Boosting Interfacial Polarization Through Heterointerface Engineering in MXene/Graphene Intercalated-Based Microspheres for Electromagnetic Wave Absorption
Corresponding Author: Faxiang Qin
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 152
Abstract
Multi-layer 2D material assemblies provide a great number of interfaces beneficial for electromagnetic wave absorption. However, avoiding agglomeration and achieving layer-by-layer ordered intercalation remain challenging. Here, 3D reduced graphene oxide (rGO)/MXene/TiO2/Fe2C lightweight porous microspheres with periodical intercalated structures and pronounced interfacial effects were constructed by spray-freeze-drying and microwave irradiation based on the Maxwell–Wagner effect. Such approach reinforced interfacial effects via defects introduction, porous skeleton, multi-layer assembly and multi-component system, leading to synergistic loss mechanisms. The abundant 2D/2D/0D/0D intercalated heterojunctions in the microspheres provide a high density of polarization charges while generating abundant polarization sites, resulting in boosted interfacial polarization, which is verified by CST Microwave Studio simulations. By precisely tuning the 2D nanosheets intercalation in the heterostructures, both the polarization loss and impedance matching improve significantly. At a low filler loading of 5 wt%, the polarization loss rate exceeds 70%, and a minimum reflection loss (RLmin) of −67.4 dB can be achieved. Moreover, radar cross-section simulations further confirm the attenuation ability of the optimized porous microspheres. These results not only provide novel insights into understanding and enhancing interfacial effects, but also constitute an attractive platform for implementing heterointerface engineering based on customized 2D hierarchical architectures.
Highlights:
1 rGO/MXene/TiO2/Fe2C heterointerface porous microspheres prepared via scalable method to boost polarization.
2 Customization of hierarchical structure by precisely tuning 2D rGO/MXene intercalation.
3 Optimal reflection loss of -67.4 dB and EAB = 5.47 GHz at low filler loading of 5 wt%. Simulations showed the benefits of 2D nanosheets intercalation on polarization loss.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- H. Wei, Y. Tian, Q. Chen, D. Estevez, P. Xu et al., Microwave absorption performance of 2D iron-quinoid MOF. Chem. Eng. J. 405, 126637 (2021). https://doi.org/10.1016/j.cej.2020.126637
- H. Zhang, Z. Jia, A. Feng, Z. Zhou, L. Chen et al., In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. B Eng. 199, 108261 (2020). https://doi.org/10.1016/j.compositesb.2020.108261
- Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach. ChemPhysMater (2022). https://doi.org/10.1016/j.chphma.2022.10.002
- J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 9(7), e2101988 (2022). https://doi.org/10.1002/advs.202101988
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- M. Li, W. Zhu, X. Li, H. Xu, X. Fan et al., Ti3C2Tx /MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 9(16), e2201118 (2022). https://doi.org/10.1002/advs.202201118
- Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), e2107538 (2022). https://doi.org/10.1002/adma.202107538
- M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9(10), e2105553 (2022). https://doi.org/10.1002/advs.202105553
- F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Heterointerface engineering of beta-chitin/carbon nano-onions/Ni-P composites with boosted maxwell-wagner-sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14(1), 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
- B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
- H. Liang, G. Chen, D. Liu, Z. Li, S. Hui et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 33(7), 2212604 (2022). https://doi.org/10.1002/adfm.202212604
- M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), e1907156 (2020). https://doi.org/10.1002/adma.201907156
- J. Zhao, B. Chen, F. Wang, Shedding light on the role of misfit strain in controlling core-shell nanocrystals. Adv. Mater. 32(46), e2004142 (2020). https://doi.org/10.1002/adma.202004142
- W. You, R. Che, Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), e2106195 (2022). https://doi.org/10.1002/adma.202106195
- L. Zhao, Y. Guo, Y. Xie, T. Cheng, A. Meng et al., Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 592, 153324 (2022). https://doi.org/10.1016/j.apsusc.2022.153324
- Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
- X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
- X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- Y. Karataş, T. Çetin, İN. Akkuş, Y. Akinay, M. Gülcan, Rh (0) nanops impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis. Int. J. Energy Res. 46(8), 11411–11423 (2022). https://doi.org/10.1002/er.7938
- S. Zhang, B. Cheng, Z. Gao, D. Lan, Z. Zhao et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects. J. Alloys Compd. 893, 162343 (2022). https://doi.org/10.1016/j.jallcom.2021.162343
- X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14(1), 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
- Z. Wu, Z. Yang, C. Jin, Y. Zhao, R. Che, Accurately engineering 2D/2D/0D heterojunction in hierarchical Ti3C2Tx MXene nanoarchitectures for electromagnetic wave absorption and shielding. ACS Appl. Mater. Interfaces 13(4), 5866–5876 (2021). https://doi.org/10.1021/acsami.0c21833
- Z. Li, H. Lin, Y. Xie, L. Zhao, Y. Guo et al., Monodispersed Co@C nanops anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 124, 182–192 (2022). https://doi.org/10.1016/j.jmst.2022.03.004
- Y. Lu, S. Zhang, M. He, L. Wei, Y. Chen et al., 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon 178, 413–435 (2021). https://doi.org/10.1016/j.carbon.2021.01.161
- L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
- M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song et al., An equivalent substitute strategy for constructing 3d ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 14(1), 157 (2022). https://doi.org/10.1007/s40820-022-00900-x
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3d foam with ultrahigh specific em absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- Y.Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan et al., Aggregation-resistant 3D Ti3C2Tx MXene with enhanced kinetics for potassium ion hybrid capacitors. Adv. Funct. Mater. 30(50), 2005663 (2020). https://doi.org/10.1002/adfm.202005663
- C. Zhou, X. Wang, H. Luo, L. Deng, S. Wei et al., Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 383, 123905 (2020). https://doi.org/10.1016/j.cej.2019.123095
- S.-H. Lee, D. Kang, I.-K. Oh, Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon 111, 248–257 (2017). https://doi.org/10.1016/j.carbon.2016.10.003
- W. Zheng, P.G. Zhang, J. Chen, W.B. Tian, Y.M. Zhang et al., Microwave-assisted synthesis of three-dimensional MXene derived metal oxide/carbon nanotube/iron hybrids for enhanced lithium-ions storage. J. Electroanal. Chem. 835, 205–211 (2019). https://doi.org/10.1016/j.jelechem.2019.01.036
- W. Deng, T. Li, H. Li, R. Niu, A. Dang et al., In situ construction of hierarchical core-shell SiCnws@SiO2-carbon foam hybrid composites with enhanced polarization loss for highly efficient electromagnetic wave absorption. Carbon 202, 103–111 (2023). https://doi.org/10.1016/j.carbon.2022.10.081
- M. Feng, Y. Feng, T. Zhang, J. Li, Q. Chen et al., Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. 8(23), e2102221 (2021). https://doi.org/10.1002/advs.202102221
- K. Zhang, D. Li, H. Cao, Q. Zhu, C. Trapalis et al., Insights into different dimensional MXenes for photocatalysis. Chem. Eng. J. 424, 130340 (2021). https://doi.org/10.1016/j.cej.2021.130340
- J. William, S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1957). https://doi.org/10.1021/ja01539a017
- Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- R. Bajpai, H.D. Wagner, Fast growth of carbon nanotubes using a microwave oven. Carbon 82, 327–336 (2015). https://doi.org/10.1016/j.carbon.2014.10.077
- W. Zheng, P. Zhang, L. Yang, J. Chen, W. Tian et al., A fast approach to the synthesis of MO/CNT/Fe hybrid nanostructures built on MXene for enhanced Li-ion uptake. Ceram. Int. 44(18), 22456–22461 (2018). https://doi.org/10.1016/j.ceramint.2018.09.013
- H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50(9), 3267–3273 (2012). https://doi.org/10.1016/j.carbon.2011.12.005
- A.M. Schwenke, S. Hoeppener, U.S. Schubert, Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater. 27(28), 4113–4141 (2015). https://doi.org/10.1002/adma.201500472
- W. Cai, W. Ma, W. Chen, P. Liu, Y. Liu et al., Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide and MXene for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 157, 106928 (2022). https://doi.org/10.1016/j.compositesa.2022.106928
- Y. Cui, K. Yang, J. Wang, T. Shah, Q. Zhang et al., Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 172, 1–14 (2021). https://doi.org/10.1016/j.carbon.2020.09.093
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/Epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14(1), 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
- C. Liu, W. Wu, Y. Shi, F. Yang, M. Liu et al., Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos. B Eng. 203, 108486 (2020). https://doi.org/10.1016/j.compositesb.2020.108486
- L. Xiu, Z. Wang, M. Yu, X. Wu, J. Qiu, Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12(8), 8017–8028 (2018). https://doi.org/10.1021/acsnano.8b02849
- L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain et al., Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Appl. Surf. Sci. 212–213, 255–263 (2003). https://doi.org/10.1016/s0169-4332(03)00106-5
- Y. Liu, T. Li, X. Cao, J. Liu, J. Zhang et al., Electrospun Fe2C-loaded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. Nanotechnology 30(32), 325403 (2019). https://doi.org/10.1088/1361-6528/ab1777
- S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang et al., Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12(9), 10434–10442 (2020). https://doi.org/10.1021/acsami.9b21765
- M. Zhang, J. Luo, X. Liang, B. Yan, M.I. Baikenov et al., Carbonized metal–organic frameworks nanorods as recyclable photocatalyst for visible light-induced water oxidation. Mater. Lett. 210, 73–76 (2018). https://doi.org/10.1016/j.matlet.2017.08.119
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- J. Zheng, X. Pan, X. Huang, D. Xiong, Y. Shang et al., Integrated NiCo+-LDHs@MXene/rGO aerogel: componential and structural engineering towards enhanced performance stability of hybrid supercapacitor. Chem. Eng. J. 396, 125197 (2020). https://doi.org/10.1016/j.cej.2020.125197
- J. Miao, Q. Zhu, K. Li, P. Zhang, Q. Zhao et al., Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. J. Energy Chem. 52, 243–250 (2021). https://doi.org/10.1016/j.jechem.2020.04.015
- P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. SM T 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
- S. Wang, Y. Liu, K. Lu, W. Cai, Y. Jie et al., Engineering rGO/MXene hybrid film as an anode host for stable sodium-metal batteries. Energy Fuels 35(5), 4587–4595 (2021). https://doi.org/10.1021/acs.energyfuels.0c04408
- Z. Wang, Y. Chen, M. Yao, J. Dong, Q. Zhang et al., Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. J. Power Sources 448, 227398 (2020). https://doi.org/10.1016/j.jpowsour.2019.227398
- X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
- Y. Chen, X. Xie, X. Xin, Z.R. Tang, Y.J. Xu, Ti3C2T x-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13(1), 295–304 (2019). https://doi.org/10.1021/acsnano.8b06136
- H. Che, Y.-S. He, X.-Z. Liao, H.-J. Zhang, W. Zhang et al., An active amorphous carbon material with Fe2C nanocrystals encapsulated as a high performance electrode for lithium-ion batteries. ChemistrySelect 2(5), 1854–1859 (2017). https://doi.org/10.1002/slct.201601638
- Y. Cui, F. Wu, J.Q. Wang, Y. Wang, T. Shah et al., Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 145, 106378 (2021). https://doi.org/10.1016/j.compositesa.2021.106378
- H. Yu, M. Dai, J. Zhang, W. Chen, Q. Jin et al., Interface engineering in 2D/2D heterogeneous photocatalysts. Small 19(5), e2205767 (2023). https://doi.org/10.1002/smll.202205767
- X. Xu, T. Guo, M.K. Hota, H. Kim, D. Zheng et al., High-yield Ti3C2Tx MXene-MoS2 integrated circuits. Adv. Mater. 34(48), e2107370 (2022). https://doi.org/10.1002/adma.202107370
- A. Misra, H. Kalita, A. Kottantharayil, Work function modulation and thermal stability of reduced graphene oxide gate electrodes in MOS devices. ACS Appl. Mater. Interfaces 6(2), 786–794 (2014). https://doi.org/10.1021/am404649a
- T. Su, C. Men, L. Chen, B. Chu, X. Luo et al., Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx /ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv. Sci. 9(4), e2103715 (2022). https://doi.org/10.1002/advs.202103715
- G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck et al., Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv. Funct. Mater. 17(13), 2133–2138 (2007). https://doi.org/10.1002/adfm.200700146
- H. Zhang, J. Li, Y. Chen, J. Wu, K. Wang et al., Magneto-electrically enhanced intracellular catalysis of FePt-FeC heterostructures for chemodynamic therapy. Adv. Mater. 33(17), e2100472 (2021). https://doi.org/10.1002/adma.202100472
- J. Zhou, D. Liu, Y. Xiong, Y. Akinay, A novel approach to prepare polyaniline/Polypyrrole@Cu-BTC/NH2-MIL-101(Fe) MOFs for electromagnetic wave absorption. Ceram. Int. 46(12), 19758–19766 (2020). https://doi.org/10.1016/j.ceramint.2020.05.006
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
- L. Peibo, S. Yize, Y. Akinay, The influence of MWCNTs on microwave absorption properties of Co/C and Ba-Hexaferrite hybrid nanocomposites. Synth. Met. 263, 116369 (2020). https://doi.org/10.1016/j.synthmet.2020.116369
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- Y. Wang, X. Di, J. Chen, L. She, H. Pan et al., Multi-dimensional C@NiCo-LDHs@Ni aerogel: structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon 191, 625–635 (2022). https://doi.org/10.1016/j.carbon.2022.02.016
- J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong et al., Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 431, 134284 (2022). https://doi.org/10.1016/j.cej.2021.134284
- T.N. Narayanan, Y. Zhao, X. Zuo, Y. Guo, H. Huang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- Z. Zhao, L. Zhang, H. Wu, Hydro/organo/ionogels: controllable electromagnetic wave absorbers. Adv. Mater. 34(43), e2205376 (2022). https://doi.org/10.1002/adma.202205376
- Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
- L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanops-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 12(2), 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- L. Cai, F. Pan, X. Zhu, Y. Dong, Y. Shi et al., Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 434, 133865 (2022). https://doi.org/10.1016/j.cej.2021.133865
- X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
References
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
H. Wei, Y. Tian, Q. Chen, D. Estevez, P. Xu et al., Microwave absorption performance of 2D iron-quinoid MOF. Chem. Eng. J. 405, 126637 (2021). https://doi.org/10.1016/j.cej.2020.126637
H. Zhang, Z. Jia, A. Feng, Z. Zhou, L. Chen et al., In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. B Eng. 199, 108261 (2020). https://doi.org/10.1016/j.compositesb.2020.108261
Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach. ChemPhysMater (2022). https://doi.org/10.1016/j.chphma.2022.10.002
J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 9(7), e2101988 (2022). https://doi.org/10.1002/advs.202101988
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
M. Li, W. Zhu, X. Li, H. Xu, X. Fan et al., Ti3C2Tx /MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 9(16), e2201118 (2022). https://doi.org/10.1002/advs.202201118
Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), e2107538 (2022). https://doi.org/10.1002/adma.202107538
M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9(10), e2105553 (2022). https://doi.org/10.1002/advs.202105553
F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Heterointerface engineering of beta-chitin/carbon nano-onions/Ni-P composites with boosted maxwell-wagner-sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14(1), 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
H. Liang, G. Chen, D. Liu, Z. Li, S. Hui et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 33(7), 2212604 (2022). https://doi.org/10.1002/adfm.202212604
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), e1907156 (2020). https://doi.org/10.1002/adma.201907156
J. Zhao, B. Chen, F. Wang, Shedding light on the role of misfit strain in controlling core-shell nanocrystals. Adv. Mater. 32(46), e2004142 (2020). https://doi.org/10.1002/adma.202004142
W. You, R. Che, Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), e2106195 (2022). https://doi.org/10.1002/adma.202106195
L. Zhao, Y. Guo, Y. Xie, T. Cheng, A. Meng et al., Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 592, 153324 (2022). https://doi.org/10.1016/j.apsusc.2022.153324
Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
X. Li, M. Zhang, W. You, K. Pei, Q. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
Y. Karataş, T. Çetin, İN. Akkuş, Y. Akinay, M. Gülcan, Rh (0) nanops impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis. Int. J. Energy Res. 46(8), 11411–11423 (2022). https://doi.org/10.1002/er.7938
S. Zhang, B. Cheng, Z. Gao, D. Lan, Z. Zhao et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects. J. Alloys Compd. 893, 162343 (2022). https://doi.org/10.1016/j.jallcom.2021.162343
X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14(1), 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
Z. Wu, Z. Yang, C. Jin, Y. Zhao, R. Che, Accurately engineering 2D/2D/0D heterojunction in hierarchical Ti3C2Tx MXene nanoarchitectures for electromagnetic wave absorption and shielding. ACS Appl. Mater. Interfaces 13(4), 5866–5876 (2021). https://doi.org/10.1021/acsami.0c21833
Z. Li, H. Lin, Y. Xie, L. Zhao, Y. Guo et al., Monodispersed Co@C nanops anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 124, 182–192 (2022). https://doi.org/10.1016/j.jmst.2022.03.004
Y. Lu, S. Zhang, M. He, L. Wei, Y. Chen et al., 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon 178, 413–435 (2021). https://doi.org/10.1016/j.carbon.2021.01.161
L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song et al., An equivalent substitute strategy for constructing 3d ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 14(1), 157 (2022). https://doi.org/10.1007/s40820-022-00900-x
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3d foam with ultrahigh specific em absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
Y.Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan et al., Aggregation-resistant 3D Ti3C2Tx MXene with enhanced kinetics for potassium ion hybrid capacitors. Adv. Funct. Mater. 30(50), 2005663 (2020). https://doi.org/10.1002/adfm.202005663
C. Zhou, X. Wang, H. Luo, L. Deng, S. Wei et al., Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 383, 123905 (2020). https://doi.org/10.1016/j.cej.2019.123095
S.-H. Lee, D. Kang, I.-K. Oh, Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon 111, 248–257 (2017). https://doi.org/10.1016/j.carbon.2016.10.003
W. Zheng, P.G. Zhang, J. Chen, W.B. Tian, Y.M. Zhang et al., Microwave-assisted synthesis of three-dimensional MXene derived metal oxide/carbon nanotube/iron hybrids for enhanced lithium-ions storage. J. Electroanal. Chem. 835, 205–211 (2019). https://doi.org/10.1016/j.jelechem.2019.01.036
W. Deng, T. Li, H. Li, R. Niu, A. Dang et al., In situ construction of hierarchical core-shell SiCnws@SiO2-carbon foam hybrid composites with enhanced polarization loss for highly efficient electromagnetic wave absorption. Carbon 202, 103–111 (2023). https://doi.org/10.1016/j.carbon.2022.10.081
M. Feng, Y. Feng, T. Zhang, J. Li, Q. Chen et al., Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. 8(23), e2102221 (2021). https://doi.org/10.1002/advs.202102221
K. Zhang, D. Li, H. Cao, Q. Zhu, C. Trapalis et al., Insights into different dimensional MXenes for photocatalysis. Chem. Eng. J. 424, 130340 (2021). https://doi.org/10.1016/j.cej.2021.130340
J. William, S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1957). https://doi.org/10.1021/ja01539a017
Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
R. Bajpai, H.D. Wagner, Fast growth of carbon nanotubes using a microwave oven. Carbon 82, 327–336 (2015). https://doi.org/10.1016/j.carbon.2014.10.077
W. Zheng, P. Zhang, L. Yang, J. Chen, W. Tian et al., A fast approach to the synthesis of MO/CNT/Fe hybrid nanostructures built on MXene for enhanced Li-ion uptake. Ceram. Int. 44(18), 22456–22461 (2018). https://doi.org/10.1016/j.ceramint.2018.09.013
H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50(9), 3267–3273 (2012). https://doi.org/10.1016/j.carbon.2011.12.005
A.M. Schwenke, S. Hoeppener, U.S. Schubert, Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater. 27(28), 4113–4141 (2015). https://doi.org/10.1002/adma.201500472
W. Cai, W. Ma, W. Chen, P. Liu, Y. Liu et al., Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide and MXene for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 157, 106928 (2022). https://doi.org/10.1016/j.compositesa.2022.106928
Y. Cui, K. Yang, J. Wang, T. Shah, Q. Zhang et al., Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 172, 1–14 (2021). https://doi.org/10.1016/j.carbon.2020.09.093
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/Epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14(1), 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
C. Liu, W. Wu, Y. Shi, F. Yang, M. Liu et al., Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos. B Eng. 203, 108486 (2020). https://doi.org/10.1016/j.compositesb.2020.108486
L. Xiu, Z. Wang, M. Yu, X. Wu, J. Qiu, Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12(8), 8017–8028 (2018). https://doi.org/10.1021/acsnano.8b02849
L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain et al., Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Appl. Surf. Sci. 212–213, 255–263 (2003). https://doi.org/10.1016/s0169-4332(03)00106-5
Y. Liu, T. Li, X. Cao, J. Liu, J. Zhang et al., Electrospun Fe2C-loaded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. Nanotechnology 30(32), 325403 (2019). https://doi.org/10.1088/1361-6528/ab1777
S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang et al., Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 12(9), 10434–10442 (2020). https://doi.org/10.1021/acsami.9b21765
M. Zhang, J. Luo, X. Liang, B. Yan, M.I. Baikenov et al., Carbonized metal–organic frameworks nanorods as recyclable photocatalyst for visible light-induced water oxidation. Mater. Lett. 210, 73–76 (2018). https://doi.org/10.1016/j.matlet.2017.08.119
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
J. Zheng, X. Pan, X. Huang, D. Xiong, Y. Shang et al., Integrated NiCo+-LDHs@MXene/rGO aerogel: componential and structural engineering towards enhanced performance stability of hybrid supercapacitor. Chem. Eng. J. 396, 125197 (2020). https://doi.org/10.1016/j.cej.2020.125197
J. Miao, Q. Zhu, K. Li, P. Zhang, Q. Zhao et al., Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. J. Energy Chem. 52, 243–250 (2021). https://doi.org/10.1016/j.jechem.2020.04.015
P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. SM T 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
S. Wang, Y. Liu, K. Lu, W. Cai, Y. Jie et al., Engineering rGO/MXene hybrid film as an anode host for stable sodium-metal batteries. Energy Fuels 35(5), 4587–4595 (2021). https://doi.org/10.1021/acs.energyfuels.0c04408
Z. Wang, Y. Chen, M. Yao, J. Dong, Q. Zhang et al., Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. J. Power Sources 448, 227398 (2020). https://doi.org/10.1016/j.jpowsour.2019.227398
X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
Y. Chen, X. Xie, X. Xin, Z.R. Tang, Y.J. Xu, Ti3C2T x-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13(1), 295–304 (2019). https://doi.org/10.1021/acsnano.8b06136
H. Che, Y.-S. He, X.-Z. Liao, H.-J. Zhang, W. Zhang et al., An active amorphous carbon material with Fe2C nanocrystals encapsulated as a high performance electrode for lithium-ion batteries. ChemistrySelect 2(5), 1854–1859 (2017). https://doi.org/10.1002/slct.201601638
Y. Cui, F. Wu, J.Q. Wang, Y. Wang, T. Shah et al., Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 145, 106378 (2021). https://doi.org/10.1016/j.compositesa.2021.106378
H. Yu, M. Dai, J. Zhang, W. Chen, Q. Jin et al., Interface engineering in 2D/2D heterogeneous photocatalysts. Small 19(5), e2205767 (2023). https://doi.org/10.1002/smll.202205767
X. Xu, T. Guo, M.K. Hota, H. Kim, D. Zheng et al., High-yield Ti3C2Tx MXene-MoS2 integrated circuits. Adv. Mater. 34(48), e2107370 (2022). https://doi.org/10.1002/adma.202107370
A. Misra, H. Kalita, A. Kottantharayil, Work function modulation and thermal stability of reduced graphene oxide gate electrodes in MOS devices. ACS Appl. Mater. Interfaces 6(2), 786–794 (2014). https://doi.org/10.1021/am404649a
T. Su, C. Men, L. Chen, B. Chu, X. Luo et al., Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx /ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv. Sci. 9(4), e2103715 (2022). https://doi.org/10.1002/advs.202103715
G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck et al., Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv. Funct. Mater. 17(13), 2133–2138 (2007). https://doi.org/10.1002/adfm.200700146
H. Zhang, J. Li, Y. Chen, J. Wu, K. Wang et al., Magneto-electrically enhanced intracellular catalysis of FePt-FeC heterostructures for chemodynamic therapy. Adv. Mater. 33(17), e2100472 (2021). https://doi.org/10.1002/adma.202100472
J. Zhou, D. Liu, Y. Xiong, Y. Akinay, A novel approach to prepare polyaniline/Polypyrrole@Cu-BTC/NH2-MIL-101(Fe) MOFs for electromagnetic wave absorption. Ceram. Int. 46(12), 19758–19766 (2020). https://doi.org/10.1016/j.ceramint.2020.05.006
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
L. Peibo, S. Yize, Y. Akinay, The influence of MWCNTs on microwave absorption properties of Co/C and Ba-Hexaferrite hybrid nanocomposites. Synth. Met. 263, 116369 (2020). https://doi.org/10.1016/j.synthmet.2020.116369
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
Y. Wang, X. Di, J. Chen, L. She, H. Pan et al., Multi-dimensional C@NiCo-LDHs@Ni aerogel: structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon 191, 625–635 (2022). https://doi.org/10.1016/j.carbon.2022.02.016
J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong et al., Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 431, 134284 (2022). https://doi.org/10.1016/j.cej.2021.134284
T.N. Narayanan, Y. Zhao, X. Zuo, Y. Guo, H. Huang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
Z. Zhao, L. Zhang, H. Wu, Hydro/organo/ionogels: controllable electromagnetic wave absorbers. Adv. Mater. 34(43), e2205376 (2022). https://doi.org/10.1002/adma.202205376
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanops-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 12(2), 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
L. Cai, F. Pan, X. Zhu, Y. Dong, Y. Shi et al., Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 434, 133865 (2022). https://doi.org/10.1016/j.cej.2021.133865
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3