Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
Corresponding Author: Zhanhua Wei
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 111
Abstract
Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (VOC) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)2PbCl4 (phenmethylammonium is referred to as PMA) passivation layer on top of the WBG active layer. The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent. First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase. The (PMA)2PbCl4 forms improved type-I energy level alignment with the WBG perovskite, reducing the electron recombination at the perovskite/hole-transport-layer interface. Applying this strategy in fabricating semi-transparent WBG perovskite solar cells (indium tin oxide as the back electrode), the VOC deficits can be reduced to 0.49 V, comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes. Consequently, we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high VOC of 1.23 V.
Highlights:
1 Three bulky cation chlorides (PMACl, PEACl and NMACl) are used to modify the perovskite surface and form pure-anion 2D (PMA)2PbCl4, mixed-anion 2D (PEA)2Pb(IxCl4-x), and non-2D NMAI passivation layers, respectively.
2 Intermolecular interactions between the bulky cations and the strength of cation-halide hydrogen bonds are critical to forming the three distinct passivation layers.
3 Semi-transparent wide-bandgap perovskite solar cells (WBG-PSCs) with ITO as the back electrode show hysteresis-free PCE of 18.60% and VOC deficit of 0.49 V.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- NREL Transforming energy (2023). https://www.nrel.gov/pv/cell-efficiency.html (Accessed Jan 1, 2023)
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
- W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. App. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034
- D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). https://doi.org/10.1126/science.aad5845
- Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, H. Isikgor Furkan et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
- F.H. Isikgor, F. Furlan, J. Liu, E. Ugur, M.K. Eswaran et al., Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021). https://doi.org/10.1016/j.joule.2021.05.013
- L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34, 2201315 (2022). https://doi.org/10.1002/adma.202201315
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant et al., Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015). https://doi.org/10.1002/aenm.201500799
- A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019). https://doi.org/10.1039/C9EE02268F
- R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
- J. Tong, Q. Jiang, A.J. Ferguson, A.F. Palmstrom, X. Wang et al., Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022). https://doi.org/10.1038/s41560-022-01046-1
- L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
- A new world record (2023). https://www.renshinesolar.com/page99?_id=85 (Accessed Mar 7, 2023)
- T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
- F. Xu, M. Zhang, Z. Li, X. Yang, R. Zhu, Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203911
- H. Tan, F. Che, M. Wei, Y. Zhao, M.I. Saidaminov et al., Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018). https://doi.org/10.1038/s41467-018-05531-8
- Y.-H. Lin, N. Sakai, P. Da, J. Wu, C. Sansom Harry et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020). https://doi.org/10.1126/science.aba1628
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
- Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng et al., Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. mater. 29, 1700607 (2017). https://doi.org/10.1002/adma.201700607
- B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu et al., Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190 (2019). https://doi.org/10.1016/j.joule.2018.10.003
- D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield et al., Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020). https://doi.org/10.1126/science.aba3433
- C. Chen, Z. Song, C. Xiao, R.A. Awni, C. Yao et al., Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020). https://doi.org/10.1021/acsenergylett.0c01350
- D.H. Kim, C.P. Muzzillo, J.H. Tong, A.F. Palmstrom, B.W. Larson et al., Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with cigs. Joule 3, 1734–1745 (2019). https://doi.org/10.1016/j.joule.2019.04.012
- T. Bu, J. Li, Q. Lin, D.P. McMeekin, J. Sun et al., Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 75, 104917 (2020). https://doi.org/10.1016/j.nanoen.2020.104917
- C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
- Z. Li, J. Zhang, S. Wu, X. Deng, F. Li et al., Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy 78, 105377 (2020). https://doi.org/10.1016/j.nanoen.2020.105377
- Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2d–3d heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 6, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
- S. Gharibzadeh, B.A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild et al., Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2d/3d perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019). https://doi.org/10.1002/aenm.201803699
- X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
- Y. Zhou, F. Wang, Y. Cao, J.-P. Wang, H.-H. Fang et al., Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7, 1701048 (2017). https://doi.org/10.1002/aenm.201701048
- L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n–i–p perovskite/silicon tandem solar cells. Adv. Mater. 34, 2201315 (2022). https://doi.org/10.1002/adma.202201315
- J.Y. Ye, J. Tong, J. Hu, C. Xiao, H. Lu et al., Enhancing charge transport of 2d perovskite passivation agent for wide-bandgap perovskite solar cells beyond 21%. Solar RRL 4, 2000082 (2020). https://doi.org/10.1002/solr.202000082
- L.S. Liang, H.T. Luo, J.J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: a bulky amine approach. Adv. Energy Mater. 10, 2000197 (2020). https://doi.org/10.1002/aenm.202000197
- P. Wang, B. Chen, R. Li, S. Wang, Y. Li et al., 2d perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy 94, 106914 (2022). https://doi.org/10.1016/j.nanoen.2021.106914
- C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
- B.D. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
- J. Tong, Q. Jiang, F. Zhang, S.B. Kang, D.H. Kim et al., Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Lett. 6, 232–248 (2021). https://doi.org/10.1021/acsenergylett.0c02105
- Q. Chen, H. Zhou, T.B. Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014). https://doi.org/10.1021/nl501838y
- B. Yang, J. Suo, F. Di Giacomo, S. Olthof, D. Bogachuk et al., Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on n-i-p architecture. ACS Energy Lett. 6, 3916–3923 (2021). https://doi.org/10.1021/acsenergylett.1c01811
- Y. Yao, P. Hang, B. Li, Z. Hu, C. Kan et al., Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small 18, 2203319 (2022). https://doi.org/10.1002/smll.202203319
- D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye et al., 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy 84, 105934 (2021). https://doi.org/10.1016/j.nanoen.2021.105934
- B. Chen, S.W. Baek, Y. Hou, E. Aydin, M. De Bastiani et al., Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 11, 1257 (2020). https://doi.org/10.1038/s41467-020-15077-3
References
NREL Transforming energy (2023). https://www.nrel.gov/pv/cell-efficiency.html (Accessed Jan 1, 2023)
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. App. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034
D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). https://doi.org/10.1126/science.aad5845
Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, H. Isikgor Furkan et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
F.H. Isikgor, F. Furlan, J. Liu, E. Ugur, M.K. Eswaran et al., Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021). https://doi.org/10.1016/j.joule.2021.05.013
L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34, 2201315 (2022). https://doi.org/10.1002/adma.202201315
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant et al., Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015). https://doi.org/10.1002/aenm.201500799
A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019). https://doi.org/10.1039/C9EE02268F
R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
J. Tong, Q. Jiang, A.J. Ferguson, A.F. Palmstrom, X. Wang et al., Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022). https://doi.org/10.1038/s41560-022-01046-1
L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
A new world record (2023). https://www.renshinesolar.com/page99?_id=85 (Accessed Mar 7, 2023)
T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
F. Xu, M. Zhang, Z. Li, X. Yang, R. Zhu, Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203911
H. Tan, F. Che, M. Wei, Y. Zhao, M.I. Saidaminov et al., Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018). https://doi.org/10.1038/s41467-018-05531-8
Y.-H. Lin, N. Sakai, P. Da, J. Wu, C. Sansom Harry et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020). https://doi.org/10.1126/science.aba1628
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng et al., Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. mater. 29, 1700607 (2017). https://doi.org/10.1002/adma.201700607
B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu et al., Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190 (2019). https://doi.org/10.1016/j.joule.2018.10.003
D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield et al., Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020). https://doi.org/10.1126/science.aba3433
C. Chen, Z. Song, C. Xiao, R.A. Awni, C. Yao et al., Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020). https://doi.org/10.1021/acsenergylett.0c01350
D.H. Kim, C.P. Muzzillo, J.H. Tong, A.F. Palmstrom, B.W. Larson et al., Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with cigs. Joule 3, 1734–1745 (2019). https://doi.org/10.1016/j.joule.2019.04.012
T. Bu, J. Li, Q. Lin, D.P. McMeekin, J. Sun et al., Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 75, 104917 (2020). https://doi.org/10.1016/j.nanoen.2020.104917
C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
Z. Li, J. Zhang, S. Wu, X. Deng, F. Li et al., Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy 78, 105377 (2020). https://doi.org/10.1016/j.nanoen.2020.105377
Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2d–3d heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 6, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
S. Gharibzadeh, B.A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild et al., Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2d/3d perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019). https://doi.org/10.1002/aenm.201803699
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
Y. Zhou, F. Wang, Y. Cao, J.-P. Wang, H.-H. Fang et al., Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7, 1701048 (2017). https://doi.org/10.1002/aenm.201701048
L. Wang, Q. Song, F. Pei, Y. Chen, J. Dou et al., Strain modulation for light-stable n–i–p perovskite/silicon tandem solar cells. Adv. Mater. 34, 2201315 (2022). https://doi.org/10.1002/adma.202201315
J.Y. Ye, J. Tong, J. Hu, C. Xiao, H. Lu et al., Enhancing charge transport of 2d perovskite passivation agent for wide-bandgap perovskite solar cells beyond 21%. Solar RRL 4, 2000082 (2020). https://doi.org/10.1002/solr.202000082
L.S. Liang, H.T. Luo, J.J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: a bulky amine approach. Adv. Energy Mater. 10, 2000197 (2020). https://doi.org/10.1002/aenm.202000197
P. Wang, B. Chen, R. Li, S. Wang, Y. Li et al., 2d perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%. Nano Energy 94, 106914 (2022). https://doi.org/10.1016/j.nanoen.2021.106914
C. Jiang, J. Zhou, H. Li, L. Tan, M. Li et al., Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano-Micro Lett. 15, 12 (2022). https://doi.org/10.1007/s40820-022-00985-4
B.D. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
J. Tong, Q. Jiang, F. Zhang, S.B. Kang, D.H. Kim et al., Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Lett. 6, 232–248 (2021). https://doi.org/10.1021/acsenergylett.0c02105
Q. Chen, H. Zhou, T.B. Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014). https://doi.org/10.1021/nl501838y
B. Yang, J. Suo, F. Di Giacomo, S. Olthof, D. Bogachuk et al., Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on n-i-p architecture. ACS Energy Lett. 6, 3916–3923 (2021). https://doi.org/10.1021/acsenergylett.1c01811
Y. Yao, P. Hang, B. Li, Z. Hu, C. Kan et al., Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small 18, 2203319 (2022). https://doi.org/10.1002/smll.202203319
D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye et al., 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy 84, 105934 (2021). https://doi.org/10.1016/j.nanoen.2021.105934
B. Chen, S.W. Baek, Y. Hou, E. Aydin, M. De Bastiani et al., Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 11, 1257 (2020). https://doi.org/10.1038/s41467-020-15077-3