Phase Regulation and Defect Passivation Enabled by Phosphoryl Chloride Molecules for Efficient Quasi-2D Perovskite Light-Emitting Diodes
Corresponding Author: Zhanhua Wei
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 119
Abstract
Quasi-2D perovskites have attracted tremendous interest for application as light-emission layers in light-emitting diodes (LEDs). However, the heterogeneous n phase and non-uniform distribution still severely limit the further development of quasi-2D perovskite LEDs (Pero-LEDs). Meanwhile, the increased defect density caused by the reduced dimension and grain size induces non-radiative recombination and further deteriorates the device performance. Here, we found that a series of molecules containing phosphoryl chloride functional groups have noticeable enhancement effects on the device performance of quasi-2D Pero-LEDs. Then, we studied the modification mechanism by focusing on the bis(2-oxo-3-oxazolidinyl) phosphinic chloride (BOPCl). It is concluded that the BOPCl can not only regulate the phase distribution by decreasing the crystallization rate but also remain in the grain boundaries and passivate the defects. As a result, the corresponding quasi-2D Pero-LEDs obtained a maximum external quantum efficiency (EQEmax) of 20.82% and an average EQE (EQEave) of around 20% on the optimal 50 devices, proving excellent reproducibility. Our work provides a new selection of molecular types for regulating the crystallization and passivating the defects of quasi-2D perovskite films.
Highlights:
1 The modification of perovskite precursor by a series of phosphoryl chloride molecules can indeed improve the performance of perovskite LEDs (Pero-LEDs).
2 The bis(2-oxo-3-oxazolidinyl) phosphinic chloride can not only regulate the phase distribution by controlling the crystallization rate but also passivate the defects of the quasi-2D perovskite.
3 Highly efficient and reproducible Pero-LEDs are achieved with an maximum external quantum efficiency (EQEmax) of 20.82% and an average EQE (EQEave) of around 20% on 50 devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Ma, P. Todorovic, S. Meshkat, M.I. Saidaminov, Y.K. Wang et al., Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142(11), 5126–5134 (2020). https://doi.org/10.1021/jacs.9b12323
- M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13(1), 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
- J. Lu, X. Guan, Y. Li, K. Lin, W. Feng et al., Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv. Mater. 33(44), e2104414 (2021). https://doi.org/10.1002/adma.202104414
- C.Y. Huang, H. Li, Y. Wu, C.H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: A versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15(1), 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
- K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12(11), 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
- Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
- B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
- Y. Jiang, C. Sun, J. Xu, S. Li, M. Cui et al., Synthesis-on-substrate of quantum dot solids. Nature 612(7941), 679–684 (2022). https://doi.org/10.1038/s41586-022-05486-3
- Z. Guo, Y. Zhang, B. Wang, L. Wang, N. Zhou et al., Promoting energy transfer via manipulation of crystallization kinetics of quasi-2d perovskites for efficient green light-emitting diodes. Adv. Mater. 33(40), e2102246 (2021). https://doi.org/10.1002/adma.202102246
- D. Ma, K. Lin, Y. Dong, H. Choubisa, A.H. Proppe et al., Distribution control enables efficient reduced-dimensional perovskite leds. Nature 599(7886), 594–598 (2021). https://doi.org/10.1038/s41586-021-03997-z
- C. Zhao, W. Wu, H. Zhan, W. Yuan, H. Li et al., Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes. Angew. Chem. Int. Ed. 61(13), e202117374 (2022). https://doi.org/10.1002/anie.202117374
- Z. Ren, J. Sun, J. Yu, X. Xiao, Z. Wang et al., High-performance blue quasi-2d perovskite light-emitting diodes via balanced carrier confinement and transfer. Nano-Micro Lett. 14(1), 66 (2022). https://doi.org/10.1007/s40820-022-00807-7
- M. Yu, X. Mei, T. Qin, R. Zhuang, Y. Hua et al., Modulating phase distribution and passivating surface defects of quasi-2d perovskites via potassium tetrafluoroborate for light-emitting diodes. Chem. Eng. J. 138021 (2022). https://doi.org/10.1016/j.cej.2022.138021
- B. Zhao, Y. Lian, L. Cui, G. Divitini, G. Kusch et al., Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3(11), 704–710 (2020). https://doi.org/10.1038/s41928-020-00487-4
- Y. Fu, D. Zhang, H. Zhan, C. Zhao, Y. Cheng et al., Engineering of annealing and surface passivation toward efficient and stable quasi-2d perovskite light-emitting diodes. J. Phys. Chem. Lett. 12(48), 11645–11651 (2021). https://doi.org/10.1021/acs.jpclett.1c03413
- D. Zhang, Y. Fu, H. Zhan, C. Zhao, X. Gao et al., Suppressing thermal quenching via defect passivation for efficient quasi-2d perovskite light-emitting diodes. Light Sci. Appl. 11(1), 69 (2022). https://doi.org/10.1038/s41377-022-00761-4
- Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with eqe exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33(43), e2103268 (2021). https://doi.org/10.1002/adma.202103268
- X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9(1), 570 (2018). https://doi.org/10.1038/s41467-018-02978-7
- D. Zhang, C. Liu, C. Zhao, X. Gao, J. Zhang et al., Domain controlling by compound additive toward highly efficient quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 2103890 (2021). https://doi.org/10.1002/adfm.202103890
- Y. Zhao, M. Li, X. Qin, P. Yang, W.H. Zhang et al., Efficient perovskite light-emitting diodes by buried interface modification with triphenylphosphine oxide. ACS Appl. Mater. Interfaces 15(2), 3644–3650 (2023). https://doi.org/10.1021/acsami.2c19123
- L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2d perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12(1), 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
- M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
- L.N. Quan, Y. Zhao, F.P. Garcia de Arquer, R. Sabatini, G. Walters et al., Tailoring the energy landscape in quasi-2d halide perovskites enables efficient green-light emission. Nano Lett. 17(6), 3701–3709 (2017). https://doi.org/10.1021/acs.nanolett.7b00976
References
D. Ma, P. Todorovic, S. Meshkat, M.I. Saidaminov, Y.K. Wang et al., Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142(11), 5126–5134 (2020). https://doi.org/10.1021/jacs.9b12323
M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13(1), 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
J. Lu, X. Guan, Y. Li, K. Lin, W. Feng et al., Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv. Mater. 33(44), e2104414 (2021). https://doi.org/10.1002/adma.202104414
C.Y. Huang, H. Li, Y. Wu, C.H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: A versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15(1), 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12(11), 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
Y. Jiang, C. Sun, J. Xu, S. Li, M. Cui et al., Synthesis-on-substrate of quantum dot solids. Nature 612(7941), 679–684 (2022). https://doi.org/10.1038/s41586-022-05486-3
Z. Guo, Y. Zhang, B. Wang, L. Wang, N. Zhou et al., Promoting energy transfer via manipulation of crystallization kinetics of quasi-2d perovskites for efficient green light-emitting diodes. Adv. Mater. 33(40), e2102246 (2021). https://doi.org/10.1002/adma.202102246
D. Ma, K. Lin, Y. Dong, H. Choubisa, A.H. Proppe et al., Distribution control enables efficient reduced-dimensional perovskite leds. Nature 599(7886), 594–598 (2021). https://doi.org/10.1038/s41586-021-03997-z
C. Zhao, W. Wu, H. Zhan, W. Yuan, H. Li et al., Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes. Angew. Chem. Int. Ed. 61(13), e202117374 (2022). https://doi.org/10.1002/anie.202117374
Z. Ren, J. Sun, J. Yu, X. Xiao, Z. Wang et al., High-performance blue quasi-2d perovskite light-emitting diodes via balanced carrier confinement and transfer. Nano-Micro Lett. 14(1), 66 (2022). https://doi.org/10.1007/s40820-022-00807-7
M. Yu, X. Mei, T. Qin, R. Zhuang, Y. Hua et al., Modulating phase distribution and passivating surface defects of quasi-2d perovskites via potassium tetrafluoroborate for light-emitting diodes. Chem. Eng. J. 138021 (2022). https://doi.org/10.1016/j.cej.2022.138021
B. Zhao, Y. Lian, L. Cui, G. Divitini, G. Kusch et al., Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3(11), 704–710 (2020). https://doi.org/10.1038/s41928-020-00487-4
Y. Fu, D. Zhang, H. Zhan, C. Zhao, Y. Cheng et al., Engineering of annealing and surface passivation toward efficient and stable quasi-2d perovskite light-emitting diodes. J. Phys. Chem. Lett. 12(48), 11645–11651 (2021). https://doi.org/10.1021/acs.jpclett.1c03413
D. Zhang, Y. Fu, H. Zhan, C. Zhao, X. Gao et al., Suppressing thermal quenching via defect passivation for efficient quasi-2d perovskite light-emitting diodes. Light Sci. Appl. 11(1), 69 (2022). https://doi.org/10.1038/s41377-022-00761-4
Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with eqe exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33(43), e2103268 (2021). https://doi.org/10.1002/adma.202103268
X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9(1), 570 (2018). https://doi.org/10.1038/s41467-018-02978-7
D. Zhang, C. Liu, C. Zhao, X. Gao, J. Zhang et al., Domain controlling by compound additive toward highly efficient quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 2103890 (2021). https://doi.org/10.1002/adfm.202103890
Y. Zhao, M. Li, X. Qin, P. Yang, W.H. Zhang et al., Efficient perovskite light-emitting diodes by buried interface modification with triphenylphosphine oxide. ACS Appl. Mater. Interfaces 15(2), 3644–3650 (2023). https://doi.org/10.1021/acsami.2c19123
L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2d perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12(1), 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
L.N. Quan, Y. Zhao, F.P. Garcia de Arquer, R. Sabatini, G. Walters et al., Tailoring the energy landscape in quasi-2d halide perovskites enables efficient green-light emission. Nano Lett. 17(6), 3701–3709 (2017). https://doi.org/10.1021/acs.nanolett.7b00976