“Toolbox” for the Processing of Functional Polymer Composites
Corresponding Author: Hua Deng
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 35
Abstract
Functional polymer composites (FPCs) have attracted increasing attention in recent decades due to their great potential in delivering a wide range of functionalities. These functionalities are largely determined by functional fillers and their network morphology in polymer matrix. In recent years, a large number of studies on morphology control and interfacial modification have been reported, where numerous preparation methods and exciting performance of FPCs have been reported. Despite the fact that these FPCs have many similarities because they are all consisting of functional inorganic fillers and polymer matrices, review on the overall progress of FPCs is still missing, and especially the overall processing strategy for these composites is urgently needed. Herein, a “Toolbox” for the processing of FPCs is proposed to summarize and analyze the overall processing strategies and corresponding morphology evolution for FPCs. From this perspective, the morphological control methods already utilized for various FPCs are systematically reviewed, so that guidelines or even predictions on the processing strategies of various FPCs as well as multi-functional polymer composites could be given. This review should be able to provide interesting insights for the field of FPCs and boost future intelligent design of various FPCs.
Highlights:
1 The processing methods of functional polymer composites (FPCs) are systematically summarized in “Toolbox”.
2 The relationship of processing method-structure-property is discussed and the selection and combination of tools in processing among different FPCs are analyzed.
3 A promising prospect is provided regarding the design principle for high performance FPCs for further investigation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Deng, T. Skipa, E. Bilotti, R. Zhang, D. Lellinger et al., Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv. Funct. Mater. 20(9), 1424–1432 (2010). https://doi.org/10.1002/adfm.200902207
- J. Li, B. Wang, Z. Ge, R. Cheng, L. Kang et al., Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper-based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability. ACS Appl. Mater. Interfaces 11(42), 39088–39099 (2019). https://doi.org/10.1021/acsami.9b13675
- T.Q. Trung, N.E. Lee, Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29(3), 1603167 (2017). https://doi.org/10.1002/adma.201603167
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- S.A. Moshizi, S. Azadi, A. Belford, A. Razmjou, S. Wu et al., Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett. 12, 109 (2020). https://doi.org/10.1007/s40820-020-00446-w
- J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
- F. Xiao, S. Naficy, G. Casillas, M.H. Khan, T. Katkus et al., Edge-hydroxylated boron nitride nanosheets as an effective additive to improve the thermal response of hydrogels. Adv. Mater. 27(44), 7196–7203 (2015). https://doi.org/10.1002/adma.201502803
- X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
- T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu et al., Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 28(22), 1800480 (2018). https://doi.org/10.1002/adfm.201800480
- Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin et al., Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 9(23), 20124–20131 (2017). https://doi.org/10.1021/acsami.7b05357
- Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017). https://doi.org/10.1016/j.carbon.2017.07.079
- K. Zhang, Z. Ma, H. Deng, Q. Fu, Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00329-7
- X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- G. Zhao, X. Cao, Q. Zhang, H. Deng, Q. Fu, A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. Mater. Today Phys. 21, 100438 (2021). https://doi.org/10.1016/j.mtphys.2021.100483
- H. Cai, B. Cheng, H. Xiao, Q. Wei, Synthesis of rGO/p-Fe3O4@PANi three-phase nanomaterials and electromagnetic wave absorption properties. Mater. Res. Express 6(12), 125621 (2019). https://doi.org/10.1088/2053-1591/ab5727
- J.H. Pu, X.J. Zha, M. Zhao, S. Li, R.Y. Bao et al., 2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale 10(5), 2191–2198 (2018). https://doi.org/10.1039/c7nr08077h
- T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
- S. Luo, Y. Shen, S. Yu, Y. Wan, W.H. Liao et al., Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 10(1), 137–144 (2017). https://doi.org/10.1039/c6ee03190k
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma et al., Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6(12), 3004–3015 (2018). https://doi.org/10.1039/c8tc00452h
- V. Guerra, C.Y. Wan, T. McNally, Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
- H. Deng, L. Lin, M.Z. Ji, S.M. Zhang, M.B. Yang et al., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39(4), 627–655 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- H. Deng, Q. Fu, Recent progress on the confinement, assembly, and relaxation of inorganic functional fillers in polymer matrix during processing. Macromol. Rapid Commun. 38(23), 1700444 (2017). https://doi.org/10.1002/marc.201700444
- H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu et al., Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6(45), 12121–12141 (2018). https://doi.org/10.1039/c8tc04079f
- X. Huang, P. Jiang, T. Tanaka, A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27(4), 8–16 (2011). https://doi.org/10.1109/mei.2011.5954064
- N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
- T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak et al., Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236–269 (2016). https://doi.org/10.1016/j.pmatsci.2016.05.001
- G. Chen, W. Xu, D. Zhu, Recent advances in organic polymer thermoelectric composites. J. Mater. Chem. C 5(18), 4350–4360 (2017). https://doi.org/10.1039/c6tc05488a
- H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2(2), 190–212 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005
- P. Kumar, U.N. Maiti, A. Sikdar, T.K. Das, A. Kumar et al., Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym. Rev. 59(4), 687–738 (2019). https://doi.org/10.1080/15583724.2019.1625058
- K. Ruan, X. Zhong, X. Shi, J. Dang, J. Gu, Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater. Today Phys. 20, 100456 (2021). https://doi.org/10.1016/j.mtphys.2021.100456
- L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 8, 74–82 (2018). https://doi.org/10.1016/j.coco.2017.11.004
- K. Ke, Y. Wang, K. Zhang, Y. Luo, W. Yang et al., Melt viscoelasticity, electrical conductivity, and crystallization of PVDF/MWCNT composites: effect of the dispersion of MWCNTs. J. Appl. Polym. Sci. 125, 49–57 (2012). https://doi.org/10.1002/app.36293
- G. Chen, Y. Ma, Z. Qi, Preparation and morphological study of an exfoliated polystyrene/montmorillonite nanocomposite. Scr. Mater. 44(1), 125–128 (2001). https://doi.org/10.1016/S1359-6462(00)00563-7
- K. Xu, G. Chen, D. Qiu, Convenient construction of poly(3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J. Mater. Chem. A 1(40), 12395–12399 (2013). https://doi.org/10.1039/c3ta12691a
- X. Hu, G. Chen, X. Wang, An unusual coral-like morphology for composites of poly(3,4-ethylenedioxythiophene)/carbon nanotube and the enhanced thermoelectric performance. Compos. Sci. Technol. 144, 43–50 (2017). https://doi.org/10.1016/j.compscitech.2017.03.018
- Z. Zhang, G. Chen, H. Wang, W. Zhai, Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires. J. Mater. Chem. C 3(8), 1649–1654 (2015). https://doi.org/10.1039/c4tc02471k
- M. Terrones, O. Martin, M. Gonzalez, J. Pozuelo, B. Serrano et al., Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv. Mater. 23(44), 5302–5310 (2011). https://doi.org/10.1002/adma.201102036
- W. Deng, L. Deng, Z. Li, Y. Zhang, G. Chen, Synergistically boosting thermoelectric performance of PEDOT: PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl. Mater. Interfaces 13(10), 12131–12140 (2021). https://doi.org/10.1021/acsami.1c01059
- L. Liang, G. Chen, C. Guo, Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites. Compos. Sci. Technol. 129, 130–136 (2016). https://doi.org/10.1016/j.compscitech.2016.04.023
- M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
- K. Takei, Z. Yu, M. Zheng, H. Ota, T. Takahashi et al., Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. PNAS 111(5), 1703–1707 (2014). https://doi.org/10.1073/pnas.1317920111
- S. Wang, X. Zhang, X. Wu, C. Lu, Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12(3), 845–852 (2016). https://doi.org/10.1039/c5sm01958c
- M. Wang, K. Zhang, X.X. Dai, Y. Li, J. Guo et al., Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale 9(31), 11017–11026 (2017). https://doi.org/10.1039/c7nr02322g
- S. Liu, V.S. Chevali, Z. Xu, D. Hui, H. Wang, A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 136, 197–214 (2018). https://doi.org/10.1016/j.compositesb.2017.08.020
- Z. Ahmadi, Nanostructured epoxy adhesives: a review. Prog. Org. Coat. 135, 449–453 (2019). https://doi.org/10.1016/j.porgcoat.2019.06.028
- Y. Yang, Z. Li, W. Ji, C. Sun, H. Deng et al., Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. Compos. Part A Appl. Sci. Manuf. 104, 24–31 (2018). https://doi.org/10.1016/j.compositesa.2017.10.024
- H. Im, J. Kim, Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50(15), 5429–5440 (2012). https://doi.org/10.1016/j.carbon.2012.07.029
- D. Xiang, L. Wang, Y. Tang, C. Zhao, E. Harkinjones et al., Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 67(2), 227–235 (2018). https://doi.org/10.1002/pi.5502
- G. Yang, J. Tang, Q. Fu, A facile melt coating approach to fabricate macroscopic segregated polymer/carbon nanotube conductive composites with balanced properties. Polym. Compos. 39(3), 841–847 (2018). https://doi.org/10.1002/pc.24006
- O. Maruzhenko, Y. Mamunya, G. Boiteux, S. Pusz, U. Szeluga et al., Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers. Int. J. Heat Mass Transf. 138, 75–84 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.043
- S. Yang, W. Li, S. Bai, Q. Wang, High-performance thermal and electrical conductive composites from multilayer plastic packaging waste and expanded graphite. J. Mater. Chem. C 6(41), 11209–11218 (2018). https://doi.org/10.1039/c8tc02840k
- S. Wang, Y. Zhou, Y. Liu, L. Wang, C. Gao, Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride. J. Mater. Chem. C 8(2), 528–535 (2020). https://doi.org/10.1039/c9tc06300e
- L. Duan, D.R. Dhooge, M. Spoerk, P. Cornillie, L. Cardon, Facile and low-cost route for sensitive stretchable sensors by controlling kinetic and thermodynamic conductive network regulating strategies. ACS Appl. Mater. Interfaces 10(26), 22678–22691 (2018). https://doi.org/10.1021/acsami.8b03967
- R. Dou, Y. Shao, S. Li, B. Yin, M. Yang, Structuring tri-continuous structure multiphase composites with ultralow conductive percolation threshold and excellent electromagnetic shielding effectiveness using simple melt mixing. Polymer 83, 34–39 (2016). https://doi.org/10.1016/j.polymer.2015.12.005
- L. Li, S. Li, Y. Shao, R. Dou, B. Yin et al., PVDF/PS/HDPE/MWCNTs/Fe3O4 nanocomposites: effective and lightweight electromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles. Curr. Appl. Phys. 18(4), 388–396 (2018). https://doi.org/10.1016/j.cap.2018.01.014
- S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry et al., Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl. Mater. Interfaces 6(5), 3477–3482 (2014). https://doi.org/10.1021/am4056276
- Z. Weng, R. Guan, F. Zou, P. Zhou, Y. Liao et al., A highly sensitive polydopamine@hybrid carbon nanofillers based nanocomposite sensor for acquiring high-frequency ultrasonic waves. Carbon 170, 403–413 (2020). https://doi.org/10.1016/j.carbon.2020.08.030
- X. Zhang, C. Tan, Y. Ma, F. Wang, W. Yang, BaTiO3 @carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity. Compos. Sci. Technol. 162, 180–187 (2018). https://doi.org/10.1016/j.compscitech.2018.05.001
- X. Huang, P. Jiang, Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27(3), 546–554 (2015). https://doi.org/10.1002/adma.201401310
- C.J. Galvin, J. Genzer, Applications of surface-grafted macromolecules derived from post-polymerization modification reactions. Prog. Polym. Sci. 37(7), 871–906 (2012). https://doi.org/10.1016/j.progpolymsci.2011.12.001
- M.P. Wolf, G.B. Salieb-Beugelaar, P. Hunziker, PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.001
- M. Antunes, J.I. Velasco, Multifunctional polymer foams with carbon nanoparticles. Prog. Polym. Sci. 39(3), 486–509 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.002
- D. Raps, N. Hossieny, C.B. Park, V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology. Polymer 56, 5–19 (2015). https://doi.org/10.1016/j.polymer.2014.10.078
- G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
- N. Petchwattana, S. Covavisaruch, Influences of particle sizes and contents of chemical blowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) and rice hull. Mater. Design. 32(5), 2844–2850 (2011). https://doi.org/10.1016/j.matdes.2010.12.044
- H. Zhang, G. Zhang, M. Tang, L. Zhou, J. Li et al., Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 353, 381–393 (2018). https://doi.org/10.1016/j.cej.2018.07.144
- J. Ma, M. Zhan, K. Wang, Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 7, 563–576 (2015). https://doi.org/10.1021/am5067095
- J. Li, G. Zhang, Z. Ma, X. Fan, X. Fan et al., Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 129, 70–78 (2016). https://doi.org/10.1016/j.compscitech.2016.04.003
- S. Xu, X. Li, G. Sui, R. Du, Q. Zhang et al., Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability. Chem. Eng. J. 381, 122666 (2020). https://doi.org/10.1016/j.cej.2019.122666
- Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang et al., Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172
- Y.C. Zhang, H. Pang, K. Dai, Y.F. Huang, P.G. Ren et al., Conductive network formation during annealing of an oriented polyethylene-based composite. J. Mater. Sci. 47(8), 3713–3719 (2011). https://doi.org/10.1007/s10853-011-6220-2
- Y. Xue, Z. Zhang, Y. Zhang, X. Wang, L. Li et al., Boosting thermoelectric performance by in situ growth of metal organic framework on carbon nanotube and subsequent annealing. Carbon 157, 324–329 (2020). https://doi.org/10.1016/j.carbon.2019.10.049
- W. Gao, Y. Zheng, J. Shen, S. Guo, Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles. ACS Appl. Mater. Interfaces 7(3), 1541–1549 (2015). https://doi.org/10.1021/am506773c
- Z. Li, A. Olah, E. Baer, Micro- and nano-layered processing of new polymeric systems. Prog. Polym. Sci. 102, 101210 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101210
- X. Zhang, Y. Xu, X. Zhang, H. Wu, J. Shen et al., Progress on the layer-by-layer assembly of multilayered polymer composites: strategy, structural control and applications. Prog. Polym. Sci. 89, 76–107 (2019). https://doi.org/10.1016/j.progpolymsci.2018.10.002
- F. Yu, H. Deng, Q. Zhang, K. Wang, C. Zhang et al., Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer 54(23), 6425–6436 (2013). https://doi.org/10.1016/j.polymer.2013.09.047
- F. Wang, L. Liu, P. Xue, M. Jia, S. Wang et al., The influence of formation temperatures on the crystal structure and mechanical properties of ultrahigh-molecular-weight polyethylene/high-density polyethylene-blend fibers prepared by melt spinning. J. Ind. Text. 49(8), 1011–1035 (2019). https://doi.org/10.1177/1528083719827371
- J.Y. Kim, J.H. Mo, Y.H. Kang, S.Y. Cho, K.S. Jang, Thermoelectric fibers from well-dispersed carbon nanotube/poly(vinyliedene fluoride) pastes for fiber-based thermoelectric generators. Nanoscale 10(42), 19766–19773 (2018). https://doi.org/10.1039/c8nr06415f
- Y. Huang, J. Song, C. Yang, Y. Long, H. Wu, Scalable manufacturing and applications of nanofibers. Mater. Today 28, 98–113 (2019). https://doi.org/10.1016/j.mattod.2019.04.018
- R. Pantani, I. Coccorullo, V. Speranza, G. Titomanlio, Modeling of morphology evolution in the injection molding process of thermoplastic polymers. Prog. Polym. Sci. 30(12), 1185–1222 (2005). https://doi.org/10.1016/j.progpolymsci.2005.09.001
- M.R. Khosravani, S. Nasiri, Injection molding manufacturing process: review of case-based reasoning applications. J. Intell. Manuf. 31(4), 847–864 (2019). https://doi.org/10.1007/s10845-019-01481-0
- H. Yui, G. Wu, H. Sano, M. Sumita, K. Kino, Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47(10), 3599–3608 (2006). https://doi.org/10.1016/j.polymer.2006.03.064
- M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
- K. Maghsoudi, R. Jafari, G. Momen, M. Farzaneh, Micro-nanostructured polymer surfaces using injection molding: a review. Mater. Today Commun. 13, 126–143 (2017). https://doi.org/10.1016/j.mtcomm.2017.09.013
- S. Xu, D. Liu, Q. Zhang, Q. Fu, Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix. Compos. Sci. Technol. 156, 117–126 (2018). https://doi.org/10.1016/j.compscitech.2017.12.017
- Y. Chen, M. He, J. Tang, G.C. Bazan, Z. Liang, Flexible thermoelectric generators with ultrahigh output power enabled by magnetic field-aligned metallic nanowires. Adv. Electron. Mater. 4(9), 1800200 (2018). https://doi.org/10.1002/aelm.201800200
- K. Kim, H. Ju, J. Kim, Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement. Compos. Sci. Technol. 123, 99–105 (2016). https://doi.org/10.1016/j.compscitech.2015.12.004
- C.T. Hong, Y.H. Kang, J. Ryu, S.Y. Cho, K.S. Jang, Spray-printed CNT/P3HT organic thermoelectric films and power generators. J. Mater. Chem. A 3(43), 21428–21433 (2015). https://doi.org/10.1039/c5ta06096f
- H. Shen, J. Guo, H. Wang, N. Zhao, J. Xu, Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces 7(10), 5701–5708 (2015). https://doi.org/10.1021/am507416y
- X. Liang, T. Zhao, P. Zhu, Y. Hu, R. Sun et al., Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films. ACS Appl. Mater. Interfaces 9(46), 40857–40867 (2017). https://doi.org/10.1021/acsami.7b13048
- M. Kim, T.W. Lee, S.M. Park, Y.G. Jeong, Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers. Compos. Part A Appl. Sci. Manuf. 123, 123–131 (2019). https://doi.org/10.1016/j.compositesa.2019.05.011
- Q. Zheng, Z. Li, J. Yang, J.K. Kim, Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 64, 200–247 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.004
- H. Xu, M. Qu, D.W. Schubert, Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181, 107690 (2019). https://doi.org/10.1016/j.compscitech.2019.107690
- S. Wang, P. Xiao, Y. Liang, J. Zhang, Y. Huang et al., Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. J. Mater. Chem. C 6(19), 5140–5147 (2018). https://doi.org/10.1039/c8tc00433a
- Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng et al., Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25(7), 1058–1064 (2013). https://doi.org/10.1002/adma.201204003
- J. Ge, L. Sun, F.R. Zhang, Y. Zhang, L.A. Shi et al., A stretchable electronic fabric artificial skin with pressure, lateral strain and flexion-sensitive properties. Adv. Mater. 28(4), 722–728 (2016). https://doi.org/10.1002/adma.201504239
- M. Zu, Q. Li, G. Wang, J.H. Byun, T.W. Chou, Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 23(7), 789–793 (2013). https://doi.org/10.1002/adfm.201202174
- Y. Yu, S. Luo, L. Sun, Y. Wu, K. Jiang et al., Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 7(22), 10178–10185 (2015). https://doi.org/10.1039/c5nr01383f
- A. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, K.E. Goodson, Thermal conduction in aligned carbon nanotube polymer nanocomposites with high packing density. ACS Nano 5(6), 4818–4852 (2011). https://doi.org/10.1021/nn200847u
- Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
- Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song et al., Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 169, 70–75 (2019). https://doi.org/10.1016/j.compscitech.2018.11.012
- J.K.Y. Lee, N. Chen, S. Peng, L. Li, L. Tian et al., Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86, 40–84 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.002
- H. Chen, N. Wang, J. Di, Y. Zhao, Y. Song et al., Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26(13), 11291–11296 (2010). https://doi.org/10.1021/la100611f
- Y. Jin, D. Yang, D. Kang, X. Jiang, Fabrication of necklace-like structures via electrospinning. Langmuir 26(2), 1186–1190 (2010). https://doi.org/10.1021/la902313t
- P. Lu, Y. Xia, Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir 29(23), 7070–7078 (2013). https://doi.org/10.1021/la400747y
- Z. He, Q. Liu, H. Hou, F. Gao, B. Tang et al., Tailored electrospinning of WO3 nanobelts as efficient ultraviolet photodetectors with photo-dark current ratios up to 1000. ACS Appl. Mater. Interfaces 7(20), 10878–10885 (2015). https://doi.org/10.1021/acsami.5b02020
- Y. Gao, F. Guo, P. Cao, J. Liu, D. Li et al., Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano 14(3), 3442–3450 (2020). https://doi.org/10.1021/acsnano.9b09533
- Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan et al., Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B Eng. 164, 732–739 (2019). https://doi.org/10.1016/j.compositesb.2019.01.099
- I.W. Nam, H.K. Lee, J.H. Jang, Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Compos. Part A Appl. Sci. Manuf. 42(9), 1110–1118 (2011). https://doi.org/10.1016/j.compositesa.2011.04.016
- R. Ravindren, S. Mondal, K. Nath, N.C. Das, Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos. Part A Appl. Sci. Manuf. 118, 75–89 (2019). https://doi.org/10.1016/j.compositesa.2018.12.012
- S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex composites. Science 311(5760), 515–518 (2006). https://doi.org/10.1126/science.1120937
- J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- C. Wang, Z.Z. Pan, W. Lv, B. Liu, J. Wei et al., A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 15(14), 1805363 (2019). https://doi.org/10.1002/smll.201805363
- J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
- R.K. Iler, Multilayers of colloidal particles. J. Colloid Interface Sci. 21(6), 569–594 (1966). https://doi.org/10.1016/0095-8522(66)90018-3
- X. Wang, P. Wu, Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem. Eng. J. 348, 723–731 (2018). https://doi.org/10.1016/j.cej.2018.04.196
- J. Heo, D. Choi, J. Hong, Layer-by-layer self-assembled ferrite multilayer nanofilms for microwave absorption. J. Nanomater. 2015, 1–8 (2015). https://doi.org/10.1155/2015/164619
- M. Culebras, C. Cho, M. Krecker, R. Smith, Y. Song et al., High thermoelectric power factor organic thin films through combination of nanotube multilayer assembly and electrochemical polymerization. ACS Appl. Mater. Interfaces 9(7), 6306–6313 (2017). https://doi.org/10.1021/acsami.6b15327
- Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong et al., Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11(28), 25465–25473 (2019). https://doi.org/10.1021/acsami.9b10161
- T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
- X. Yang, Y. Guo, Y. Han, Y. Li, T. Ma et al., Significant improvement of thermal conductivities for BNNs/PVA composite films via electrospinning followed by hot-pressing technology. Compos. Part B Eng. 175, 107070 (2019). https://doi.org/10.1016/j.compositesb.2019.107070
- G. Chen, S. Liu, S. Zhang, Z. Qi, Self-assembly in a polystyrene/montmorillonite nanocomposite. Macromol. Rapid Commun. 21(11), 746–749 (2000). https://doi.org/10.1002/1521-3927(20000701)21:11%3c746::AID-MARC746%3e3.0.CO;2-K
- G. Chen, D. Shen, M. Feng, M. Yang, An attenuated total reflection FT-IR spectroscopic study of polyamide 6/clay nanocomposite fibers. Macromol. Rapid Commun. 25, 1121–1124 (2004). https://doi.org/10.1002/marc.200400079
- C. Yuan, J. Wang, G. Chen, J. Zhang, J. Yang, Orientation studies of uniaxial drawn syndiotactic polystyrene/carbon nanotube nanocomposite films. Soft Matter 7, 4039–4044 (2011). https://doi.org/10.1039/c0sm01475c
- Y. Zhang, L. Deng, H. Lv, G. Chen, Toward improved trade-off between thermoelectric and mechanical performances in polycarbonate/single-walled carbon nanotube composite films. npj Flex. Electron. 4, 26 (2020). https://doi.org/10.1038/s41528-020-00089-2
- M. Falahati, P. Ahmadvand, S. Safaee, Y.C. Chang, Z. Lyu et al., Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today 40, 215–245 (2020). https://doi.org/10.1016/j.mattod.2020.06.001
- X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 110, 442–458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034
- A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan et al., Binder jet 3D printing—process parameters, materials, properties, and challenges. Prog. Mater. Sci. 119, 100707 (2021). https://doi.org/10.1016/j.pmatsci.2020.100684
- A.L. Pires, I.F. Cruz, J. Silva, G.N.P. Oliveira, S. Ferreira-Teixeira et al., Printed flexible μ-thermoelectric device based on hybrid Bi2Te3/PVA composites. ACS Appl. Mater. Interfaces 11(9), 8969–8981 (2019). https://doi.org/10.1021/acsami.8b18081
- M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
- C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- B.F. Gonçalves, J. Oliveira, P. Costa, V. Correia, P. Martins et al., Development of water-based printable piezoresistive sensors for large strain applications. Compos. Part B Eng. 112, 344–352 (2017). https://doi.org/10.1016/j.compositesb.2016.12.047
- D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du et al., Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016). https://doi.org/10.1016/j.synthmet.2016.03.014
- T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012
- X. Yang, Y. Guo, X. Luo, N. Zheng, T. Ma et al., Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 164, 59–64 (2018). https://doi.org/10.1016/j.compscitech.2018.05.038
- Z.A. Ghaleb, M. Mariatti, Z.M. Ariff, Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J. Reinf. Plast. Comp. 36(9), 685–695 (2017). https://doi.org/10.1177/0731684417692055
- Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai et al., The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002
- C. Wu, X. Huang, X. Wu, L. Xie, K. Yang et al., Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5(9), 3847–3855 (2013). https://doi.org/10.1039/c3nr00625e
- Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductor Zn-ZnO core−shell structure. ACS Appl. Mater. Interfaces 4, 65–68 (2012). https://doi.org/10.1021/am2016156
- C. Ou, A.L. Sangle, A. Datta, Q. Jing, T. Busolo et al., Fully printed organic–inorganic nanocomposites for flexible thermoelectric applications. ACS Appl. Mater. Interfaces 10(23), 19580–19587 (2018). https://doi.org/10.1021/acsami.8b01456
- R. Zhang, A. Lv, C. Ying, Z. Hu, H. Hu et al., Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Compos. Sci. Technol. 186, 107933 (2020). https://doi.org/10.1016/j.compscitech.2019.107933
- D. An, S. Cheng, S. Xi, Z. Zhang, X. Duan et al., Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem. Eng. J. 383, 123151 (2020). https://doi.org/10.1016/j.cej.2019.123151
- J. Peng, I. Witting, N. Geisendorfer, M. Wang, M. Chang et al., 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 10(1), 5590 (2019). https://doi.org/10.1038/s41467-019-13461-2
- B. Dorling, J.D. Ryan, J.D. Craddock, A. Sorrentino, A.E. Basaty et al., Photoinduced p- to n-type switching in thermoelectric polymer-carbon nanotube composites. Adv. Mater. 28(14), 2782–2789 (2016). https://doi.org/10.1002/adma.201505521
- L. Cai, J. Li, P. Luan, H. Dong, D. Zhao et al., Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture. Adv. Funct. Mater. 22(24), 5238–5244 (2012). https://doi.org/10.1002/adfm.201201013
- Q. Liu, J. Chen, Y. Li, G. Shi, High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016). https://doi.org/10.1021/acsnano.6b03813
- A.M. Xie, K. Zhang, M.X. Sun, Y.L. Xia, F. Wu, Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater. Design 154, 192–202 (2018). https://doi.org/10.1016/j.matdes.2018.05.039
- G.J. Li, K. Dai, M.N. Ren, Y. Wang, G.Q. Zheng et al., Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors. J. Mater. Chem. C 6(24), 6575–6583 (2018). https://doi.org/10.1039/c8tc01924j
- L.J. Lu, Y.J. Zhou, J. Pan, T.Q. Chen, Y.J. Hu et al., Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability. ACS Appl. Mater. Interfaces 11(4), 4345–4352 (2019). https://doi.org/10.1021/acsami.8b17666
- B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- J.T. Muth, D.M. Vogt, R.L. Truby, Y. Menguc, D.B. Kolesky et al., Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26(36), 6307–6312 (2014). https://doi.org/10.1002/adma.201400334
- J. Han, H. Wang, Y. Yue, C. Mei, J. Chen et al., A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon 149, 1–18 (2019). https://doi.org/10.1016/j.carbon.2019.04.029
- J. Liu, J. Sun, L. Gao, Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties. Nanoscale 3(9), 3616–3619 (2011). https://doi.org/10.1039/c1nr10386e
- P.B. Liu, Y. Huang, X. Sun, Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 5(23), 12355–12360 (2013). https://doi.org/10.1021/am404561c
- B. Zhang, S. Lin, J. Zhang, X. Li, X. Sun, Facile synthesis of sandwich-like rGO/CuS/polypyrrole nanoarchitectures for efficient electromagnetic absorption. Materials 13(2), 446 (2020). https://doi.org/10.3390/ma13020446
- S. Dong, X. Zhang, W. Zhang, J. Han, P. Hu, A multiscale hierarchical architecture of a SiC whiskers–graphite nanosheets/polypyrrole ternary composite for enhanced electromagnetic wave absorption. J. Mater. Chem. C 6(40), 10804–10814 (2018). https://doi.org/10.1039/c8tc03683g
- Y.N. Koh, N. Mokhtar, S.W. Phang, Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes. Polym. Compos. 39(4), 1283–1291 (2018). https://doi.org/10.1002/pc.24064
- Q. Xu, S. Qu, C. Ming, P. Qiu, Q. Yao et al., Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energ. Environ. Sci. 13(2), 511–518 (2020). https://doi.org/10.1039/c9ee03776d
- T. Nagai, N. Aoki, Y. Ochiai, K. Hoshino, Electric conductivity-tunable transparent flexible nanowire-filled polymer composites: orientation control of nanowires in a magnetic field. ACS Appl. Mater. Interfaces 3(7), 2341–2348 (2011). https://doi.org/10.1021/am200260v
- O.M. Kwon, H. Watanabe, K.H. Ahn, S.J. Lee, Growths of mechanical elasticity and electrical conductance of graphene nanoplatelet/poly(lactic acid) composites under strong electric field: correlation with time evolution of higher order structure of graphene nanoplatelets. Rheol. Acta 56(11), 871–885 (2017). https://doi.org/10.1007/s00397-017-1042-z
- X. Huang, K. Wang, K. Jia, X. Liu, Polymer-based composites with improved energy density and dielectric constants by monoaxial hot-stretching for organic film capacitor applications. RSC Adv. 5(64), 51975–51982 (2015). https://doi.org/10.1039/c5ra05029d
- J.R. Bautista-Quijano, P. Pötschke, H. Brünig, G. Heinrich, Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning. Polymer 82, 181–189 (2016). https://doi.org/10.1016/j.polymer.2015.11.030
- G. Wang, G. Zhao, S. Wang, L. Zhang, C.B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 6(25), 6847–6859 (2018). https://doi.org/10.1039/c8tc01326h
- L. Yang, W. Weng, X. Fei, L. Pan, X. Li et al., Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chem. Eng. J. 383, 123126 (2020). https://doi.org/10.1016/j.cej.2019.123126
- Y. Guo, L. Pan, X. Yang, K. Ruan, Y. Han et al., Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos. Part A Appl. Sci. Manuf. 124, 105484 (2019). https://doi.org/10.1016/j.compositesa.2019.105484
- X. Hou, Y. Chen, W. Dai, Z. Wang, H. Li et al., Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chem. Eng. J. 375, 121921 (2019). https://doi.org/10.1016/j.cej.2019.121921
- H. Liu, M. Dong, W. Huang, J. Gao, K. Dai et al., Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem C 5(1), 73–83 (2017). https://doi.org/10.1039/c6tc03713e
- H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
- B. Zhao, J. Deng, C. Zhao, C. Wang, Y.G. Chen et al., Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J. Mater. Chem. C 8(1), 58–70 (2020). https://doi.org/10.1039/c9tc04575a
- L. Wang, J. Zhang, Y. Guo, X. Chen, X. Jin et al., Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon 148, 290–296 (2019). https://doi.org/10.1016/j.carbon.2019.03.088
- Q. Wang, Q. Yao, J. Chang, L. Chen, Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 22(34), 17612–17618 (2012). https://doi.org/10.1039/c2jm32750c
- L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang et al., PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3(13), 7086–7092 (2015). https://doi.org/10.1039/c4ta06422d
- G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang et al., Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 10(1), 1195–1203 (2018). https://doi.org/10.1021/acsami.7b14111
- C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma et al., Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11(46), 22590–22598 (2019). https://doi.org/10.1039/c9nr06022g
- B. Zhang, J. Sun, H.E. Katz, F. Fang, R.L. Opila, Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS Appl. Mater. Interfaces 2(11), 3170–3178 (2010). https://doi.org/10.1021/am100654p
- C.P. Feng, S.S. Wan, W.C. Wu, L. Bai, R.Y. Bao et al., Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 167, 456–462 (2018). https://doi.org/10.1016/j.compscitech.2018.08.039
- K. Ke, V.S. Bonab, D. Yuan, I. Manas-Zloczower, Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52–58 (2018). https://doi.org/10.1016/j.carbon.2018.06.037
- K. Ke, P. Potschke, N. Wiegand, B. Krause, B. Voit, Tuning the network structure in poly(vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: toward improvements of conductivity and piezoresistive sensitivity. ACS Appl. Mater. Interfaces 8(22), 14190–14199 (2016). https://doi.org/10.1021/acsami.6b03451
- Y. Lu, Y. Qiu, Q. Jiang, K. Cai, Y. Du et al., Preparation and characterization of Te/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Cu7Te4 ternary composite films for flexible thermoelectric power generator. ACS Appl. Mater. Interfaces 10(49), 42310–42319 (2018). https://doi.org/10.1021/acsami.8b15252
- H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy. Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
- P. Miao, K. Cheng, H. Li, J. Gu, K. Chen et al., Poly(dimethylsilylene) diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption. ACS Appl. Mater. Interfaces 11(19), 17706–17713 (2019). https://doi.org/10.1021/acsami.9b03944
- S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun et al., Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
- P. Bollen, N. Quievy, C. Detrembleur, J.M. Thomassin, L. Monnereau et al., Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb. Mater. Design 89, 323–334 (2016). https://doi.org/10.1016/j.matdes.2015.09.129
- S. Li, A. Huang, Y.J. Chen, D. Li, L.S. Turng, Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Compos. Part B Eng. 153, 277–284 (2018). https://doi.org/10.1016/j.compositesb.2018.07.049
- Y. Huang, L. Gao, Y. Zhao, X. Guo, C. Liu et al., Highly flexible fabric strain sensor based on graphene nanoplatelet-polyaniline nanocomposites for human gesture recognition. J. Appl. Polym. Sci. 134(39), 45340 (2017). https://doi.org/10.1002/app.45340
- T. Zhang, K. Li, C. Li, S. Ma, H.H. Hng et al., Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites. Adv. Electron. Mater. 3(4), 1600554 (2017). https://doi.org/10.1002/aelm.201600554
- Y. Kazemi, A.R. Kakroodi, A. Ameli, T. Filleter, C.B. Park, Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance. J. Mater. Chem. C 6(2), 350–359 (2018). https://doi.org/10.1039/c7tc04501h
- H. Bizhani, V. Nayyeri, A. Katbab, A. Jalali-Arani, H. Nazockdast, Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. Eur. Polym. J. 100, 209–218 (2018). https://doi.org/10.1016/j.eurpolymj.2018.01.016
- W. Liu, Y. Yang, M. Nie, Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite. Compos. Sci. Technol. 154, 45–52 (2018). https://doi.org/10.1016/j.compscitech.2017.11.003
- Y.D. Li, L.J. Zheng, T.H. Zhao, J. Zhu, J.B. Zeng, Localization control of carbon nanotubes in immiscible polylactide/vulcanized epoxidized soybean oil blends. Compos. Commun. 11, 6–11 (2019). https://doi.org/10.1016/j.coco.2018.11.001
- X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando et al., Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater. 23(14), 1824–1831 (2013). https://doi.org/10.1002/adfm.201201824
- K. Wu, P. Liao, R. Du, Q. Zhang, F. Chen et al., Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation. J. Mater. Chem. A 6(25), 11863–11873 (2018). https://doi.org/10.1039/c8ta03642j
- X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
- S. Liu, S. Xue, S. Xiu, B. Shen, J. Zhai, Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016). https://doi.org/10.1038/srep26198
- Z. Sang, K. Ke, I. Manas-Zloczower, Interface design strategy for the fabrication of highly stretchable strain sensors. ACS Appl. Mater. Interfaces 10(42), 36483–36492 (2018). https://doi.org/10.1021/acsami.8b14573
- Y. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11(3), 1011–1020 (2019). https://doi.org/10.1039/c8nr07351a
- Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu et al., Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. A 4(34), 13259–13264 (2016). https://doi.org/10.1039/c6ta05233a
- Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen et al., High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl. Mater. Interfaces 9(4), 4024–4033 (2017). https://doi.org/10.1021/acsami.6b13663
- Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductor Zn-ZnO core-shell structure. ACS Appl. Mater. Interfaces 4(1), 65–68 (2012). https://doi.org/10.1021/am2016156
- Q. Chi, X. Wang, C. Zhang, Q. Chen, M. Chen et al., High energy storage density for poly(vinylidene fluoride) composites by introduced core–shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6(7), 8641–8649 (2018). https://doi.org/10.1021/acssuschemeng.8b00941
- Y. Yang, Z. Chen, X. Song, B. Zhu, T. Hsiai et al., Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22, 414–421 (2016). https://doi.org/10.1016/j.nanoen.2016.02.045
- Y. Li, D. Zhang, S. Wang, Y. Zhan, J. Yin et al., Fe3O4 decorated graphene/poly(vinylidene fluoride) nanocomposites with high dielectric constant and low dielectric loss. Compos. Sci. Technol. 171, 152–161 (2019). https://doi.org/10.1016/j.compscitech.2018.12.022
- L. Lin, L. Wang, B. Li, J. Luo, X. Huang et al., Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385, 123391 (2020). https://doi.org/10.1016/j.cej.2019.123391
- Y.J. Yim, K.Y. Rhee, S.J. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos. Part B Eng. 98, 120–125 (2016). https://doi.org/10.1016/j.compositesb.2016.04.061
- Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong et al., A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 4(26), 6345–6352 (2016). https://doi.org/10.1039/c6tc01925k
- Y. Zhu, H. Yao, P. Jiang, J. Wu, X. Zhu et al., Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. J. Phys. Chem. C 122(32), 18282–18293 (2018). https://doi.org/10.1021/acs.jpcc.8b04918
- S. Zhang, H. Deng, Q. Zhang, Q. Fu, Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl. Mater. Interfaces 6(9), 6835–6844 (2014). https://doi.org/10.1021/am500651v
- H. Zhou, H. Deng, L. Zhang, Q. Fu, Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks. ACS Appl. Mater. Interfaces 9(34), 29071–29081 (2017). https://doi.org/10.1021/acsami.7b07947
- Z. Liu, Z. Qian, J. Song, Y. Zhang, Conducting and stretchable composites using sandwiched graphene-carbon nanotube hybrids and styrene-butadiene rubber. Carbon 149, 181–189 (2019). https://doi.org/10.1016/j.carbon.2019.04.037
References
H. Deng, T. Skipa, E. Bilotti, R. Zhang, D. Lellinger et al., Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv. Funct. Mater. 20(9), 1424–1432 (2010). https://doi.org/10.1002/adfm.200902207
J. Li, B. Wang, Z. Ge, R. Cheng, L. Kang et al., Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper-based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability. ACS Appl. Mater. Interfaces 11(42), 39088–39099 (2019). https://doi.org/10.1021/acsami.9b13675
T.Q. Trung, N.E. Lee, Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29(3), 1603167 (2017). https://doi.org/10.1002/adma.201603167
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
S.A. Moshizi, S. Azadi, A. Belford, A. Razmjou, S. Wu et al., Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett. 12, 109 (2020). https://doi.org/10.1007/s40820-020-00446-w
J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
F. Xiao, S. Naficy, G. Casillas, M.H. Khan, T. Katkus et al., Edge-hydroxylated boron nitride nanosheets as an effective additive to improve the thermal response of hydrogels. Adv. Mater. 27(44), 7196–7203 (2015). https://doi.org/10.1002/adma.201502803
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu et al., Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 28(22), 1800480 (2018). https://doi.org/10.1002/adfm.201800480
Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin et al., Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 9(23), 20124–20131 (2017). https://doi.org/10.1021/acsami.7b05357
Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017). https://doi.org/10.1016/j.carbon.2017.07.079
K. Zhang, Z. Ma, H. Deng, Q. Fu, Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00329-7
X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
G. Zhao, X. Cao, Q. Zhang, H. Deng, Q. Fu, A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. Mater. Today Phys. 21, 100438 (2021). https://doi.org/10.1016/j.mtphys.2021.100483
H. Cai, B. Cheng, H. Xiao, Q. Wei, Synthesis of rGO/p-Fe3O4@PANi three-phase nanomaterials and electromagnetic wave absorption properties. Mater. Res. Express 6(12), 125621 (2019). https://doi.org/10.1088/2053-1591/ab5727
J.H. Pu, X.J. Zha, M. Zhao, S. Li, R.Y. Bao et al., 2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale 10(5), 2191–2198 (2018). https://doi.org/10.1039/c7nr08077h
T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
S. Luo, Y. Shen, S. Yu, Y. Wan, W.H. Liao et al., Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 10(1), 137–144 (2017). https://doi.org/10.1039/c6ee03190k
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma et al., Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6(12), 3004–3015 (2018). https://doi.org/10.1039/c8tc00452h
V. Guerra, C.Y. Wan, T. McNally, Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
H. Deng, L. Lin, M.Z. Ji, S.M. Zhang, M.B. Yang et al., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39(4), 627–655 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
H. Deng, Q. Fu, Recent progress on the confinement, assembly, and relaxation of inorganic functional fillers in polymer matrix during processing. Macromol. Rapid Commun. 38(23), 1700444 (2017). https://doi.org/10.1002/marc.201700444
H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu et al., Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6(45), 12121–12141 (2018). https://doi.org/10.1039/c8tc04079f
X. Huang, P. Jiang, T. Tanaka, A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27(4), 8–16 (2011). https://doi.org/10.1109/mei.2011.5954064
N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak et al., Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236–269 (2016). https://doi.org/10.1016/j.pmatsci.2016.05.001
G. Chen, W. Xu, D. Zhu, Recent advances in organic polymer thermoelectric composites. J. Mater. Chem. C 5(18), 4350–4360 (2017). https://doi.org/10.1039/c6tc05488a
H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2(2), 190–212 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005
P. Kumar, U.N. Maiti, A. Sikdar, T.K. Das, A. Kumar et al., Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym. Rev. 59(4), 687–738 (2019). https://doi.org/10.1080/15583724.2019.1625058
K. Ruan, X. Zhong, X. Shi, J. Dang, J. Gu, Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater. Today Phys. 20, 100456 (2021). https://doi.org/10.1016/j.mtphys.2021.100456
L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 8, 74–82 (2018). https://doi.org/10.1016/j.coco.2017.11.004
K. Ke, Y. Wang, K. Zhang, Y. Luo, W. Yang et al., Melt viscoelasticity, electrical conductivity, and crystallization of PVDF/MWCNT composites: effect of the dispersion of MWCNTs. J. Appl. Polym. Sci. 125, 49–57 (2012). https://doi.org/10.1002/app.36293
G. Chen, Y. Ma, Z. Qi, Preparation and morphological study of an exfoliated polystyrene/montmorillonite nanocomposite. Scr. Mater. 44(1), 125–128 (2001). https://doi.org/10.1016/S1359-6462(00)00563-7
K. Xu, G. Chen, D. Qiu, Convenient construction of poly(3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J. Mater. Chem. A 1(40), 12395–12399 (2013). https://doi.org/10.1039/c3ta12691a
X. Hu, G. Chen, X. Wang, An unusual coral-like morphology for composites of poly(3,4-ethylenedioxythiophene)/carbon nanotube and the enhanced thermoelectric performance. Compos. Sci. Technol. 144, 43–50 (2017). https://doi.org/10.1016/j.compscitech.2017.03.018
Z. Zhang, G. Chen, H. Wang, W. Zhai, Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires. J. Mater. Chem. C 3(8), 1649–1654 (2015). https://doi.org/10.1039/c4tc02471k
M. Terrones, O. Martin, M. Gonzalez, J. Pozuelo, B. Serrano et al., Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv. Mater. 23(44), 5302–5310 (2011). https://doi.org/10.1002/adma.201102036
W. Deng, L. Deng, Z. Li, Y. Zhang, G. Chen, Synergistically boosting thermoelectric performance of PEDOT: PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl. Mater. Interfaces 13(10), 12131–12140 (2021). https://doi.org/10.1021/acsami.1c01059
L. Liang, G. Chen, C. Guo, Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites. Compos. Sci. Technol. 129, 130–136 (2016). https://doi.org/10.1016/j.compscitech.2016.04.023
M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
K. Takei, Z. Yu, M. Zheng, H. Ota, T. Takahashi et al., Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. PNAS 111(5), 1703–1707 (2014). https://doi.org/10.1073/pnas.1317920111
S. Wang, X. Zhang, X. Wu, C. Lu, Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12(3), 845–852 (2016). https://doi.org/10.1039/c5sm01958c
M. Wang, K. Zhang, X.X. Dai, Y. Li, J. Guo et al., Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale 9(31), 11017–11026 (2017). https://doi.org/10.1039/c7nr02322g
S. Liu, V.S. Chevali, Z. Xu, D. Hui, H. Wang, A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 136, 197–214 (2018). https://doi.org/10.1016/j.compositesb.2017.08.020
Z. Ahmadi, Nanostructured epoxy adhesives: a review. Prog. Org. Coat. 135, 449–453 (2019). https://doi.org/10.1016/j.porgcoat.2019.06.028
Y. Yang, Z. Li, W. Ji, C. Sun, H. Deng et al., Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. Compos. Part A Appl. Sci. Manuf. 104, 24–31 (2018). https://doi.org/10.1016/j.compositesa.2017.10.024
H. Im, J. Kim, Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50(15), 5429–5440 (2012). https://doi.org/10.1016/j.carbon.2012.07.029
D. Xiang, L. Wang, Y. Tang, C. Zhao, E. Harkinjones et al., Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 67(2), 227–235 (2018). https://doi.org/10.1002/pi.5502
G. Yang, J. Tang, Q. Fu, A facile melt coating approach to fabricate macroscopic segregated polymer/carbon nanotube conductive composites with balanced properties. Polym. Compos. 39(3), 841–847 (2018). https://doi.org/10.1002/pc.24006
O. Maruzhenko, Y. Mamunya, G. Boiteux, S. Pusz, U. Szeluga et al., Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers. Int. J. Heat Mass Transf. 138, 75–84 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.043
S. Yang, W. Li, S. Bai, Q. Wang, High-performance thermal and electrical conductive composites from multilayer plastic packaging waste and expanded graphite. J. Mater. Chem. C 6(41), 11209–11218 (2018). https://doi.org/10.1039/c8tc02840k
S. Wang, Y. Zhou, Y. Liu, L. Wang, C. Gao, Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride. J. Mater. Chem. C 8(2), 528–535 (2020). https://doi.org/10.1039/c9tc06300e
L. Duan, D.R. Dhooge, M. Spoerk, P. Cornillie, L. Cardon, Facile and low-cost route for sensitive stretchable sensors by controlling kinetic and thermodynamic conductive network regulating strategies. ACS Appl. Mater. Interfaces 10(26), 22678–22691 (2018). https://doi.org/10.1021/acsami.8b03967
R. Dou, Y. Shao, S. Li, B. Yin, M. Yang, Structuring tri-continuous structure multiphase composites with ultralow conductive percolation threshold and excellent electromagnetic shielding effectiveness using simple melt mixing. Polymer 83, 34–39 (2016). https://doi.org/10.1016/j.polymer.2015.12.005
L. Li, S. Li, Y. Shao, R. Dou, B. Yin et al., PVDF/PS/HDPE/MWCNTs/Fe3O4 nanocomposites: effective and lightweight electromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles. Curr. Appl. Phys. 18(4), 388–396 (2018). https://doi.org/10.1016/j.cap.2018.01.014
S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry et al., Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl. Mater. Interfaces 6(5), 3477–3482 (2014). https://doi.org/10.1021/am4056276
Z. Weng, R. Guan, F. Zou, P. Zhou, Y. Liao et al., A highly sensitive polydopamine@hybrid carbon nanofillers based nanocomposite sensor for acquiring high-frequency ultrasonic waves. Carbon 170, 403–413 (2020). https://doi.org/10.1016/j.carbon.2020.08.030
X. Zhang, C. Tan, Y. Ma, F. Wang, W. Yang, BaTiO3 @carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity. Compos. Sci. Technol. 162, 180–187 (2018). https://doi.org/10.1016/j.compscitech.2018.05.001
X. Huang, P. Jiang, Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27(3), 546–554 (2015). https://doi.org/10.1002/adma.201401310
C.J. Galvin, J. Genzer, Applications of surface-grafted macromolecules derived from post-polymerization modification reactions. Prog. Polym. Sci. 37(7), 871–906 (2012). https://doi.org/10.1016/j.progpolymsci.2011.12.001
M.P. Wolf, G.B. Salieb-Beugelaar, P. Hunziker, PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.001
M. Antunes, J.I. Velasco, Multifunctional polymer foams with carbon nanoparticles. Prog. Polym. Sci. 39(3), 486–509 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.002
D. Raps, N. Hossieny, C.B. Park, V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology. Polymer 56, 5–19 (2015). https://doi.org/10.1016/j.polymer.2014.10.078
G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
N. Petchwattana, S. Covavisaruch, Influences of particle sizes and contents of chemical blowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) and rice hull. Mater. Design. 32(5), 2844–2850 (2011). https://doi.org/10.1016/j.matdes.2010.12.044
H. Zhang, G. Zhang, M. Tang, L. Zhou, J. Li et al., Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 353, 381–393 (2018). https://doi.org/10.1016/j.cej.2018.07.144
J. Ma, M. Zhan, K. Wang, Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 7, 563–576 (2015). https://doi.org/10.1021/am5067095
J. Li, G. Zhang, Z. Ma, X. Fan, X. Fan et al., Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 129, 70–78 (2016). https://doi.org/10.1016/j.compscitech.2016.04.003
S. Xu, X. Li, G. Sui, R. Du, Q. Zhang et al., Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability. Chem. Eng. J. 381, 122666 (2020). https://doi.org/10.1016/j.cej.2019.122666
Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang et al., Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172
Y.C. Zhang, H. Pang, K. Dai, Y.F. Huang, P.G. Ren et al., Conductive network formation during annealing of an oriented polyethylene-based composite. J. Mater. Sci. 47(8), 3713–3719 (2011). https://doi.org/10.1007/s10853-011-6220-2
Y. Xue, Z. Zhang, Y. Zhang, X. Wang, L. Li et al., Boosting thermoelectric performance by in situ growth of metal organic framework on carbon nanotube and subsequent annealing. Carbon 157, 324–329 (2020). https://doi.org/10.1016/j.carbon.2019.10.049
W. Gao, Y. Zheng, J. Shen, S. Guo, Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles. ACS Appl. Mater. Interfaces 7(3), 1541–1549 (2015). https://doi.org/10.1021/am506773c
Z. Li, A. Olah, E. Baer, Micro- and nano-layered processing of new polymeric systems. Prog. Polym. Sci. 102, 101210 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101210
X. Zhang, Y. Xu, X. Zhang, H. Wu, J. Shen et al., Progress on the layer-by-layer assembly of multilayered polymer composites: strategy, structural control and applications. Prog. Polym. Sci. 89, 76–107 (2019). https://doi.org/10.1016/j.progpolymsci.2018.10.002
F. Yu, H. Deng, Q. Zhang, K. Wang, C. Zhang et al., Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer 54(23), 6425–6436 (2013). https://doi.org/10.1016/j.polymer.2013.09.047
F. Wang, L. Liu, P. Xue, M. Jia, S. Wang et al., The influence of formation temperatures on the crystal structure and mechanical properties of ultrahigh-molecular-weight polyethylene/high-density polyethylene-blend fibers prepared by melt spinning. J. Ind. Text. 49(8), 1011–1035 (2019). https://doi.org/10.1177/1528083719827371
J.Y. Kim, J.H. Mo, Y.H. Kang, S.Y. Cho, K.S. Jang, Thermoelectric fibers from well-dispersed carbon nanotube/poly(vinyliedene fluoride) pastes for fiber-based thermoelectric generators. Nanoscale 10(42), 19766–19773 (2018). https://doi.org/10.1039/c8nr06415f
Y. Huang, J. Song, C. Yang, Y. Long, H. Wu, Scalable manufacturing and applications of nanofibers. Mater. Today 28, 98–113 (2019). https://doi.org/10.1016/j.mattod.2019.04.018
R. Pantani, I. Coccorullo, V. Speranza, G. Titomanlio, Modeling of morphology evolution in the injection molding process of thermoplastic polymers. Prog. Polym. Sci. 30(12), 1185–1222 (2005). https://doi.org/10.1016/j.progpolymsci.2005.09.001
M.R. Khosravani, S. Nasiri, Injection molding manufacturing process: review of case-based reasoning applications. J. Intell. Manuf. 31(4), 847–864 (2019). https://doi.org/10.1007/s10845-019-01481-0
H. Yui, G. Wu, H. Sano, M. Sumita, K. Kino, Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47(10), 3599–3608 (2006). https://doi.org/10.1016/j.polymer.2006.03.064
M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
K. Maghsoudi, R. Jafari, G. Momen, M. Farzaneh, Micro-nanostructured polymer surfaces using injection molding: a review. Mater. Today Commun. 13, 126–143 (2017). https://doi.org/10.1016/j.mtcomm.2017.09.013
S. Xu, D. Liu, Q. Zhang, Q. Fu, Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix. Compos. Sci. Technol. 156, 117–126 (2018). https://doi.org/10.1016/j.compscitech.2017.12.017
Y. Chen, M. He, J. Tang, G.C. Bazan, Z. Liang, Flexible thermoelectric generators with ultrahigh output power enabled by magnetic field-aligned metallic nanowires. Adv. Electron. Mater. 4(9), 1800200 (2018). https://doi.org/10.1002/aelm.201800200
K. Kim, H. Ju, J. Kim, Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement. Compos. Sci. Technol. 123, 99–105 (2016). https://doi.org/10.1016/j.compscitech.2015.12.004
C.T. Hong, Y.H. Kang, J. Ryu, S.Y. Cho, K.S. Jang, Spray-printed CNT/P3HT organic thermoelectric films and power generators. J. Mater. Chem. A 3(43), 21428–21433 (2015). https://doi.org/10.1039/c5ta06096f
H. Shen, J. Guo, H. Wang, N. Zhao, J. Xu, Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces 7(10), 5701–5708 (2015). https://doi.org/10.1021/am507416y
X. Liang, T. Zhao, P. Zhu, Y. Hu, R. Sun et al., Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films. ACS Appl. Mater. Interfaces 9(46), 40857–40867 (2017). https://doi.org/10.1021/acsami.7b13048
M. Kim, T.W. Lee, S.M. Park, Y.G. Jeong, Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers. Compos. Part A Appl. Sci. Manuf. 123, 123–131 (2019). https://doi.org/10.1016/j.compositesa.2019.05.011
Q. Zheng, Z. Li, J. Yang, J.K. Kim, Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 64, 200–247 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.004
H. Xu, M. Qu, D.W. Schubert, Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181, 107690 (2019). https://doi.org/10.1016/j.compscitech.2019.107690
S. Wang, P. Xiao, Y. Liang, J. Zhang, Y. Huang et al., Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. J. Mater. Chem. C 6(19), 5140–5147 (2018). https://doi.org/10.1039/c8tc00433a
Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng et al., Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25(7), 1058–1064 (2013). https://doi.org/10.1002/adma.201204003
J. Ge, L. Sun, F.R. Zhang, Y. Zhang, L.A. Shi et al., A stretchable electronic fabric artificial skin with pressure, lateral strain and flexion-sensitive properties. Adv. Mater. 28(4), 722–728 (2016). https://doi.org/10.1002/adma.201504239
M. Zu, Q. Li, G. Wang, J.H. Byun, T.W. Chou, Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 23(7), 789–793 (2013). https://doi.org/10.1002/adfm.201202174
Y. Yu, S. Luo, L. Sun, Y. Wu, K. Jiang et al., Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 7(22), 10178–10185 (2015). https://doi.org/10.1039/c5nr01383f
A. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, K.E. Goodson, Thermal conduction in aligned carbon nanotube polymer nanocomposites with high packing density. ACS Nano 5(6), 4818–4852 (2011). https://doi.org/10.1021/nn200847u
Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song et al., Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 169, 70–75 (2019). https://doi.org/10.1016/j.compscitech.2018.11.012
J.K.Y. Lee, N. Chen, S. Peng, L. Li, L. Tian et al., Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86, 40–84 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.002
H. Chen, N. Wang, J. Di, Y. Zhao, Y. Song et al., Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26(13), 11291–11296 (2010). https://doi.org/10.1021/la100611f
Y. Jin, D. Yang, D. Kang, X. Jiang, Fabrication of necklace-like structures via electrospinning. Langmuir 26(2), 1186–1190 (2010). https://doi.org/10.1021/la902313t
P. Lu, Y. Xia, Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir 29(23), 7070–7078 (2013). https://doi.org/10.1021/la400747y
Z. He, Q. Liu, H. Hou, F. Gao, B. Tang et al., Tailored electrospinning of WO3 nanobelts as efficient ultraviolet photodetectors with photo-dark current ratios up to 1000. ACS Appl. Mater. Interfaces 7(20), 10878–10885 (2015). https://doi.org/10.1021/acsami.5b02020
Y. Gao, F. Guo, P. Cao, J. Liu, D. Li et al., Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano 14(3), 3442–3450 (2020). https://doi.org/10.1021/acsnano.9b09533
Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan et al., Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B Eng. 164, 732–739 (2019). https://doi.org/10.1016/j.compositesb.2019.01.099
I.W. Nam, H.K. Lee, J.H. Jang, Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Compos. Part A Appl. Sci. Manuf. 42(9), 1110–1118 (2011). https://doi.org/10.1016/j.compositesa.2011.04.016
R. Ravindren, S. Mondal, K. Nath, N.C. Das, Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos. Part A Appl. Sci. Manuf. 118, 75–89 (2019). https://doi.org/10.1016/j.compositesa.2018.12.012
S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex composites. Science 311(5760), 515–518 (2006). https://doi.org/10.1126/science.1120937
J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
C. Wang, Z.Z. Pan, W. Lv, B. Liu, J. Wei et al., A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 15(14), 1805363 (2019). https://doi.org/10.1002/smll.201805363
J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
R.K. Iler, Multilayers of colloidal particles. J. Colloid Interface Sci. 21(6), 569–594 (1966). https://doi.org/10.1016/0095-8522(66)90018-3
X. Wang, P. Wu, Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem. Eng. J. 348, 723–731 (2018). https://doi.org/10.1016/j.cej.2018.04.196
J. Heo, D. Choi, J. Hong, Layer-by-layer self-assembled ferrite multilayer nanofilms for microwave absorption. J. Nanomater. 2015, 1–8 (2015). https://doi.org/10.1155/2015/164619
M. Culebras, C. Cho, M. Krecker, R. Smith, Y. Song et al., High thermoelectric power factor organic thin films through combination of nanotube multilayer assembly and electrochemical polymerization. ACS Appl. Mater. Interfaces 9(7), 6306–6313 (2017). https://doi.org/10.1021/acsami.6b15327
Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong et al., Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11(28), 25465–25473 (2019). https://doi.org/10.1021/acsami.9b10161
T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
X. Yang, Y. Guo, Y. Han, Y. Li, T. Ma et al., Significant improvement of thermal conductivities for BNNs/PVA composite films via electrospinning followed by hot-pressing technology. Compos. Part B Eng. 175, 107070 (2019). https://doi.org/10.1016/j.compositesb.2019.107070
G. Chen, S. Liu, S. Zhang, Z. Qi, Self-assembly in a polystyrene/montmorillonite nanocomposite. Macromol. Rapid Commun. 21(11), 746–749 (2000). https://doi.org/10.1002/1521-3927(20000701)21:11%3c746::AID-MARC746%3e3.0.CO;2-K
G. Chen, D. Shen, M. Feng, M. Yang, An attenuated total reflection FT-IR spectroscopic study of polyamide 6/clay nanocomposite fibers. Macromol. Rapid Commun. 25, 1121–1124 (2004). https://doi.org/10.1002/marc.200400079
C. Yuan, J. Wang, G. Chen, J. Zhang, J. Yang, Orientation studies of uniaxial drawn syndiotactic polystyrene/carbon nanotube nanocomposite films. Soft Matter 7, 4039–4044 (2011). https://doi.org/10.1039/c0sm01475c
Y. Zhang, L. Deng, H. Lv, G. Chen, Toward improved trade-off between thermoelectric and mechanical performances in polycarbonate/single-walled carbon nanotube composite films. npj Flex. Electron. 4, 26 (2020). https://doi.org/10.1038/s41528-020-00089-2
M. Falahati, P. Ahmadvand, S. Safaee, Y.C. Chang, Z. Lyu et al., Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today 40, 215–245 (2020). https://doi.org/10.1016/j.mattod.2020.06.001
X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 110, 442–458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034
A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan et al., Binder jet 3D printing—process parameters, materials, properties, and challenges. Prog. Mater. Sci. 119, 100707 (2021). https://doi.org/10.1016/j.pmatsci.2020.100684
A.L. Pires, I.F. Cruz, J. Silva, G.N.P. Oliveira, S. Ferreira-Teixeira et al., Printed flexible μ-thermoelectric device based on hybrid Bi2Te3/PVA composites. ACS Appl. Mater. Interfaces 11(9), 8969–8981 (2019). https://doi.org/10.1021/acsami.8b18081
M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
B.F. Gonçalves, J. Oliveira, P. Costa, V. Correia, P. Martins et al., Development of water-based printable piezoresistive sensors for large strain applications. Compos. Part B Eng. 112, 344–352 (2017). https://doi.org/10.1016/j.compositesb.2016.12.047
D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du et al., Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016). https://doi.org/10.1016/j.synthmet.2016.03.014
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012
X. Yang, Y. Guo, X. Luo, N. Zheng, T. Ma et al., Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 164, 59–64 (2018). https://doi.org/10.1016/j.compscitech.2018.05.038
Z.A. Ghaleb, M. Mariatti, Z.M. Ariff, Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J. Reinf. Plast. Comp. 36(9), 685–695 (2017). https://doi.org/10.1177/0731684417692055
Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai et al., The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002
C. Wu, X. Huang, X. Wu, L. Xie, K. Yang et al., Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5(9), 3847–3855 (2013). https://doi.org/10.1039/c3nr00625e
Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductor Zn-ZnO core−shell structure. ACS Appl. Mater. Interfaces 4, 65–68 (2012). https://doi.org/10.1021/am2016156
C. Ou, A.L. Sangle, A. Datta, Q. Jing, T. Busolo et al., Fully printed organic–inorganic nanocomposites for flexible thermoelectric applications. ACS Appl. Mater. Interfaces 10(23), 19580–19587 (2018). https://doi.org/10.1021/acsami.8b01456
R. Zhang, A. Lv, C. Ying, Z. Hu, H. Hu et al., Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Compos. Sci. Technol. 186, 107933 (2020). https://doi.org/10.1016/j.compscitech.2019.107933
D. An, S. Cheng, S. Xi, Z. Zhang, X. Duan et al., Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem. Eng. J. 383, 123151 (2020). https://doi.org/10.1016/j.cej.2019.123151
J. Peng, I. Witting, N. Geisendorfer, M. Wang, M. Chang et al., 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 10(1), 5590 (2019). https://doi.org/10.1038/s41467-019-13461-2
B. Dorling, J.D. Ryan, J.D. Craddock, A. Sorrentino, A.E. Basaty et al., Photoinduced p- to n-type switching in thermoelectric polymer-carbon nanotube composites. Adv. Mater. 28(14), 2782–2789 (2016). https://doi.org/10.1002/adma.201505521
L. Cai, J. Li, P. Luan, H. Dong, D. Zhao et al., Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture. Adv. Funct. Mater. 22(24), 5238–5244 (2012). https://doi.org/10.1002/adfm.201201013
Q. Liu, J. Chen, Y. Li, G. Shi, High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016). https://doi.org/10.1021/acsnano.6b03813
A.M. Xie, K. Zhang, M.X. Sun, Y.L. Xia, F. Wu, Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater. Design 154, 192–202 (2018). https://doi.org/10.1016/j.matdes.2018.05.039
G.J. Li, K. Dai, M.N. Ren, Y. Wang, G.Q. Zheng et al., Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors. J. Mater. Chem. C 6(24), 6575–6583 (2018). https://doi.org/10.1039/c8tc01924j
L.J. Lu, Y.J. Zhou, J. Pan, T.Q. Chen, Y.J. Hu et al., Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability. ACS Appl. Mater. Interfaces 11(4), 4345–4352 (2019). https://doi.org/10.1021/acsami.8b17666
B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
J.T. Muth, D.M. Vogt, R.L. Truby, Y. Menguc, D.B. Kolesky et al., Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26(36), 6307–6312 (2014). https://doi.org/10.1002/adma.201400334
J. Han, H. Wang, Y. Yue, C. Mei, J. Chen et al., A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon 149, 1–18 (2019). https://doi.org/10.1016/j.carbon.2019.04.029
J. Liu, J. Sun, L. Gao, Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties. Nanoscale 3(9), 3616–3619 (2011). https://doi.org/10.1039/c1nr10386e
P.B. Liu, Y. Huang, X. Sun, Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 5(23), 12355–12360 (2013). https://doi.org/10.1021/am404561c
B. Zhang, S. Lin, J. Zhang, X. Li, X. Sun, Facile synthesis of sandwich-like rGO/CuS/polypyrrole nanoarchitectures for efficient electromagnetic absorption. Materials 13(2), 446 (2020). https://doi.org/10.3390/ma13020446
S. Dong, X. Zhang, W. Zhang, J. Han, P. Hu, A multiscale hierarchical architecture of a SiC whiskers–graphite nanosheets/polypyrrole ternary composite for enhanced electromagnetic wave absorption. J. Mater. Chem. C 6(40), 10804–10814 (2018). https://doi.org/10.1039/c8tc03683g
Y.N. Koh, N. Mokhtar, S.W. Phang, Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes. Polym. Compos. 39(4), 1283–1291 (2018). https://doi.org/10.1002/pc.24064
Q. Xu, S. Qu, C. Ming, P. Qiu, Q. Yao et al., Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energ. Environ. Sci. 13(2), 511–518 (2020). https://doi.org/10.1039/c9ee03776d
T. Nagai, N. Aoki, Y. Ochiai, K. Hoshino, Electric conductivity-tunable transparent flexible nanowire-filled polymer composites: orientation control of nanowires in a magnetic field. ACS Appl. Mater. Interfaces 3(7), 2341–2348 (2011). https://doi.org/10.1021/am200260v
O.M. Kwon, H. Watanabe, K.H. Ahn, S.J. Lee, Growths of mechanical elasticity and electrical conductance of graphene nanoplatelet/poly(lactic acid) composites under strong electric field: correlation with time evolution of higher order structure of graphene nanoplatelets. Rheol. Acta 56(11), 871–885 (2017). https://doi.org/10.1007/s00397-017-1042-z
X. Huang, K. Wang, K. Jia, X. Liu, Polymer-based composites with improved energy density and dielectric constants by monoaxial hot-stretching for organic film capacitor applications. RSC Adv. 5(64), 51975–51982 (2015). https://doi.org/10.1039/c5ra05029d
J.R. Bautista-Quijano, P. Pötschke, H. Brünig, G. Heinrich, Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning. Polymer 82, 181–189 (2016). https://doi.org/10.1016/j.polymer.2015.11.030
G. Wang, G. Zhao, S. Wang, L. Zhang, C.B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 6(25), 6847–6859 (2018). https://doi.org/10.1039/c8tc01326h
L. Yang, W. Weng, X. Fei, L. Pan, X. Li et al., Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chem. Eng. J. 383, 123126 (2020). https://doi.org/10.1016/j.cej.2019.123126
Y. Guo, L. Pan, X. Yang, K. Ruan, Y. Han et al., Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos. Part A Appl. Sci. Manuf. 124, 105484 (2019). https://doi.org/10.1016/j.compositesa.2019.105484
X. Hou, Y. Chen, W. Dai, Z. Wang, H. Li et al., Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chem. Eng. J. 375, 121921 (2019). https://doi.org/10.1016/j.cej.2019.121921
H. Liu, M. Dong, W. Huang, J. Gao, K. Dai et al., Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem C 5(1), 73–83 (2017). https://doi.org/10.1039/c6tc03713e
H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
B. Zhao, J. Deng, C. Zhao, C. Wang, Y.G. Chen et al., Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J. Mater. Chem. C 8(1), 58–70 (2020). https://doi.org/10.1039/c9tc04575a
L. Wang, J. Zhang, Y. Guo, X. Chen, X. Jin et al., Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon 148, 290–296 (2019). https://doi.org/10.1016/j.carbon.2019.03.088
Q. Wang, Q. Yao, J. Chang, L. Chen, Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 22(34), 17612–17618 (2012). https://doi.org/10.1039/c2jm32750c
L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang et al., PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3(13), 7086–7092 (2015). https://doi.org/10.1039/c4ta06422d
G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang et al., Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 10(1), 1195–1203 (2018). https://doi.org/10.1021/acsami.7b14111
C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma et al., Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11(46), 22590–22598 (2019). https://doi.org/10.1039/c9nr06022g
B. Zhang, J. Sun, H.E. Katz, F. Fang, R.L. Opila, Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS Appl. Mater. Interfaces 2(11), 3170–3178 (2010). https://doi.org/10.1021/am100654p
C.P. Feng, S.S. Wan, W.C. Wu, L. Bai, R.Y. Bao et al., Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 167, 456–462 (2018). https://doi.org/10.1016/j.compscitech.2018.08.039
K. Ke, V.S. Bonab, D. Yuan, I. Manas-Zloczower, Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52–58 (2018). https://doi.org/10.1016/j.carbon.2018.06.037
K. Ke, P. Potschke, N. Wiegand, B. Krause, B. Voit, Tuning the network structure in poly(vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: toward improvements of conductivity and piezoresistive sensitivity. ACS Appl. Mater. Interfaces 8(22), 14190–14199 (2016). https://doi.org/10.1021/acsami.6b03451
Y. Lu, Y. Qiu, Q. Jiang, K. Cai, Y. Du et al., Preparation and characterization of Te/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Cu7Te4 ternary composite films for flexible thermoelectric power generator. ACS Appl. Mater. Interfaces 10(49), 42310–42319 (2018). https://doi.org/10.1021/acsami.8b15252
H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy. Environ. Sci. 7(3), 1185–1192 (2014). https://doi.org/10.1039/c3ee42573h
P. Miao, K. Cheng, H. Li, J. Gu, K. Chen et al., Poly(dimethylsilylene) diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption. ACS Appl. Mater. Interfaces 11(19), 17706–17713 (2019). https://doi.org/10.1021/acsami.9b03944
S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun et al., Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
P. Bollen, N. Quievy, C. Detrembleur, J.M. Thomassin, L. Monnereau et al., Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb. Mater. Design 89, 323–334 (2016). https://doi.org/10.1016/j.matdes.2015.09.129
S. Li, A. Huang, Y.J. Chen, D. Li, L.S. Turng, Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Compos. Part B Eng. 153, 277–284 (2018). https://doi.org/10.1016/j.compositesb.2018.07.049
Y. Huang, L. Gao, Y. Zhao, X. Guo, C. Liu et al., Highly flexible fabric strain sensor based on graphene nanoplatelet-polyaniline nanocomposites for human gesture recognition. J. Appl. Polym. Sci. 134(39), 45340 (2017). https://doi.org/10.1002/app.45340
T. Zhang, K. Li, C. Li, S. Ma, H.H. Hng et al., Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites. Adv. Electron. Mater. 3(4), 1600554 (2017). https://doi.org/10.1002/aelm.201600554
Y. Kazemi, A.R. Kakroodi, A. Ameli, T. Filleter, C.B. Park, Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance. J. Mater. Chem. C 6(2), 350–359 (2018). https://doi.org/10.1039/c7tc04501h
H. Bizhani, V. Nayyeri, A. Katbab, A. Jalali-Arani, H. Nazockdast, Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. Eur. Polym. J. 100, 209–218 (2018). https://doi.org/10.1016/j.eurpolymj.2018.01.016
W. Liu, Y. Yang, M. Nie, Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite. Compos. Sci. Technol. 154, 45–52 (2018). https://doi.org/10.1016/j.compscitech.2017.11.003
Y.D. Li, L.J. Zheng, T.H. Zhao, J. Zhu, J.B. Zeng, Localization control of carbon nanotubes in immiscible polylactide/vulcanized epoxidized soybean oil blends. Compos. Commun. 11, 6–11 (2019). https://doi.org/10.1016/j.coco.2018.11.001
X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando et al., Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater. 23(14), 1824–1831 (2013). https://doi.org/10.1002/adfm.201201824
K. Wu, P. Liao, R. Du, Q. Zhang, F. Chen et al., Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation. J. Mater. Chem. A 6(25), 11863–11873 (2018). https://doi.org/10.1039/c8ta03642j
X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
S. Liu, S. Xue, S. Xiu, B. Shen, J. Zhai, Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016). https://doi.org/10.1038/srep26198
Z. Sang, K. Ke, I. Manas-Zloczower, Interface design strategy for the fabrication of highly stretchable strain sensors. ACS Appl. Mater. Interfaces 10(42), 36483–36492 (2018). https://doi.org/10.1021/acsami.8b14573
Y. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore et al., Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 11(3), 1011–1020 (2019). https://doi.org/10.1039/c8nr07351a
Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu et al., Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. A 4(34), 13259–13264 (2016). https://doi.org/10.1039/c6ta05233a
Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen et al., High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl. Mater. Interfaces 9(4), 4024–4033 (2017). https://doi.org/10.1021/acsami.6b13663
Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductor Zn-ZnO core-shell structure. ACS Appl. Mater. Interfaces 4(1), 65–68 (2012). https://doi.org/10.1021/am2016156
Q. Chi, X. Wang, C. Zhang, Q. Chen, M. Chen et al., High energy storage density for poly(vinylidene fluoride) composites by introduced core–shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6(7), 8641–8649 (2018). https://doi.org/10.1021/acssuschemeng.8b00941
Y. Yang, Z. Chen, X. Song, B. Zhu, T. Hsiai et al., Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22, 414–421 (2016). https://doi.org/10.1016/j.nanoen.2016.02.045
Y. Li, D. Zhang, S. Wang, Y. Zhan, J. Yin et al., Fe3O4 decorated graphene/poly(vinylidene fluoride) nanocomposites with high dielectric constant and low dielectric loss. Compos. Sci. Technol. 171, 152–161 (2019). https://doi.org/10.1016/j.compscitech.2018.12.022
L. Lin, L. Wang, B. Li, J. Luo, X. Huang et al., Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385, 123391 (2020). https://doi.org/10.1016/j.cej.2019.123391
Y.J. Yim, K.Y. Rhee, S.J. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos. Part B Eng. 98, 120–125 (2016). https://doi.org/10.1016/j.compositesb.2016.04.061
Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong et al., A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 4(26), 6345–6352 (2016). https://doi.org/10.1039/c6tc01925k
Y. Zhu, H. Yao, P. Jiang, J. Wu, X. Zhu et al., Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. J. Phys. Chem. C 122(32), 18282–18293 (2018). https://doi.org/10.1021/acs.jpcc.8b04918
S. Zhang, H. Deng, Q. Zhang, Q. Fu, Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl. Mater. Interfaces 6(9), 6835–6844 (2014). https://doi.org/10.1021/am500651v
H. Zhou, H. Deng, L. Zhang, Q. Fu, Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks. ACS Appl. Mater. Interfaces 9(34), 29071–29081 (2017). https://doi.org/10.1021/acsami.7b07947
Z. Liu, Z. Qian, J. Song, Y. Zhang, Conducting and stretchable composites using sandwiched graphene-carbon nanotube hybrids and styrene-butadiene rubber. Carbon 149, 181–189 (2019). https://doi.org/10.1016/j.carbon.2019.04.037