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Fig. S1 GCD curves of 3 mm interpenetrated Zn//MnO2 devices obtained at 0.2 mA cm-2 in electrolytes with and without MnSO4
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Fig. S2 SEM images of a a 3D-printed interpenetrated polymer substrate, and magnified images of b the bare substrate and after c Ni electroless plating, d Ni electro-plating, e Zn electro-plating, f electrodeposition of MnO2/PEDOT surface. Scale bars in b-f are 10 μm
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Fig. S3 XRD patterns of an interpenetrated polymer substrate after Ni electroless (blue) and electro-plating (red). Dashed lines highlight the peak position of Ni (111) and (200). The arrow highlights the peak position of Ni2P
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Fig. S4 EDS elemental analysis of a MnO2/PEDOT cathode and b Zn anode
Table S1 Structural data of interpenetrated devices with different feature sizes
	m value / mm
	Number of unit cells
	Geometric Area / cm2
	Unit Density / cm-2
	Average Inter-electrode Distance / μm
	Volume / cm3
	Normalized Volume Ratio / %

	8
	4
	2.56
	1.56
	1380
	2.048
	100

	4
	12
	1.92
	6.25
	742.38
	0.768
	37.5

	3
	15
	1.8
	8.33
	557.16
	0.54
	26.4
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Fig. S5 a Electrochemical impedance spectra of Zn//MnO2 devices with different feature sizes, and b Magnified view of the spectra in the high-frequency region
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Fig. S6 a Schematic illustration and optical images of the separate electrodes b before and c after the deposition of Zn and MnO2/PEDOT

[image: A diagram of a voltage

Description automatically generated]
Fig. S7 CV scans of both separate and interpenetrated devices collected at 1 mV s-1

[image: A diagram of a voltage

Description automatically generated]
Fig. S8 Normalized a charging and b discharging profiles of interpenetrated and separate device configurations via charging and discharging capacity collected at 0.2 mA cm-2
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Fig. S9 a Cycling stability and b time of a 3 mm device obtained at 0.2 mA cm-2. c EIS spectra collected from the device before and after cycling test

[image: A diagram of a voltage

Description automatically generated]
Fig. S10 a EIS spectra of Zn//MnO2 devices with separate and interpenetrated configurations. Fitted data for b charge transfer controlled high frequency region, and c mass transfer controlled low frequency zones. The inset Figures are fitting equivalent circuits for lower and higher frequencies. The inset tables are b solid-state charge transfer controlled Rct, Rd, and c mass transfer-controlled ion diffusion resistance Rd
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Fig. S11 Digital images showing the electrolyte under a 20 °C and b 0 °C. The electrolyte is composed of 2 M ZnSO4, 0.1 M MnSO4 in H2O/DMSO (v : v = 5 : 1)
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[bookmark: _Hlk161737473]Fig. S12 Representative Zn stripping/plating overpotentials of the interpenetrated and separate devices under a 20 °C and b 0 °C are selected for comparison

Table S2 Performance comparisons between 2D and 3D Zn//MnO2 battery devices
	Device Configurations
	Electrolyte
	Capacity / mAh cm-2
	Device Area / cm2
	Device thickness / cm
	Device Volume / cm3
	References

	Zn//3D MnO2@nickel nanocone array
	2 M ZnSO4 + 0.2 M MnSO4 aq.
	3.959
	0.48
	7.410-3
	3.5510-3
	[S1]

	Interdigitated 3D Zn//MnO2 battery
	2 M ZnSO4 + 0.1 M MnSO4 in PVA gel
	0.215
	1
	510-3
	510-3
	[S2]

	Quasi-solid-state 2D Zn//MnO2 battery
	3 M LiCl + 2 M ZnCl2 + 0.4 M MnSO4 in PVA gel
	2.2
	0.5
	0.08
	0.04
	[S3]

	2D Zn//δ-MnO2
	2 M ZnSO4 + 0.1 M MnSO4 in PAM gel
	0.58
	-
	-
	-
	[S4]

	2D Zn//MnO2@CNT
	3 M LiCl + 2 M ZnCl2 + 0.4 M MnSO4 in PVA gel
	1.4
	1
	0.08
	0.08
	[S5]

	Interpenetrated Zn//MnO2 battery
	2 M ZnSO4 + 0.1 M MnSO4 aq.
	1.71
	1.8
	0.3
	0.54
	This work
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