Interpenetrated Structures for Enhancing Ion Diffusion Kinetics in Electrochemical Energy Storage Devices
Corresponding Author: Yat Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 255
Abstract
The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices (EESDs) by increasing surface area, thickness, and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity. However, conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients, limiting reaction kinetics. We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity. This free-standing device structure also avoids short-circuiting without needing a separator. The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion. Starting with a 3D-printed interpenetrated polymer substrate, we metallize it to make it conductive. This substrate has two individually addressable electrodes, allowing selective electrodeposition of energy storage materials. Using a Zn//MnO2 battery as a model system, the interpenetrated device outperforms conventional separate electrode configurations, improving volumetric energy density by 221% and exhibiting a higher capacity retention rate of 49% compared to 35% at temperatures from 20 to 0 °C. Our study introduces a new EESD architecture applicable to Li-ion, Na-ion batteries, supercapacitors, etc.
Highlights:
1 A new and compact device configuration was created with two interpenetrated, individually addressable electrodes, allowing precise control over the geometric features and interactions between the electrodes.
2 The interpenetrated electrode design improves ion diffusion kinetics in electrochemical energy storage devices by shortening the ion diffusion length and reducing ion concentration inhomogeneity.
3 The device with interpenetrated electrodes outperformed the traditional separate electrode configuration, enhancing both volumetric energy density and capacity retention rate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
- H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu et al., Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019). https://doi.org/10.1038/s41578-018-0069-9
- S.D. Lacey, D.J. Kirsch, Y. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, 1705651 (2018). https://doi.org/10.1002/adma.201705651
- S. Chandrasekaran, D. Lin, Y. Li, M.A. Worsley, Aerogels, additive manufacturing, and energy storage. Joule 7, 866–883 (2023). https://doi.org/10.1016/j.joule.2023.03.021
- A.M. Boyce, D.J. Cumming, C. Huang, S.P. Zankowski, P.S. Grant et al., Design of scalable, next-generation thick electrodes: opportunities and challenges. ACS Nano 15, 18624–18632 (2021). https://doi.org/10.1021/acsnano.1c09687
- X. Zhang, Z. Hui, S. King, L. Wang, Z. Ju et al., Tunable porous electrode architectures for enhanced Li-ion storage kinetics in thick electrodes. Nano Lett. 21, 5896–5904 (2021). https://doi.org/10.1021/acs.nanolett.1c02142
- J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui et al., From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 33, e2101275 (2021). https://doi.org/10.1002/adma.202101275
- J. Xu, J. Lei, N. Ming, C. Zhang, K. Huo, Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 32, 2204426 (2022). https://doi.org/10.1002/adfm.202204426
- J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou et al., Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 11, 46 (2019). https://doi.org/10.1007/s40820-019-0280-2
- Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
- X. Xue, D. Lin, Y. Li, Low tortuosity 3D-printed structures enhance reaction kinetics in electrochemical energy storage and electrocatalysis. Small Struct. 3, 2200159 (2022). https://doi.org/10.1002/sstr.202200159
- B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
- L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao et al., 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12, 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
- D. Lin, S. Chandrasekaran, J.-B. Forien, X. Xue, A. Pinongcos et al., 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage. Adv. Energy Mater. 13, 2300408 (2023). https://doi.org/10.1002/aenm.202300408
- B. Yao, S. Chandrasekaran, H. Zhang, A. Ma, J. Kang et al., 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 32, e1906652 (2020). https://doi.org/10.1002/adma.201906652
- N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
- B. Yao, H. Peng, H. Zhang, J. Kang, C. Zhu et al., Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 21, 3731–3737 (2021). https://doi.org/10.1021/acs.nanolett.0c04780
- Q. Ren, L. Feng, C. Ye, X. Xue, D. Lin et al., Nanocone-modified surface facilitates gas bubble detachment for high-rate alkaline water splitting. Adv. Energy Mater. 13, 2302073 (2023). https://doi.org/10.1002/aenm.202302073
- H. Hamed, S. Yari, J. D’Haen, F.U. Renner, N. Reddy et al., Demystifying charge transport limitations in the porous electrodes of lithium-ion batteries. Adv. Energy Mater. 10, 2002492 (2020). https://doi.org/10.1002/aenm.202002492
- Z. Lv, M. Yue, M. Ling, H. Zhang, J. Yan et al., Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 11, 2003725 (2021). https://doi.org/10.1002/aenm.202003725
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- X. Xue, Z. Liu, S. Eisenberg, Q. Ren, D. Lin et al., Regulated interfacial proton and water activity enhances Mn2+/MnO2 platform voltage and energy efficiency. ACS Energy Lett. 8, 4658–4665 (2023). https://doi.org/10.1021/acsenergylett.3c01354
- J. Wu, Y. Tang, H. Xu, G. Ma, J. Jiang et al., ZnO additive boosts charging speed and cycling stability of electrolytic Zn-Mn batteries. Nano-Micro Lett. 16, 74 (2024). https://doi.org/10.1007/s40820-023-01296-y
- P. Tang, L. Han, L. Zhang, S. Wang, W. Feng et al., Controlled construction of hierarchical nanocomposites consisting of MnO2 and PEDOT for high-performance supercapacitor applications. ChemElectroChem 2, 949–957 (2015). https://doi.org/10.1002/celc.201500025
- D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32, e2001894 (2020). https://doi.org/10.1002/adma.202001894
- G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
- S. Liu, J. Feng, X. Bian, J. Liu, H. Xu et al., A controlled red phosphorus@Ni–P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 10, 1222–1233 (2017). https://doi.org/10.1039/C7EE00102A
- L. Zhang, P. Zhu, F. Zhou, W. Zeng, H. Su et al., Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper. ACS Nano 10, 1273–1282 (2016). https://doi.org/10.1021/acsnano.5b06648
- Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 29, 1700274 (2017). https://doi.org/10.1002/adma.201700274
References
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu et al., Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019). https://doi.org/10.1038/s41578-018-0069-9
S.D. Lacey, D.J. Kirsch, Y. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, 1705651 (2018). https://doi.org/10.1002/adma.201705651
S. Chandrasekaran, D. Lin, Y. Li, M.A. Worsley, Aerogels, additive manufacturing, and energy storage. Joule 7, 866–883 (2023). https://doi.org/10.1016/j.joule.2023.03.021
A.M. Boyce, D.J. Cumming, C. Huang, S.P. Zankowski, P.S. Grant et al., Design of scalable, next-generation thick electrodes: opportunities and challenges. ACS Nano 15, 18624–18632 (2021). https://doi.org/10.1021/acsnano.1c09687
X. Zhang, Z. Hui, S. King, L. Wang, Z. Ju et al., Tunable porous electrode architectures for enhanced Li-ion storage kinetics in thick electrodes. Nano Lett. 21, 5896–5904 (2021). https://doi.org/10.1021/acs.nanolett.1c02142
J. Wu, X. Zhang, Z. Ju, L. Wang, Z. Hui et al., From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 33, e2101275 (2021). https://doi.org/10.1002/adma.202101275
J. Xu, J. Lei, N. Ming, C. Zhang, K. Huo, Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 32, 2204426 (2022). https://doi.org/10.1002/adfm.202204426
J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou et al., Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 11, 46 (2019). https://doi.org/10.1007/s40820-019-0280-2
Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
X. Xue, D. Lin, Y. Li, Low tortuosity 3D-printed structures enhance reaction kinetics in electrochemical energy storage and electrocatalysis. Small Struct. 3, 2200159 (2022). https://doi.org/10.1002/sstr.202200159
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao et al., 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12, 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
D. Lin, S. Chandrasekaran, J.-B. Forien, X. Xue, A. Pinongcos et al., 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage. Adv. Energy Mater. 13, 2300408 (2023). https://doi.org/10.1002/aenm.202300408
B. Yao, S. Chandrasekaran, H. Zhang, A. Ma, J. Kang et al., 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 32, e1906652 (2020). https://doi.org/10.1002/adma.201906652
N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
B. Yao, H. Peng, H. Zhang, J. Kang, C. Zhu et al., Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 21, 3731–3737 (2021). https://doi.org/10.1021/acs.nanolett.0c04780
Q. Ren, L. Feng, C. Ye, X. Xue, D. Lin et al., Nanocone-modified surface facilitates gas bubble detachment for high-rate alkaline water splitting. Adv. Energy Mater. 13, 2302073 (2023). https://doi.org/10.1002/aenm.202302073
H. Hamed, S. Yari, J. D’Haen, F.U. Renner, N. Reddy et al., Demystifying charge transport limitations in the porous electrodes of lithium-ion batteries. Adv. Energy Mater. 10, 2002492 (2020). https://doi.org/10.1002/aenm.202002492
Z. Lv, M. Yue, M. Ling, H. Zhang, J. Yan et al., Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 11, 2003725 (2021). https://doi.org/10.1002/aenm.202003725
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
X. Xue, Z. Liu, S. Eisenberg, Q. Ren, D. Lin et al., Regulated interfacial proton and water activity enhances Mn2+/MnO2 platform voltage and energy efficiency. ACS Energy Lett. 8, 4658–4665 (2023). https://doi.org/10.1021/acsenergylett.3c01354
J. Wu, Y. Tang, H. Xu, G. Ma, J. Jiang et al., ZnO additive boosts charging speed and cycling stability of electrolytic Zn-Mn batteries. Nano-Micro Lett. 16, 74 (2024). https://doi.org/10.1007/s40820-023-01296-y
P. Tang, L. Han, L. Zhang, S. Wang, W. Feng et al., Controlled construction of hierarchical nanocomposites consisting of MnO2 and PEDOT for high-performance supercapacitor applications. ChemElectroChem 2, 949–957 (2015). https://doi.org/10.1002/celc.201500025
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32, e2001894 (2020). https://doi.org/10.1002/adma.202001894
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
S. Liu, J. Feng, X. Bian, J. Liu, H. Xu et al., A controlled red phosphorus@Ni–P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 10, 1222–1233 (2017). https://doi.org/10.1039/C7EE00102A
L. Zhang, P. Zhu, F. Zhou, W. Zeng, H. Su et al., Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper. ACS Nano 10, 1273–1282 (2016). https://doi.org/10.1021/acsnano.5b06648
Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 29, 1700274 (2017). https://doi.org/10.1002/adma.201700274