Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries
Corresponding Author: Qiang Fu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 202
Abstract
Phase change materials (PCMs) are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries (LIBs) according to real-time thermal conditions, guaranteeing the reliable operation of LIBs in both cold and hot environments. Herein, we report a liquid metal (LM) modified polyethylene glycol/LM/boron nitride PCM, capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction. Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic. Typically, soft and deformable LMs are modified on the boron nitride surface, serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m−1 K−1 in the vertical and in-plane directions, respectively. In addition, LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system. As a proof-of-concept, this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10 °C at high charging/discharging rate, opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
Highlights:
1 The phase change materials possess conformable configuration to the structure of Li-ion batteries in macro-scale and multidirectional thermal pathways for rapid and uniform heat transfer in micro-scale.
2 Hierarchically structured phase change materials achieve dual-mode thermal management ability for heating and cooling Li-ion batteries.
3 Excellent practical battery thermal management performance was verified by 18,650 Li-ion batteries in both cold and hot environments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
- B. Nykvist, M. Nilsson, Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5(4), 329–332 (2015). https://doi.org/10.1038/nclimate2564
- J. Wandt, P. Jakes, J. Granwehr, R.A. Eichel, H.A. Gasteiger, Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries. Mater. Today 21(3), 231–240 (2018). https://doi.org/10.1016/j.mattod.2017.11.001
- S. Ma, M. Jiang, P. Tao, C. Song, J. Wu et al., Temperature effect and thermal impact in lithium-ion batteries: a review. Prog. Nat. Sci. 28(6), 653–666 (2018). https://doi.org/10.1016/j.pnsc.2018.11.002
- M.T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2(8), 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
- X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
- X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Stor. Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
- Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- M.S. Kim, B.H. Lee, J.H. Park, H.S. Lee, W.H. Antink et al., Operando identification of the chemical and structural origin of Li-ion battery aging at near-ambient temperature. J. Am. Chem. Soc. 142(31), 13406–13414 (2020). https://doi.org/10.1021/jacs.0c02203
- L. Li, B. Fang, D. Ren, L. Fu, Y. Zhou et al., Thermal-switchable, trifunctional ceramic-hydrogel nanocomposites enable full-lifecycle security in practical battery systems. ACS Nano 16(7), 10729–107241 (2022). https://doi.org/10.1021/acsnano.2c02557
- Average annual temperature. Climate Research Unit, Univ. of East Anglia. (1998). https://sage.nelson.wisc.edu/data-and-models/atlas-of-the-biosphere/mapping-the-biosphere/ecosystems/average-annual-temperature
- M. Hao, J. Li, S. Park, S. Moura, C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3(10), 899–906 (2018). https://doi.org/10.1038/s41560-018-0243-8
- M.Q. Wu, S. Wu, Y.F. Cai, R.Z. Wang, T.X. Li, Form-stable phase change composites: preparation, performance, and applications for thermal energy conversion, storage and management. Energy Stor. Mater. 42, 380–417 (2021). https://doi.org/10.1016/j.ensm.2021.07.019
- Z. Shen, S. Chen, X. Liu, B. Chen, A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries. Renew. Sust. Energ. Rev. 148, 11301 (2021). https://doi.org/10.1016/j.rser.2021.111301
- Y. Liang, A. Emadi, O. Gross, C. Vidal, M. Canova et al., A comparative study between physics, electrical and data driven lithium-ion battery voltage modeling approaches. SAE Tech. Pap. 2022010700 (2022). https://doi.org/10.4271/2022-01-0700
- A.R. Bais, D.G. Subhedar, S. Panchal, Critical thickness of nano-enhanced RT-42 paraffin based battery thermal management system for electric vehicles: a numerical study. J. Energy Storage 52, 104757 (2022). https://doi.org/10.1016/j.est.2022.104757
- P.K. Kausthubharam, S. Koorata, R. Panchal, M. Fraser, Fowler, combined influence of concentration-dependent properties, local deformation and boundary confinement on the migration of Li-ions in low-expansion electrode p during lithiation. J. Energy Storage 52, 104908 (2022). https://doi.org/10.1016/j.est.2022.104908
- A.R. Bais, D.G. Subhedhar, N.C. Joshi, S. Panchal, Numerical investigation on thermal management system for lithium ion battery using phase change material. Mater. Today Proc. 66, 1726–1733 (2022). https://doi.org/10.1016/j.matpr.2022.05.269
- D. Liu, C. Lei, K. Wu, Q. Fu, A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion. ACS Nano 14(11), 15738–15747 (2020). https://doi.org/10.1021/acsnano.0c06680
- K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 32(8), 1906939 (2020). https://doi.org/10.1002/adma.201906939
- F. Xue, X. Qi, T. Huang, C. Tang, N. Zhang et al., Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions. Chem. Eng. J. 419, 129620 (2021). https://doi.org/10.1016/j.cej.2021.129620
- Y. Zhang, K. Wu, Q. Fu, A structured phase change material with controllable thermoconductive highways enables unparalleled electricity via solar-thermal-electric conversion. Adv. Funct. Mater. 32(6), 2109255 (2021). https://doi.org/10.1002/adfm.202109255
- C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31(49), 1905099 (2019). https://doi.org/10.1002/adma.201905099
- H.Y. Zhao, M.Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
- S. Wu, T. Li, M. Wu, J. Xu, Y. Hu et al., Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J. Mater. Chem. A 8(38), 20011–20020 (2020). https://doi.org/10.1039/d0ta05904h
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
- C. Lei, Z. Xie, K. Wu, Q. Fu, Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv. Mater. 33(49), 2103495 (2021). https://doi.org/10.1002/adma.202103495
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen inspired hierarchical spiral structure of organic fibers in epoxy bulk for three-dimensional high thermal conductivity. Adv. Mater. (2022). https://doi.org/10.1002/adma.202206088
- H. Niu, H. Guo, L. Kang, L. Ren, R. Lv et al., Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14, 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
- Z. Bo, C. Ying, H. Yang, S. Wu, J. Yang et al., Highly thermo-conductive three-dimensional graphene aqueous medium. Nano-Micro Lett. 12, 138 (2020). https://doi.org/10.1007/s40820-020-00478-2
- L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected mxene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
- H. Guo, H. Zhao, H. Niu, Y. Ren, H. Fang et al., Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15(4), 6917–6928 (2021). https://doi.org/10.1021/acsnano.0c10768
- Y. Lin, J. Genzer, M.D. Dickey, Attributes, fabrication, and applications of gallium-based liquid metal ps. Adv. Sci. 7(12), 2000192 (2020). https://doi.org/10.1002/advs.202000192
- C. Guo, Y. Li, J. Xu, Q. Zhang, K. Wu et al., A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater. Horiz. 9(6), 1690–1699 (2022). https://doi.org/10.1039/d2mh00276k
- S. Chen, H.Z. Wang, R.Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2(6), 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
- W. Xie, F.M. Allioux, J.Z. Ou, E. Miyako, S.Y. Tang et al., Gallium-based liquid metal ps for therapeutics. Trends Biotechnol. 39(6), 624–640 (2021). https://doi.org/10.1016/j.tibtech.2020.10.005
- H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang et al., Bioinspired hydroxyapatite/poly (methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28(1), 50–56 (2016). https://doi.org/10.1002/adma.201504313
- S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33(44), 2101589 (2021). https://doi.org/10.1002/adma.202101589
- Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
- N. Kazem, T. Hellebrekers, C. Majidi, Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29(27), 1605985 (2017). https://doi.org/10.1002/adma.201605985
- S.A. Chechetka, Y. Yu, X. Zhen, M. Pramanik, K. Pu et al., Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 8, 15432 (2017). https://doi.org/10.1038/ncomms15432
- D. Wu, D. Liu, X. Tian, C. Lei, X. Chen et al., A universal mechanochemistry allows on-demand synthesis of stable and processable liquid metal composites. Small Methods 6(7), 2200246 (2022). https://doi.org/10.1002/smtd.202200246
- J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu et al., Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 9(36), 30909–30917 (2017). https://doi.org/10.1021/acsami.7b08061
- Z. Su, H. Wang, J. He, Y. Guo, Q. Qu et al., Fabrication of thermal conductivity enhanced polymer composites by constructing an oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes. ACS Appl. Mater. Interfaces 10(42), 36342–36351 (2018). https://doi.org/10.1021/acsami.8b09703
- Y. Yao, X. Zhu, X. Zeng, R. Sun, J.B. Xu et al., Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces 10(11), 9669–9678 (2018). https://doi.org/10.1021/acsami.8b00328
- X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
- J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
- C. Xiao, Y. Guo, Y. Tang, J. Ding, X. Zhang et al., Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/boron nitride nanosheets. Compos. B Eng. 187, 107855 (2020). https://doi.org/10.1016/j.compositesb.2020.107855
- C. Lei, K. Wu, L. Wu, W. Liu, R. Du et al., Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/BNNSs skeleton. J. Mater. Chem. A 7(33), 19364–19373 (2019). https://doi.org/10.1039/C9TA05067A
- X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun et al., Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11(46), 6205–6213 (2015). https://doi.org/10.1002/smll.201502173
- K. Wu, J. Fang, J. Ma, R. Huang, S. Chai et al., Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber. ACS Appl. Mater. Interfaces 9(35), 30035–30045 (2017). https://doi.org/10.1021/acsami.7b08214
- X. Zhang, J. Zhang, L. Xia, C. Li, J. Wang et al., Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 9(27), 22977–22984 (2017). https://doi.org/10.1021/acsami.7b05866
- J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2018). https://doi.org/10.1021/acsnano.8b06290
- J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3D interconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2017). https://doi.org/10.1002/adfm.201604754
- H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29(37), 1902575 (2019). https://doi.org/10.1002/adfm.201902575
- J. Liu, W. Li, Y. Guo, H. Zhang, Z. Zhang, Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. Part A Appl. Sci. Manuf. 120, 140–146 (2019). https://doi.org/10.1016/j.compositesa.2019.02.026
- H. Wang, D. Ding, Q. Liu, Y. Chen, Q. Zhang, Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. B Eng. 158, 311–318 (2019). https://doi.org/10.1016/j.compositesb.2018.09.104
- B.H. Xie, X. Huang, G.J. Zhang, High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 85, 98–103 (2013). https://doi.org/10.1016/j.compscitech.2013.06.010
- J. Zhang, X. Wang, C. Yu, Q. Li, Z. Li et al., A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity. Compos. Sci. Technol. 149, 41–47 (2017). https://doi.org/10.1016/j.compscitech.2017.06.008
- J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu et al., Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem. Eng. J. 315, 481–490 (2017). https://doi.org/10.1016/j.cej.2017.01.045
- J. Yang, L.S. Tang, L. Bai, R.Y. Bao, Z. Liu et al., Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustain. Chem. Eng. 6(5), 6761–6770 (2018). https://doi.org/10.1021/acssuschemeng.8b00565
- L.S. Tang, Y.C. Zhou, L. Zhou, J. Yang, L. Bai et al., Double-layered and shape-stabilized phase change materials with enhanced thermal conduction and reversible thermochromism for solar thermoelectric power generation. Chem. Eng. J. 430, 132773 (2022). https://doi.org/10.1016/j.cej.2021.132773
- Z. Qian, H. Shen, X. Fang, L. Fan, N. Zhao et al., Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability. Energy Build. 158, 1184–1188 (2018). https://doi.org/10.1016/j.enbuild.2017.11.033
- D. Su, Y. Jia, G. Alva, F. Tang, G. Fang, Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage. Energy Build. 131, 35–41 (2016). https://doi.org/10.1016/j.enbuild.2016.09.022
- X. Fang, L.W. Fan, Q. Ding, X.L. Yao, Y.Y. Wu et al., Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers. Manage. 80, 103–109 (2014). https://doi.org/10.1016/j.enconman.2014.01.016
- D.G. Atinafu, W. Dong, J. Wang, X. Huang, J. Wang et al., Synthesis and characterization of paraffin/metal organic gel derived porous carbon/boron nitride composite phase change materials for thermal energy storage. Eur. J. Inorg. Chem. 2018(48), 5167–5175 (2018). https://doi.org/10.1002/ejic.201800811
- F. Xue, X.Z. Jin, X. Xie, X.D. Qi, J.H. Yang et al., Constructing reduced graphene oxide/boron nitride frameworks in melamine foam towards synthesizing phase change materials applied in thermal management of microelectronic devices. Nanoscale 11(40), 18691–18701 (2019). https://doi.org/10.1039/C9NR07273J
- J. Yang, P. Yu, L.S. Tang, R.Y. Bao, Z.Y. Liu et al., Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45), 17704–17709 (2017). https://doi.org/10.1039/C7NR05449A
- Z. Yang, L. Zhou, W. Luo, J. Wan, J. Dai et al., Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale 8(46), 19326–19333 (2016). https://doi.org/10.1039/C6NR07357C
- M. Fashandi, S.N. Leung, Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage. Sol. Energy Mater Sol. Cells 178, 259–265 (2018). https://doi.org/10.1016/j.solmat.2018.01.037
- J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun et al., Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 9(15), 13544–13553 (2017). https://doi.org/10.1021/acsami.7b02410
- Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), 1704044 (2018). https://doi.org/10.1002/smll.201704044
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
B. Nykvist, M. Nilsson, Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5(4), 329–332 (2015). https://doi.org/10.1038/nclimate2564
J. Wandt, P. Jakes, J. Granwehr, R.A. Eichel, H.A. Gasteiger, Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries. Mater. Today 21(3), 231–240 (2018). https://doi.org/10.1016/j.mattod.2017.11.001
S. Ma, M. Jiang, P. Tao, C. Song, J. Wu et al., Temperature effect and thermal impact in lithium-ion batteries: a review. Prog. Nat. Sci. 28(6), 653–666 (2018). https://doi.org/10.1016/j.pnsc.2018.11.002
M.T.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2(8), 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Stor. Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
M.S. Kim, B.H. Lee, J.H. Park, H.S. Lee, W.H. Antink et al., Operando identification of the chemical and structural origin of Li-ion battery aging at near-ambient temperature. J. Am. Chem. Soc. 142(31), 13406–13414 (2020). https://doi.org/10.1021/jacs.0c02203
L. Li, B. Fang, D. Ren, L. Fu, Y. Zhou et al., Thermal-switchable, trifunctional ceramic-hydrogel nanocomposites enable full-lifecycle security in practical battery systems. ACS Nano 16(7), 10729–107241 (2022). https://doi.org/10.1021/acsnano.2c02557
Average annual temperature. Climate Research Unit, Univ. of East Anglia. (1998). https://sage.nelson.wisc.edu/data-and-models/atlas-of-the-biosphere/mapping-the-biosphere/ecosystems/average-annual-temperature
M. Hao, J. Li, S. Park, S. Moura, C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3(10), 899–906 (2018). https://doi.org/10.1038/s41560-018-0243-8
M.Q. Wu, S. Wu, Y.F. Cai, R.Z. Wang, T.X. Li, Form-stable phase change composites: preparation, performance, and applications for thermal energy conversion, storage and management. Energy Stor. Mater. 42, 380–417 (2021). https://doi.org/10.1016/j.ensm.2021.07.019
Z. Shen, S. Chen, X. Liu, B. Chen, A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries. Renew. Sust. Energ. Rev. 148, 11301 (2021). https://doi.org/10.1016/j.rser.2021.111301
Y. Liang, A. Emadi, O. Gross, C. Vidal, M. Canova et al., A comparative study between physics, electrical and data driven lithium-ion battery voltage modeling approaches. SAE Tech. Pap. 2022010700 (2022). https://doi.org/10.4271/2022-01-0700
A.R. Bais, D.G. Subhedar, S. Panchal, Critical thickness of nano-enhanced RT-42 paraffin based battery thermal management system for electric vehicles: a numerical study. J. Energy Storage 52, 104757 (2022). https://doi.org/10.1016/j.est.2022.104757
P.K. Kausthubharam, S. Koorata, R. Panchal, M. Fraser, Fowler, combined influence of concentration-dependent properties, local deformation and boundary confinement on the migration of Li-ions in low-expansion electrode p during lithiation. J. Energy Storage 52, 104908 (2022). https://doi.org/10.1016/j.est.2022.104908
A.R. Bais, D.G. Subhedhar, N.C. Joshi, S. Panchal, Numerical investigation on thermal management system for lithium ion battery using phase change material. Mater. Today Proc. 66, 1726–1733 (2022). https://doi.org/10.1016/j.matpr.2022.05.269
D. Liu, C. Lei, K. Wu, Q. Fu, A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion. ACS Nano 14(11), 15738–15747 (2020). https://doi.org/10.1021/acsnano.0c06680
K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 32(8), 1906939 (2020). https://doi.org/10.1002/adma.201906939
F. Xue, X. Qi, T. Huang, C. Tang, N. Zhang et al., Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions. Chem. Eng. J. 419, 129620 (2021). https://doi.org/10.1016/j.cej.2021.129620
Y. Zhang, K. Wu, Q. Fu, A structured phase change material with controllable thermoconductive highways enables unparalleled electricity via solar-thermal-electric conversion. Adv. Funct. Mater. 32(6), 2109255 (2021). https://doi.org/10.1002/adfm.202109255
C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai et al., High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31(49), 1905099 (2019). https://doi.org/10.1002/adma.201905099
H.Y. Zhao, M.Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
S. Wu, T. Li, M. Wu, J. Xu, Y. Hu et al., Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J. Mater. Chem. A 8(38), 20011–20020 (2020). https://doi.org/10.1039/d0ta05904h
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
C. Lei, Z. Xie, K. Wu, Q. Fu, Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv. Mater. 33(49), 2103495 (2021). https://doi.org/10.1002/adma.202103495
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen inspired hierarchical spiral structure of organic fibers in epoxy bulk for three-dimensional high thermal conductivity. Adv. Mater. (2022). https://doi.org/10.1002/adma.202206088
H. Niu, H. Guo, L. Kang, L. Ren, R. Lv et al., Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14, 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
Z. Bo, C. Ying, H. Yang, S. Wu, J. Yang et al., Highly thermo-conductive three-dimensional graphene aqueous medium. Nano-Micro Lett. 12, 138 (2020). https://doi.org/10.1007/s40820-020-00478-2
L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected mxene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
H. Guo, H. Zhao, H. Niu, Y. Ren, H. Fang et al., Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15(4), 6917–6928 (2021). https://doi.org/10.1021/acsnano.0c10768
Y. Lin, J. Genzer, M.D. Dickey, Attributes, fabrication, and applications of gallium-based liquid metal ps. Adv. Sci. 7(12), 2000192 (2020). https://doi.org/10.1002/advs.202000192
C. Guo, Y. Li, J. Xu, Q. Zhang, K. Wu et al., A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater. Horiz. 9(6), 1690–1699 (2022). https://doi.org/10.1039/d2mh00276k
S. Chen, H.Z. Wang, R.Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2(6), 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
W. Xie, F.M. Allioux, J.Z. Ou, E. Miyako, S.Y. Tang et al., Gallium-based liquid metal ps for therapeutics. Trends Biotechnol. 39(6), 624–640 (2021). https://doi.org/10.1016/j.tibtech.2020.10.005
H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang et al., Bioinspired hydroxyapatite/poly (methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28(1), 50–56 (2016). https://doi.org/10.1002/adma.201504313
S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33(44), 2101589 (2021). https://doi.org/10.1002/adma.202101589
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
N. Kazem, T. Hellebrekers, C. Majidi, Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29(27), 1605985 (2017). https://doi.org/10.1002/adma.201605985
S.A. Chechetka, Y. Yu, X. Zhen, M. Pramanik, K. Pu et al., Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 8, 15432 (2017). https://doi.org/10.1038/ncomms15432
D. Wu, D. Liu, X. Tian, C. Lei, X. Chen et al., A universal mechanochemistry allows on-demand synthesis of stable and processable liquid metal composites. Small Methods 6(7), 2200246 (2022). https://doi.org/10.1002/smtd.202200246
J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu et al., Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 9(36), 30909–30917 (2017). https://doi.org/10.1021/acsami.7b08061
Z. Su, H. Wang, J. He, Y. Guo, Q. Qu et al., Fabrication of thermal conductivity enhanced polymer composites by constructing an oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes. ACS Appl. Mater. Interfaces 10(42), 36342–36351 (2018). https://doi.org/10.1021/acsami.8b09703
Y. Yao, X. Zhu, X. Zeng, R. Sun, J.B. Xu et al., Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces 10(11), 9669–9678 (2018). https://doi.org/10.1021/acsami.8b00328
X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
C. Xiao, Y. Guo, Y. Tang, J. Ding, X. Zhang et al., Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/boron nitride nanosheets. Compos. B Eng. 187, 107855 (2020). https://doi.org/10.1016/j.compositesb.2020.107855
C. Lei, K. Wu, L. Wu, W. Liu, R. Du et al., Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/BNNSs skeleton. J. Mater. Chem. A 7(33), 19364–19373 (2019). https://doi.org/10.1039/C9TA05067A
X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun et al., Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11(46), 6205–6213 (2015). https://doi.org/10.1002/smll.201502173
K. Wu, J. Fang, J. Ma, R. Huang, S. Chai et al., Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber. ACS Appl. Mater. Interfaces 9(35), 30035–30045 (2017). https://doi.org/10.1021/acsami.7b08214
X. Zhang, J. Zhang, L. Xia, C. Li, J. Wang et al., Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 9(27), 22977–22984 (2017). https://doi.org/10.1021/acsami.7b05866
J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2018). https://doi.org/10.1021/acsnano.8b06290
J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3D interconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2017). https://doi.org/10.1002/adfm.201604754
H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29(37), 1902575 (2019). https://doi.org/10.1002/adfm.201902575
J. Liu, W. Li, Y. Guo, H. Zhang, Z. Zhang, Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. Part A Appl. Sci. Manuf. 120, 140–146 (2019). https://doi.org/10.1016/j.compositesa.2019.02.026
H. Wang, D. Ding, Q. Liu, Y. Chen, Q. Zhang, Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. B Eng. 158, 311–318 (2019). https://doi.org/10.1016/j.compositesb.2018.09.104
B.H. Xie, X. Huang, G.J. Zhang, High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 85, 98–103 (2013). https://doi.org/10.1016/j.compscitech.2013.06.010
J. Zhang, X. Wang, C. Yu, Q. Li, Z. Li et al., A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity. Compos. Sci. Technol. 149, 41–47 (2017). https://doi.org/10.1016/j.compscitech.2017.06.008
J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu et al., Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem. Eng. J. 315, 481–490 (2017). https://doi.org/10.1016/j.cej.2017.01.045
J. Yang, L.S. Tang, L. Bai, R.Y. Bao, Z. Liu et al., Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustain. Chem. Eng. 6(5), 6761–6770 (2018). https://doi.org/10.1021/acssuschemeng.8b00565
L.S. Tang, Y.C. Zhou, L. Zhou, J. Yang, L. Bai et al., Double-layered and shape-stabilized phase change materials with enhanced thermal conduction and reversible thermochromism for solar thermoelectric power generation. Chem. Eng. J. 430, 132773 (2022). https://doi.org/10.1016/j.cej.2021.132773
Z. Qian, H. Shen, X. Fang, L. Fan, N. Zhao et al., Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability. Energy Build. 158, 1184–1188 (2018). https://doi.org/10.1016/j.enbuild.2017.11.033
D. Su, Y. Jia, G. Alva, F. Tang, G. Fang, Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage. Energy Build. 131, 35–41 (2016). https://doi.org/10.1016/j.enbuild.2016.09.022
X. Fang, L.W. Fan, Q. Ding, X.L. Yao, Y.Y. Wu et al., Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers. Manage. 80, 103–109 (2014). https://doi.org/10.1016/j.enconman.2014.01.016
D.G. Atinafu, W. Dong, J. Wang, X. Huang, J. Wang et al., Synthesis and characterization of paraffin/metal organic gel derived porous carbon/boron nitride composite phase change materials for thermal energy storage. Eur. J. Inorg. Chem. 2018(48), 5167–5175 (2018). https://doi.org/10.1002/ejic.201800811
F. Xue, X.Z. Jin, X. Xie, X.D. Qi, J.H. Yang et al., Constructing reduced graphene oxide/boron nitride frameworks in melamine foam towards synthesizing phase change materials applied in thermal management of microelectronic devices. Nanoscale 11(40), 18691–18701 (2019). https://doi.org/10.1039/C9NR07273J
J. Yang, P. Yu, L.S. Tang, R.Y. Bao, Z.Y. Liu et al., Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45), 17704–17709 (2017). https://doi.org/10.1039/C7NR05449A
Z. Yang, L. Zhou, W. Luo, J. Wan, J. Dai et al., Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale 8(46), 19326–19333 (2016). https://doi.org/10.1039/C6NR07357C
M. Fashandi, S.N. Leung, Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage. Sol. Energy Mater Sol. Cells 178, 259–265 (2018). https://doi.org/10.1016/j.solmat.2018.01.037
J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun et al., Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 9(15), 13544–13553 (2017). https://doi.org/10.1021/acsami.7b02410
Y. Yao, J. Sun, X. Zeng, R. Sun, J.B. Xu et al., Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13), 1704044 (2018). https://doi.org/10.1002/smll.201704044