electrochem. Soc. 156, B991 (2009). https://doi.org/10.1149/1.3152226
- P. Mardle, G. Thirunavukkarasu, S. Guan, Y.-L. Chiu, S. Du, Comparative study of PtNi nanowire array electrodes toward oxygen reduction reaction by half-cell measurement and pemfc test. ACS Appl. Mater. Interfaces 12, 42832–42841 (2020). https://doi.org/10.1021/acsami.0c11531
- J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 15(1), 19 (2022). https://doi.org/10.1007/s40820-022-00984-5
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: Recent advances and future perspectives. Nano-Micro Lett. 14(1), 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- Y. Zhu, J. Peng, X. Zhu, L. Bu, Q. Shao et al., A large-scalable, surfactant-free, and ultrastable Ru-doped Pt3Co oxygen reduction catalyst. Nano Lett. 21, 6625–6632 (2021). https://doi.org/10.1021/acs.nanolett.1c02064
- L.X. Chen, M. Jiang, Z. Lu, C. Gao, Z.W. Chen et al., Two-dimensional graphdiyne-confined platinum catalyst for hydrogen evolution and oxygen reduction reactions. ACS Appl. Mater. Interfaces 13, 47541–47548 (2021). https://doi.org/10.1021/acsami.1c12054
- X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31(49), 1905622 (2019). https://doi.org/10.1002/adma.201905622
- G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn–N in Fe–N–C catalysts with high oxygen reduction activity. Nat. Commun. 12(1), 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
- X. Shen, T. Nagai, F. Yang, L.Q. Zhou, Y. Pan et al., Dual-site cascade oxygen reduction mechanism on SnOx/Pt–Cu–Ni for promoting reaction kinetics. J. Am. Chem. Soc. 141, 9463–9467 (2019). https://doi.org/10.1021/jacs.9b02286
- Z. Lin, J. Liu, S. Li, J. Liang, X. Liu et al., Anti-corrosive SnS2/SnO2 heterostructured support for pt nanops enables remarkable oxygen reduction catalysis via interfacial enhancement. Adv. Funct. Mater. 33(11), 2211638 (2023). https://doi.org/10.1002/adfm.202211638
- K. Shun, K. Mori, S. Masuda, N. Hashimoto, Y. Hinuma et al., Revealing hydrogen spillover pathways in reducible metal oxides. Chem. Sci. 13(27), 8137–8147 (2022). https://doi.org/10.1039/D2SC00871H
- P.A. Sermon, G.C. Bond, Hydrogen spillover. Catal. Rev. 8(1), 211–239 (1974). https://doi.org/10.1080/01614947408071861
References
Y. Wang, Y. Pang, H. Xu, A. Martinez, K.S. Chen, Pem fuel cell and electrolysis cell technologies and hydrogen infrastructure development – a review. Energy Environ. Sci. 15, 2288–2328 (2022). https://doi.org/10.1039/D2EE00790H
J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye et al., Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6, 475–486 (2021). https://doi.org/10.1038/s41560-021-00824-7
S. Srinivasan, O.A. Velev, A. Parthasarathy, D.J. Manko, A.J. Appleby, High energy efficiency and high power density proton exchange membrane fuel cells—electrode kinetics and mass transport. J. Power Sour. 36, 299–320 (1991). https://doi.org/10.1016/0378-7753(91)87009-Z
J.-P. Jones, M.C. Smart, F.C. Krause, W.C. West, E.J. Brandon, Batteries for robotic spacecraft. Joule 6, 923–928 (2022). https://doi.org/10.1016/j.joule.2022.04.004
K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004). https://doi.org/10.1021/cr020715f
S.M. Haile, Fuel cell materials and components. Acta. Mater. 51, 5981–6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
M.T.Y. Paul, B.D. Gates, Mesoporous platinum prepared by electrodeposition for ultralow loading proton exchange membrane fuel cells. Sci. Rep. 9, 4161 (2019). https://doi.org/10.1038/s41598-019-38855-6
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu et al., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765
L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li et al., Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016). https://doi.org/10.1126/science.aah6133
M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen et al., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016). https://doi.org/10.1126/science.aaf9050
Z. Qiao, C. Wang, C. Li, Y. Zeng, S. Hwang et al., Atomically dispersed single iron sites for promoting pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021). https://doi.org/10.1039/D1EE01675J
F. Xiao, Q. Wang, G.-L. Xu, X. Qin, I. Hwang et al., Atomically dispersed pt and fe sites and Pt–Fe nanops for durable proton exchange membrane fuel cells. Nat. Catal. 5, 503–512 (2022). https://doi.org/10.1038/s41929-022-00796-1
L. Chong, J. Wen, J. Kubal, F.G. Sen, J. Zou et al., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018). https://doi.org/10.1126/science.aau0630
W. Wu, Z. Zhang, Z. Lei, X. Wang, Y. Tan et al., Encapsulating Pt nanops inside a derived two-dimensional metal–organic frameworks for the enhancement of catalytic activity. ACS Appl. Mater. Interfaces 12, 10359–10368 (2020). https://doi.org/10.1021/acsami.9b20781
L. Cui, Z. Li, H. Wang, L. Cui, J. Zhang et al., Atomically dispersed Cu–N–C as a promising support for low-Pt loading cathode catalysts of fuel cells. ACS Appl. Energy Mater. 3, 3807–3814 (2020). https://doi.org/10.1021/acsaem.0c00255
B. Yuan, Z. Yao, C. Qiu, H. Zheng, Y. Yan et al., Synergistic effect of size-dependent PtZn nanops and zinc single-atom sites for electrochemical ozone production in neutral media. J. Energy Chem. 51, 312–322 (2020). https://doi.org/10.1016/j.jechem.2020.03.066
X. Ao, W. Zhang, B. Zhao, Y. Ding, G. Nam et al., Atomically dispersed Fe-N-C decorated with Pt-alloy core–shell nanops for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 13, 3032–3040 (2020). https://doi.org/10.1039/D0EE00832J
S. Ott, A. Orfanidi, H. Schmies, B. Anke, H.N. Nong et al., Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020). https://doi.org/10.1038/s41563-019-0487-0
Z. Zhao, M.D. Hossain, C. Xu, Z. Lu, Y.-S. Liu et al., Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 3, 1774–1790 (2020). https://doi.org/10.1016/j.matt.2020.09.025
S. Khoobiar, P to p migration of hydrogen atoms on platinum—alumina catalysts from p to neighboring ps. J. Phys. Chem. 68, 411–412 (1964). https://doi.org/10.1021/j100784a503
R. Prins, Hydrogen spillover. Facts and fiction. Chem. Rev. 112, 2714–2738 (2012). https://doi.org/10.1021/cr200346z
S.-M. Jung, S.-W. Yun, J.-H. Kim, S.-H. You, J. Park et al., Selective electrocatalysis imparted by metal–insulator transition for durability enhancement of automotive fuel cells. Nat. Catal. 3, 639–648 (2020). https://doi.org/10.1038/s41929-020-0475-4
J. Fu, S. Liu, W. Zheng, R. Huang, C. Wang et al., Modulating the dynamics of brønsted acid sites on ptwox inverse catalyst. Nat. Catal. 5, 144–153 (2022). https://doi.org/10.1038/s41929-022-00745-y
L. Zu, J. He, X. Liu, L. Zhang, K. Zhou, Effect of pore orientation on the catalytic performance of porous nimo electrode for hydrogen evolution in alkaline solutions. Int. J. Hydrog. Energy 44, 4650–4655 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.224
B. Chen, X. Zeng, Y. Liu, F. Xiao, M. Huang et al., Thermal decomposition kinetics of M−BTC (M = Cu Co, Zn, and Ce) and M−BTC/Pt composites under oxidative and reductive environments. Chem. Eng. J. 450, 138470 (2022). https://doi.org/10.1016/j.cej.2022.138470
J. Wang, C. Bian, J. Tong, J. Sun, S. Xia, Simultaneous detection of copper, lead and zinc on tin film/gold nanops/gold microelectrode by square wave stripping voltammetry. Electroanalysis 24, 1783–1790 (2012). https://doi.org/10.1002/elan.201200131
C. Zhang, S.Y. Hwang, A. Trout, Z. Peng, Solid-state chemistry-enabled scalable production of octahedral Pt–Ni alloy electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 136, 7805–7808 (2014). https://doi.org/10.1021/ja501293x
N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140, 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang et al., An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 7, 394–400 (2012). https://doi.org/10.1038/nnano.2012.72
F. Kong, Z. Ren, M.N. Banis, L. Du, X. Zhou et al., Active and stable Pt–Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 10, 4205–4214 (2020). https://doi.org/10.1021/acscatal.9b05133
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
J.D. Pack, H.J. Monkhorst, “ Special points for brillouin-zone integrations”—a reply. Phys. Rev. B 16, 1748 (1977). https://doi.org/10.1103/PhysRevB.16.1748
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224
T. Sun, J. Wang, X. Chi, Y. Lin, Z. Chen et al., Engineering the electronic structure of MoS2 nanorods by n and mn dopants for ultra-efficient hydrogen production. ACS Catal. 8, 7585–7592 (2018). https://doi.org/10.1021/acscatal.8b00783
F. Zhang, Y. Zhu, C. Tang, Y. Chen, B. Qian et al., High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 32, 2110224 (2022). https://doi.org/10.1002/adfm.202110224
Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng et al., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 60, 394–403 (2019). https://doi.org/10.1016/j.nanoen.2019.03.045
W. Guo, Z. Wang, X. Wang, Y. Wu, General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021). https://doi.org/10.1002/adma.202004287
H. Wang, W. Luo, L. Zhu, Z. Zhao, B.E.W. Tu et al., Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts. Adv. Funct. Mater. 28, 1707219 (2018). https://doi.org/10.1002/adfm.201707219
K. Jiang, P. Wang, S. Guo, X. Zhang, X. Shen et al., Ordered PdCu-based nanops as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem. Int. Ed. 128(31), 9176–9181 (2016). https://doi.org/10.1002/ange.201603022
G.-R. Xu, M.-L. Xu, J.-M. Zhang, S. Kim, Z.-U. Bae, Electropolymerization of negatively charged Ni(ii) complex for the selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemistry 72(1), 87–93 (2008). https://doi.org/10.1016/j.bioelechem.2007.11.007
R. Vinoth, P. Karthik, K. Devan, B. Neppolian, M. Ashokkumar, TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35, 655–663 (2017). https://doi.org/10.1016/j.ultsonch.2016.03.005
Y.J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi et al., Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: P size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015). https://doi.org/10.1021/cr500519c
W. Tu, K. Chen, L. Zhu, H. Zai, B.E.X. Ke et al., Tungsten-doping-induced surface reconstruction of porous ternary Pt-based alloy electrocatalyst for oxygen reduction. Adv. Funct. Mater. 29, 1807070 (2019). https://doi.org/10.1002/adfm.201807070
W. Tu, W. Luo, C. Chen, K. Chen, E. Zhu et al., Tungsten as “adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis. Adv. Funct. Mater. 30, 1908230 (2020). https://doi.org/10.1002/adfm.201908230
X. Zhang, H. Wang, J. Key, V. Linkov, S. Ji et al., Strain effect of core-shell Co@Pt/C nanop catalyst with enhanced electrocatalytic activity for methanol oxidation. J. Electrochem. Soc. 159, B270–B276 (2012). https://doi.org/10.1149/2.015203jes
B.Y. Xia, H.B. Wu, N. Li, Y. Yan, X.W. Lou et al., One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 54, 3797–3801 (2015). https://doi.org/10.1002/anie.201411544
J. Schröder, R.K. Pittkowski, I. Martens, R. Chattot, J. Drnec et al., Tracking the catalyst layer depth-dependent electrochemical degradation of a bimodal Pt/c fuel cell catalyst: a combined operando small- and wide-angle x-ray scattering study. ACS Catal. 12, 2077–2085 (2022). https://doi.org/10.1021/acscatal.1c04365
R. Chattot, O. Le Bacq, V. Beermann, S. Kühl, J. Herranz et al., Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018). https://doi.org/10.1038/s41563-018-0133-2
M. Hu, D. Poulikakos, C.P. Grigoropoulos, H. Pan, Recrystallization of picosecond laser-melted ZnO nanops in a liquid: A molecular dynamics study. J. Chem. Phys. 132(16), 164504 (2010). https://doi.org/10.1063/1.3407438
Y.-C. Hsieh, Y. Zhang, D. Su, V. Volkov, R. Si et al., Ordered bilayer ruthenium–platinum core-shell nanops as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 4, 2466 (2013). https://doi.org/10.1038/ncomms3466
J. Choi, Y.J. Lee, D. Park, H. Jeong, S. Shin et al., Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow pt loadings. Energy Environ. Sci. 13, 4921–4929 (2020). https://doi.org/10.1039/D0EE01095B
Z. Zhao, Z. Liu, A. Zhang, X. Yan, W. Xue et al., Graphene-nanopocket-encaged ptco nanocatalysts for highly durable fuel cell operation under demanding ultralow-pt-loading conditions. Nat. Nanotechnol. 17, 968–975 (2022). https://doi.org/10.1038/s41565-022-01170-9
Office of Energy Efficiency & Renewable Energy, US DRIVE Fuel Cell Technical Team Roadmap. https://www.energy.gov/eere/vehicles/downloads/us-drive-fuel-cell-technical-team-roadmap. Accessed November 2017
J. Park, S. Lee, H.-E. Kim, A. Cho, S. Kim et al., Investigation of the support effect in atomically dispersed pt on WO3−x for utilization of pt in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16038–16042 (2019). https://doi.org/10.1002/anie.201908122
X. Duan, F. Cao, R. Ding, X. Li, Q. Li et al., Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading pemfc cathode. Adv. Energy. Mater. 12, 2103144 (2022). https://doi.org/10.1002/aenm.202103144
C.-L. Yang, L.-N. Wang, P. Yin, J. Liu, M.-X. Chen et al., Sulfur-anchoring synthesis of platinum intermetallic nanop catalysts for fuel cells. Science 374(6566), 459–464 (2021). https://doi.org/10.1126/science.abj9980
J. Liu, S. Liu, F. Yan, Z. Wen, W. Chen et al., Ultrathin nanotube structure for mass-efficient and durable oxygen reduction reaction catalysts in pem fuel cells. J. Am. Chem. Soc. 144(41), 19106–19114 (2022). https://doi.org/10.1021/jacs.2c08361
F. Chen, M.-H. Chang, C.-F. Fang, Analysis of water transport in a five-layer model of pemfc. J. Power Sour. 164, 649–658 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.072
Q. Liu, F. Lan, J. Chen, C. Zeng, J. Wang, A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. J. Power Sour. 517, 230723 (2022). https://doi.org/10.1016/j.jpowsour.2021.230723
M. Prasanna, H.Y. Ha, E.A. Cho, S.A. Hong, I.H. Oh, Investigation of oxygen gain in polymer electrolyte membrane fuel cells. J. Power Sour. 137, 1–8 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.034
K. O’Neil, J.P. Meyers, R.M. Darling, M.L. Perry, Oxygen gain analysis for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 37, 373–382 (2012). https://doi.org/10.1016/j.ijhydene.2011.08.085
Y. Dong, M. Zhou, W. Tu, E. Zhu, Y. Chen et al., Hollow loofah-like n, o-co-doped carbon tube for electrocatalysis of oxygen reduction. Adv. Funct. Mater. 29, 1900015 (2019). https://doi.org/10.1002/adfm.201900015
X. Lyu, Y. Jia, X. Mao, D. Li, G. Li et al., Gradient-concentration design of stable core–shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 32, 2003493 (2020). https://doi.org/10.1002/adma.202003493
W. Zhang, X. Feng, Z.X. Mao, J. Li, Z. Wei, Stably immobilizing sub-3 nm high-entropy pt alloy nanocrystals in porous carbon as durable oxygen reduction electrocatalyst. Adv. Funct. Mater. 32, 2204110 (2022). https://doi.org/10.1002/adfm.202204110
X. Tang, Y. Wei, W. Zhai, Y. Wu, T. Hu et al., Carbon nanocage with maximum utilization of atomically dispersed iron as efficient oxygen electroreduction nanoreactor. Adv. Mater. 35(5), 2208942 (2023). https://doi.org/10.1002/adma.202208942
M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127(13), 4976–4983 (2005). https://doi.org/10.1021/ja045155b
B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321(5889), 671–674 (2008). https://doi.org/10.1126/science.1159267
J. Lim, K. Shin, J. Bak, J. Roh, S. Lee et al., Outstanding oxygen reduction reaction catalytic performance of in–PtNi octahedral nanops designed via computational dopant screening. Chem. Mater. 33, 8895–8903 (2021). https://doi.org/10.1021/acs.chemmater.1c03196
S. Gupta, S. Zhao, X.X. Wang, S. Hwang, S. Karakalos et al., Quaternary feconimn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catal. 7, 8386–8393 (2017). https://doi.org/10.1021/acscatal.7b02949
V. Briega-Martos, E. Herrero, J.M. Feliu, Effect of ph and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017). https://doi.org/10.1016/j.electacta.2017.04.162
W. Chen, M.-L. Xu, M.-F. Li, Z. Wei, J. Cai et al., Quantifying intrinsic kinetics of electrochemical reaction controlled by mass transfer of multiple species under rotating disk electrode configuration. J. Electroanal. Chem. 872, 114042 (2020). https://doi.org/10.1016/j.jelechem.2020.114042
W. Chen, L.W. Liao, J. Cai, Y.-X. Chen, U. Stimming, Unraveling complex electrode processes by differential electrochemical mass spectrometry and the rotating ring-disk electrode technique. J. Phys. Chem. C 123, 29630–29637 (2019). https://doi.org/10.1021/acs.jpcc.9b09952
M.F. Li, L.W. Liao, D.F. Yuan, D. Mei, Y.-X. Chen, Ph effect on oxygen reduction reaction at Pt(111) electrode. Electrochim. Acta 110, 780–789 (2013). https://doi.org/10.1016/j.electacta.2013.04.096
J. Liu, J. Bak, J. Roh, K.-S. Lee, A. Cho et al., Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction. ACS Catal. 11, 466–475 (2021). https://doi.org/10.1021/acscatal.0c03330
X. Zhang, L. Truong-Phuoc, X. Liao, G. Tuci, E. Fonda et al., An open gate for high-density metal ions in N-doped carbon networks: Powering Fe–N–C catalyst efficiency in the oxygen reduction reaction. ACS Catal. 11, 8915–8928 (2021). https://doi.org/10.1021/acscatal.1c01638
M.T. Anwar, X. Yan, M.R. Asghar, N. Husnain, S. Shen et al., Recent advances in hybrid support material for Pt-based electrocatalysts of proton exchange membrane fuel cells. Int. J. Energy Res. 43(7), 2694–2721 (2019). https://doi.org/10.1002/er.4322
N. Ramaswamy, W. Gu, J.M. Ziegelbauer, S. Kumaraguru, Carbon support microstructure impact on high current density transport resistances in pemfc cathode. J. Electrochem. Soc. 167(6), 064515 (2020). https://doi.org/10.1149/1945-7111/ab819c
T.R. Garrick, T.E. Moylan, M.K. Carpenter, A. Kongkanand, Editors’ choice—electrochemically active surface area measurement of aged Pt alloy catalysts in pem fuel cells by CO stripping. J. Electrochem. Soc. 164, F55 (2017). https://doi.org/10.1149/2.0381702jes
H. Wang, S. Hua, R. Lin, S. Liu, X. Cai et al., Ionomer distribution control by self-assembled monolayers for high-power and low pt-loaded proton exchange membrane fuel cells. J. Power. Sources 542, 231793 (2022). https://doi.org/10.1016/j.jpowsour.2022.231793
M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li et al., Stable high-index faceted pt skin on zigzag-like ptfe nanowires enhances oxygen reduction catalysis. Adv. Mater. 30, 1705515 (2018). https://doi.org/10.1002/adma.201705515
D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy, Measurement of oxygen transport resistance in pem fuel cells by limiting current methods. J. Electrochem. Soc. 156, B991 (2009). https://doi.org/10.1149/1.3152226
P. Mardle, G. Thirunavukkarasu, S. Guan, Y.-L. Chiu, S. Du, Comparative study of PtNi nanowire array electrodes toward oxygen reduction reaction by half-cell measurement and pemfc test. ACS Appl. Mater. Interfaces 12, 42832–42841 (2020). https://doi.org/10.1021/acsami.0c11531
J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 15(1), 19 (2022). https://doi.org/10.1007/s40820-022-00984-5
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: Recent advances and future perspectives. Nano-Micro Lett. 14(1), 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
Y. Zhu, J. Peng, X. Zhu, L. Bu, Q. Shao et al., A large-scalable, surfactant-free, and ultrastable Ru-doped Pt3Co oxygen reduction catalyst. Nano Lett. 21, 6625–6632 (2021). https://doi.org/10.1021/acs.nanolett.1c02064
L.X. Chen, M. Jiang, Z. Lu, C. Gao, Z.W. Chen et al., Two-dimensional graphdiyne-confined platinum catalyst for hydrogen evolution and oxygen reduction reactions. ACS Appl. Mater. Interfaces 13, 47541–47548 (2021). https://doi.org/10.1021/acsami.1c12054
X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31(49), 1905622 (2019). https://doi.org/10.1002/adma.201905622
G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn–N in Fe–N–C catalysts with high oxygen reduction activity. Nat. Commun. 12(1), 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
X. Shen, T. Nagai, F. Yang, L.Q. Zhou, Y. Pan et al., Dual-site cascade oxygen reduction mechanism on SnOx/Pt–Cu–Ni for promoting reaction kinetics. J. Am. Chem. Soc. 141, 9463–9467 (2019). https://doi.org/10.1021/jacs.9b02286
Z. Lin, J. Liu, S. Li, J. Liang, X. Liu et al., Anti-corrosive SnS2/SnO2 heterostructured support for pt nanops enables remarkable oxygen reduction catalysis via interfacial enhancement. Adv. Funct. Mater. 33(11), 2211638 (2023). https://doi.org/10.1002/adfm.202211638
K. Shun, K. Mori, S. Masuda, N. Hashimoto, Y. Hinuma et al., Revealing hydrogen spillover pathways in reducible metal oxides. Chem. Sci. 13(27), 8137–8147 (2022). https://doi.org/10.1039/D2SC00871H
P.A. Sermon, G.C. Bond, Hydrogen spillover. Catal. Rev. 8(1), 211–239 (1974). https://doi.org/10.1080/01614947408071861