Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites
Corresponding Author: Zhanhu Guo
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 118
Abstract
With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel (CA) with highly enhanced thermal conductivity (TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires (SiC NWs)/boron nitride (BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m−1 K−1 at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy (EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 1011 Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of − 21.5 dB and a wide effective absorption bandwidth (< − 10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications.
Highlights:
1 Cellulose aerogel with vertically oriented structure was obtained by constructing a vertically aligned SiC nanowires/BN network via the ice template assisted strategy.
2 The thermal conductivity of the composite in the vertical direction reaches 2.21 W m−1 K−1 at a low hybrid filler loading of 16.69 wt%, which was increased 890% compared to pure epoxy.
3 The composite exhibits good electrically insulating with a volume electrical resistivity about 2.35×1011 Ω cm, and displays excellent electromagnetic wave absorption performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- F. Chen, H. Xiao, Z.Q. Peng, Z.P. Zhang, M.Z. Rong et al., Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater. 4(4), 1048–1058 (2021). https://doi.org/10.1007/s42114-021-00303-3
- D. Pan, Q. Li, W. Zhang, J. Dong, F. Su et al., Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos. Part B 209, 108609 (2021). https://doi.org/10.1016/j.compositesb.2021.108609
- Y. Zhao, M. Niu, F. Yang, Y. Jia, Y. Cheng, Ultrafast electro-thermal responsive heating film fabricated from graphene modified conductive materials. Eng. Sci. 8, 33–38 (2019). https://doi.org/10.30919/es8d501
- M. Aleksandrova, C. Jagtap, V. Kadam, S. Jadkar, G. Kolev et al., An overview of microelectronic infrared pyroelectric detector. Eng. Sci. 16, 82–89 (2021). https://doi.org/10.30919/es8d535
- D. Pan, F. Su, C. Liu, Z. Guo, Research progress for plastic waste management and manufacture of value-added products. Adv. Compos. Hybrid Mater. 3(4), 443–461 (2020). https://doi.org/10.1007/s42114-020-00190-0
- Y. Kong, Y. Li, G. Hu, N. Cao, Y. Ling et al., Effects of polystyrene-b-poly(ethylene/propylene)-b-polystyrene compatibilizer on the recycled polypropylene and recycled high-impact polystyrene blends. Polym. Adv. Technol. 29(8), 2344–2351 (2018). https://doi.org/10.1002/pat.4346
- J.C.M. Neto, N.R. Nascimento, R.H. Bello, L.A. Verçosa, J.E. Neto et al., Kaolinite review: intercalation and production of polymer nanocomposites. Eng. Sci. 17, 28–44 (2022). https://doi.org/10.30919/es8d499
- J. Tu, H. Li, J. Zhang, D. Hu, Z. Cai et al., Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv. Compos. Hybrid Mater. 2(3), 471–480 (2019). https://doi.org/10.1007/s42114-019-00083-x
- D. Pan, F. Su, H. Liu, C. Liu, A. Umar et al., Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Mater. Manuf. 11, 3–15 (2021). https://doi.org/10.30919/esmm5f415
- P. Hu, L. Liu, M. Zhao, J. Wang, X. Ma et al., Design, synthesis, and use of high temperature resistant aerogels exceeding 800 °C. ES Mater. Manuf. 15, 14–33 (2021). https://doi.org/10.30919/esmm5f459
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- O.M. Atta, S. Manan, M. Ul-Islam, A.A.Q. Ahmed, M.W. Ullah et al., Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food Agrof. 6, 12–26 (2021). https://doi.org/10.30919/esfaf590
- G. Yang, X. Zhang, D. Pan, W. Zhang, Y. Shang et al., Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: silver nanowire bridged boron nitride nanoplatelets. ACS Appl. Mater. Interfaces 13(27), 32286–32294 (2021). https://doi.org/10.1021/acsami.1c08408
- H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
- S.H. Khan, B. Pathak, M.H. Fulekar, A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures. Adv. Compos. Hybrid Mater. 3(4), 551–569 (2020). https://doi.org/10.1007/s42114-020-00174-0
- S. Chen, J. Liu, Liquid metal enabled unconventional heat and flow transfer. ES Energy Environ. 5, 8–21 (2019). https://doi.org/10.30919/esee8c318
- X. He, D. Ou, S. Wu, Y. Luo, Y. Ma et al., A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Adv. Compos. Hybrid Mater. 5, 21–38 (2022). https://doi.org/10.1007/s42114-021-00321-1
- D. Pan, F. Su, H. Liu, Y. Ma, R. Das et al., The properties and preparation methods of different boron nitride nanostructures and applications of related nanocomposites. Chem. Rec. 20(11), 1314–1337 (2020). https://doi.org/10.1002/tcr.202000079
- L. Deng, X. Wang, X. Hua, S. Lu, J. Wang et al., Purification of β -SiC powders by heat treatment in vacuum. Adv. Compos. Hybrid Mater. 3(2), 177–186 (2020). https://doi.org/10.1007/s42114-021-00372-4
- H. Han, H. Sun, F. Lei, J. Huang, S. Lyu et al., Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management. ES Mater. Manuf. 15, 53–64 (2022). https://doi.org/10.30919/esmm5f523
- Y. Hui, W. Xie, H. Gu, Reduced graphene oxide/nanocellulose/amino-multiwalled carbon nanotubes nanocomposite aerogel for excellent oil adsorption. ES Food Agrofor. 5, 38–44 (2021). https://doi.org/10.30919/esfaf531
- D. Pan, X. Zhang, G. Yang, Y. Shang, F. Su et al., Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets. Ind. Eng. Chem. Res. 59(46), 20371–20381 (2020). https://doi.org/10.1021/acs.iecr.0c04510
- H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid Mater. 4(1), 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1
- Y. Zhou, F. Liu, C.Y. Chen, Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation. Adv. Compos. Hybrid Mater. 2(1), 46–50 (2019). https://doi.org/10.1007/s42114-019-00077-9
- S. Wang, X. Lu, A. Negi, J. He, K. Kim et al., Revisiting the reduction of thermal conductivity in nano- to micro-grained bismuth telluride: the importance of grain-boundary thermal resistance. Eng. Sci. 17, 45–55 (2022). https://doi.org/10.30919/es8d513
- C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang et al., Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv. Compos. Hybrid Mater. 1(1), 160–167 (2018). https://doi.org/10.1007/s42114-017-0013-2
- D. Pan, J. Dong, G. Yang, F. Su, B. Chang et al., Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv. Compos. Hybrid Mater. 5, 58–70 (2022). https://doi.org/10.1007/s42114-021-00362-6
- G. Yang, X. Zhang, Y. Shang, P. Xu, D. Pan et al., Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 201, 108521 (2021). https://doi.org/10.1016/j.compscitech.2020.108521
- Y. Wu, Y. Xue, S. Qin, D. Liu, X. Wang et al., BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl. Mater. Interfaces 9(49), 43163–43170 (2017). https://doi.org/10.1021/acsami.7b15264
- C. Xiao, Y. Guo, Y. Tang, J. Ding, X. Zhang et al., Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/ boron nitride nanosheets. Compos. Part B 187, 107855 (2020). https://doi.org/10.1016/j.compositesb.2020.107855
- Y. Xie, Y. Yang, Y. Liu, S. Wang, X. Guo et al., Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv. Compos. Hybrid Mater. 4(3), 543–551 (2021). https://doi.org/10.1007/s42114-021-00249-6
- J. Sun, X. Zhang, Q. Du, V. Murugadoss, D. Wu et al., The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater. Manuf. 13, 53–65 (2021). https://doi.org/10.30919/esmm5f450
- X. Chen, J.S.K. Lim, W. Yan, F. Guo, Y.N. Liang et al., Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(14), 16987–16996 (2020). https://doi.org/10.1021/acsami.0c04882
- W. Zhou, Y. Zhang, J. Wang, H. Li, W. Xu et al., Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets. ACS Appl. Mater. Interfaces 12(41), 46767–46778 (2020). https://doi.org/10.1021/acsami.0c11543
- F. Xu, D. Bao, Y. Cui, Y. Gao, D. Lin et al., Copper nanop-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00367-1
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/pdms composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- H. Gu, C. Gao, X. Zhou, A. Du, N. Naik et al., Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 4(3), 459–468 (2021). https://doi.org/10.1007/s42114-021-00289-y
- Y. Zhang, Y. Luo, Naturally derived nanomaterials for multidisciplinary applications and beyond. ES Food Agrof. 4, 1–2 (2021). https://doi.org/10.30919/esfaf484
- Z. Zhuang, W. Wang, Y. Wei, T. Li, M. Ma et al., Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv. Compos. Hybrid Mater. 4(4), 938–945 (2021). https://doi.org/10.1007/s42114-021-00225-0
- Y. Tong, W. Zhao, W. Wu, D. Zhang, G. He et al., Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design. Adv. Compos. Hybrid Mater. 5(1), 263–277 (2022). https://doi.org/10.1007/s42114-021-00333-x
- K. Kim, H. Ju, J. Kim, Vertical p alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement. Compos. Sci. Technol. 123, 99–105 (2016). https://doi.org/10.1016/j.compscitech.2015.12.004
- X. Zhang, Applications of kinetic methods in thermal analysis: a review. Eng. Sci. 14, 1–13 (2021). https://doi.org/10.30919/es8d1132
- C. Liang, Y. Du, Y. Wang, A. Ma, S. Huang et al., Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 4(4), 979–988 (2021). https://doi.org/10.1007/s42114-021-00274-5
- Y. Zhou, J. Zhang, C. Qu, L. Li, J. Kong et al., Synchronously improved wave-transparent performance and mechanical properties of cyanate ester resins via introducing fluorine-containing linear random copolymer. Adv. Compos. Hybrid Mater. 4(4), 1166–1175 (2021). https://doi.org/10.1007/s42114-021-00349-3
- W. Wang, X. Deng, D. Liu, F. Luo, H. Cheng et al., Broadband radar-absorbing performance of square-hole structure. Adv. Compos. Hybrid Mater. 5, 525–535 (2022). https://doi.org/10.1007/s42114-021-00376-0
- F. Luo, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 4(3), 591–601 (2021). https://doi.org/10.1007/s42114-021-00275-4
- W. Shao, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on favorable comprehensive properties of superhydrophobic coating fabricated by polytetrafluoroethylene doped with graphene. Adv. Compos. Hybrid Mater. 4(3), 521–533 (2021). https://doi.org/10.1007/s42114-021-00243-y
- S. Budumuru, M.S. Anuradha, Electromagnetic shielding and mechanical properties of al6061 metal matrix composite at x-band for oblique incidence. Adv. Compos. Hybrid Mater. 4(4), 1113–1121 (2021). https://doi.org/10.1007/s42114-021-00338-6
- P. Zhang, X. Zhang, B. Li, L. Xu, F. Dang et al., Enhanced microwave absorption performance in an ultralight porous single-atom Co–N–C absorber. Adv. Compos. Hybrid Mater. 4(4), 1292–1301 (2021). https://doi.org/10.1007/s42114-021-00308-y
- J. Zhang, W. Lei, J. Chen, D. Liu, B. Tang et al., Enhancing the thermal and mechanical properties of polyvinyl alcohol (PVA) with boron nitride nanosheets and cellulose nanocrystals. Polymer 148, 101–108 (2018). https://doi.org/10.1016/j.polymer.2018.06.029
- T. Bai, Y. Guo, H. Liu, G. Song, D. Zhang et al., Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C 8(15), 5191–5201 (2020). https://doi.org/10.1039/d0tc00448k
- C. Liu, Q. Fang, D. Wang, C. Yan, F. Liu et al., Carbon and boron nitride nanotubes: structure, property and fabrication. ES Mater. Manuf. 3, 2–15 (2019). https://doi.org/10.30919/esmm5f199
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), 202200705 (2022). https://doi.org/10.1002/anie.202200705
- M.A. Kashfipour, N. Mehra, J. Zhu, A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater. 1(3), 415–439 (2018). https://doi.org/10.1007/s42114-018-0022-9
- C. Yu, Q. Zhang, J. Zhang, R. Geng, W. Tian et al., One-step in situ ball milling synthesis of polymer-functionalized few-layered boron nitride and its application in high thermally conductive cellulose composites. ACS Appl. Nano Mater. 1(9), 4875–4883 (2018). https://doi.org/10.1021/acsanm.8b01047
- H. Yan, Q. Li, Z. Wang, H. Wu, Y. Wu et al., Effect of different sintering additives on the microstructure, phase compositions and mechanical properties of Si3N4/SiC ceramics. ES Mater. Manuf. 15, 65–71 (2022). https://doi.org/10.30919/esmm5f487
- T. Ishikawa, S. Kajii, K. Matsunaga, T. Hogami, Y. Kohtoku et al., A tough, thermally conductive silicon carbide composite with high strength up to 1600 degreesc in air. Science 282(5392), 1295–1297 (1998). https://doi.org/10.1126/science.282.5392.1295
- X. Zhang, J. Dong, D. Pan, G. Yang, F. Su et al., Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties. Adv. Compos. Hybrid Mater. 4(4), 1102–1112 (2021). https://doi.org/10.1007/s42114-021-00335-9
- Y. Xie, B. Zhou, A. Du, Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv. Comp. Hybrid Mater. 4(2), 248–256 (2021). https://doi.org/10.1007/s42114-021-00234-z
- X. Li, W. Li, Q. Liu, S. Chen, L. Wang et al., Robust high-temperature supercapacitors based on sic nanowires. Adv. Funct. Mater. 31(8), 2008901 (2021). https://doi.org/10.1002/adfm.202008901
- B. Du, D. Zhang, J. Qian, M. Cai, C. He et al., Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance. Adv. Compos. Hybrid Mater. 4(4), 1281–1291 (2021). https://doi.org/10.1007/s42114-021-00286-1
- J. Xu, J. Cao, M. Guo, S. Yang, H. Yao et al., Metamaterial mechanical antenna for very low frequency wireless communication. Adv. Compos. Hybrid Mater. 4(3), 761–767 (2021). https://doi.org/10.1007/s42114-021-00278-1
- Z. Guo, A. Li, Z. Sun, Z. Yan, H. Liu et al., Negative permittivity behavior in microwave frequency from cellulose-derived carbon nanofibers. Adv. Compos. Hybrid Mater. 5, 50–57 (2022). https://doi.org/10.1007/s42114-021-00314-0
- D.M. Guo, Q.D. An, Z. Xiao, S.R. Zhai, Z. Shi, Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(vi) from aqueous solution. RSC Adv. 7(85), 54039–54052 (2017). https://doi.org/10.1039/c7ra09940a
- Z. He, M. Yang, L. Wang, E. Bao, H. Zhang, Concentrated photovoltaic thermoelectric hybrid system: an experimental and machine learning study. Eng. Sci. 15, 47–56 (2021). https://doi.org/10.30919/es8d440
- Y. Li, J. Guo, M. Li, Y. Tang, V. Murugadoss et al., Recent application of cellulose gel in flexible sensing-a review. ES Food Agrofor. 4, 9–27 (2021). https://doi.org/10.30919/esfaf466
- M.A. Kashfipour, N. Mehra, R.S. Dent, J. Zhu, Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Eng. Sci. 8, 11–18 (2019). https://doi.org/10.30919/es8d508
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- N. Chen, T. Li, Y. Wang, L. Pan, W. Bao et al., Generalized “slope method” of the 3ω analysis to measure the thermal conductivity and heat capacity of solids: frequency- vs. current-sweep. ES Energy Environ. 10, 13–21 (2020). https://doi.org/10.30919/esee8c725
- X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong et al., A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid Mater. 1(2), 207–230 (2018). https://doi.org/10.1007/s42114-018-0031-8
- X. Hu, H. Wu, S. Liu, S. Gong, Y. Du et al., Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng. Sci. 17, 1–27 (2022). https://doi.org/10.30919/es8d474
- J.P. Huang, Thermal metamaterials make it possible to control the flow of heat at will. ES Energy Environ. 6, 1–3 (2019). https://doi.org/10.30919/esee8c368
- H. Fu, Y. Xiao, P. Li, W. Qian, D. Li et al., Ultrasonic-assisted soldering for graphite films as heat sinks with durably superior heat dissipating efficiency. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00255-8
- Y. Xue, S. Lofland, X. Hu, Protein-based flexible thermal conductive materials with continuous network structure: Fabrication, properties, and theoretical modeling. Compos. Part B 201, 108377 (2020). https://doi.org/10.1016/j.compositesb.2020.108377
- C. Fu, C. Yan, L. Ren, X. Zeng, G. Du et al., Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanops. Compos. Sci. Technol. 177, 118–126 (2019). https://doi.org/10.1016/j.compscitech.2019.04.026
- Q.Y. Li, Q. Hao, T. Zhu, M. Zebarjadi, M. Zebarjadi, Nanostructured and heterostructured 2D materials for thermoelectrics. Eng. Sci. 13, 24–50 (2021). https://doi.org/10.30919/es8d1136
- C. Liu, C. Wu, P. Lu, Y. Zhao, Non-monotonic thickness dependent hydrodynamic phonon transport in layered titanium trisulphide: first-principles calculation and improved callaway model fitting. ES Energy Environ. 14, 34–42 (2021). https://doi.org/10.30919/esee8c521
- Q. Hao, J. Garg, A review on phonon transport within polycrystalline materials. ES Mater. Manuf. 14, 36–50 (2021). https://doi.org/10.30919/esmm5f480
- R.K. Bhushan, Effect of SiC p size and weight % on mechanical properties of AA7075 sic composite. Adv. Compos. Hybrid Mater. 4(1), 74–85 (2021). https://doi.org/10.1007/s42114-020-00175-z
- D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77, 756–774 (2014). https://doi.org/10.1016/j.carbon.2014.05.080
- R. Asmatulu, P.K. Bollavaram, V.R. Patlolla, I.M. Alarifi, W.S. Khan, Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and emi shielding. Adv. Compos. Hybrid Mater. 3(1), 66–83 (2020). https://doi.org/10.1007/s42114-020-00135-7
- P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4(1), 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
- Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
- Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4159-z
- R. Dilli, R. Chandra, D. Jordhana, Ultra-massive MIMO technologies for 6G wireless networks. Eng. Sci. 16, 308–318 (2021). https://doi.org/10.30919/es8d571
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@ FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
References
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
F. Chen, H. Xiao, Z.Q. Peng, Z.P. Zhang, M.Z. Rong et al., Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater. 4(4), 1048–1058 (2021). https://doi.org/10.1007/s42114-021-00303-3
D. Pan, Q. Li, W. Zhang, J. Dong, F. Su et al., Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos. Part B 209, 108609 (2021). https://doi.org/10.1016/j.compositesb.2021.108609
Y. Zhao, M. Niu, F. Yang, Y. Jia, Y. Cheng, Ultrafast electro-thermal responsive heating film fabricated from graphene modified conductive materials. Eng. Sci. 8, 33–38 (2019). https://doi.org/10.30919/es8d501
M. Aleksandrova, C. Jagtap, V. Kadam, S. Jadkar, G. Kolev et al., An overview of microelectronic infrared pyroelectric detector. Eng. Sci. 16, 82–89 (2021). https://doi.org/10.30919/es8d535
D. Pan, F. Su, C. Liu, Z. Guo, Research progress for plastic waste management and manufacture of value-added products. Adv. Compos. Hybrid Mater. 3(4), 443–461 (2020). https://doi.org/10.1007/s42114-020-00190-0
Y. Kong, Y. Li, G. Hu, N. Cao, Y. Ling et al., Effects of polystyrene-b-poly(ethylene/propylene)-b-polystyrene compatibilizer on the recycled polypropylene and recycled high-impact polystyrene blends. Polym. Adv. Technol. 29(8), 2344–2351 (2018). https://doi.org/10.1002/pat.4346
J.C.M. Neto, N.R. Nascimento, R.H. Bello, L.A. Verçosa, J.E. Neto et al., Kaolinite review: intercalation and production of polymer nanocomposites. Eng. Sci. 17, 28–44 (2022). https://doi.org/10.30919/es8d499
J. Tu, H. Li, J. Zhang, D. Hu, Z. Cai et al., Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv. Compos. Hybrid Mater. 2(3), 471–480 (2019). https://doi.org/10.1007/s42114-019-00083-x
D. Pan, F. Su, H. Liu, C. Liu, A. Umar et al., Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Mater. Manuf. 11, 3–15 (2021). https://doi.org/10.30919/esmm5f415
P. Hu, L. Liu, M. Zhao, J. Wang, X. Ma et al., Design, synthesis, and use of high temperature resistant aerogels exceeding 800 °C. ES Mater. Manuf. 15, 14–33 (2021). https://doi.org/10.30919/esmm5f459
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
O.M. Atta, S. Manan, M. Ul-Islam, A.A.Q. Ahmed, M.W. Ullah et al., Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food Agrof. 6, 12–26 (2021). https://doi.org/10.30919/esfaf590
G. Yang, X. Zhang, D. Pan, W. Zhang, Y. Shang et al., Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: silver nanowire bridged boron nitride nanoplatelets. ACS Appl. Mater. Interfaces 13(27), 32286–32294 (2021). https://doi.org/10.1021/acsami.1c08408
H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
S.H. Khan, B. Pathak, M.H. Fulekar, A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures. Adv. Compos. Hybrid Mater. 3(4), 551–569 (2020). https://doi.org/10.1007/s42114-020-00174-0
S. Chen, J. Liu, Liquid metal enabled unconventional heat and flow transfer. ES Energy Environ. 5, 8–21 (2019). https://doi.org/10.30919/esee8c318
X. He, D. Ou, S. Wu, Y. Luo, Y. Ma et al., A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Adv. Compos. Hybrid Mater. 5, 21–38 (2022). https://doi.org/10.1007/s42114-021-00321-1
D. Pan, F. Su, H. Liu, Y. Ma, R. Das et al., The properties and preparation methods of different boron nitride nanostructures and applications of related nanocomposites. Chem. Rec. 20(11), 1314–1337 (2020). https://doi.org/10.1002/tcr.202000079
L. Deng, X. Wang, X. Hua, S. Lu, J. Wang et al., Purification of β -SiC powders by heat treatment in vacuum. Adv. Compos. Hybrid Mater. 3(2), 177–186 (2020). https://doi.org/10.1007/s42114-021-00372-4
H. Han, H. Sun, F. Lei, J. Huang, S. Lyu et al., Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management. ES Mater. Manuf. 15, 53–64 (2022). https://doi.org/10.30919/esmm5f523
Y. Hui, W. Xie, H. Gu, Reduced graphene oxide/nanocellulose/amino-multiwalled carbon nanotubes nanocomposite aerogel for excellent oil adsorption. ES Food Agrofor. 5, 38–44 (2021). https://doi.org/10.30919/esfaf531
D. Pan, X. Zhang, G. Yang, Y. Shang, F. Su et al., Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets. Ind. Eng. Chem. Res. 59(46), 20371–20381 (2020). https://doi.org/10.1021/acs.iecr.0c04510
H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid Mater. 4(1), 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1
Y. Zhou, F. Liu, C.Y. Chen, Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation. Adv. Compos. Hybrid Mater. 2(1), 46–50 (2019). https://doi.org/10.1007/s42114-019-00077-9
S. Wang, X. Lu, A. Negi, J. He, K. Kim et al., Revisiting the reduction of thermal conductivity in nano- to micro-grained bismuth telluride: the importance of grain-boundary thermal resistance. Eng. Sci. 17, 45–55 (2022). https://doi.org/10.30919/es8d513
C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang et al., Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv. Compos. Hybrid Mater. 1(1), 160–167 (2018). https://doi.org/10.1007/s42114-017-0013-2
D. Pan, J. Dong, G. Yang, F. Su, B. Chang et al., Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv. Compos. Hybrid Mater. 5, 58–70 (2022). https://doi.org/10.1007/s42114-021-00362-6
G. Yang, X. Zhang, Y. Shang, P. Xu, D. Pan et al., Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 201, 108521 (2021). https://doi.org/10.1016/j.compscitech.2020.108521
Y. Wu, Y. Xue, S. Qin, D. Liu, X. Wang et al., BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl. Mater. Interfaces 9(49), 43163–43170 (2017). https://doi.org/10.1021/acsami.7b15264
C. Xiao, Y. Guo, Y. Tang, J. Ding, X. Zhang et al., Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/ boron nitride nanosheets. Compos. Part B 187, 107855 (2020). https://doi.org/10.1016/j.compositesb.2020.107855
Y. Xie, Y. Yang, Y. Liu, S. Wang, X. Guo et al., Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv. Compos. Hybrid Mater. 4(3), 543–551 (2021). https://doi.org/10.1007/s42114-021-00249-6
J. Sun, X. Zhang, Q. Du, V. Murugadoss, D. Wu et al., The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater. Manuf. 13, 53–65 (2021). https://doi.org/10.30919/esmm5f450
X. Chen, J.S.K. Lim, W. Yan, F. Guo, Y.N. Liang et al., Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(14), 16987–16996 (2020). https://doi.org/10.1021/acsami.0c04882
W. Zhou, Y. Zhang, J. Wang, H. Li, W. Xu et al., Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets. ACS Appl. Mater. Interfaces 12(41), 46767–46778 (2020). https://doi.org/10.1021/acsami.0c11543
F. Xu, D. Bao, Y. Cui, Y. Gao, D. Lin et al., Copper nanop-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00367-1
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/pdms composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
H. Gu, C. Gao, X. Zhou, A. Du, N. Naik et al., Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 4(3), 459–468 (2021). https://doi.org/10.1007/s42114-021-00289-y
Y. Zhang, Y. Luo, Naturally derived nanomaterials for multidisciplinary applications and beyond. ES Food Agrof. 4, 1–2 (2021). https://doi.org/10.30919/esfaf484
Z. Zhuang, W. Wang, Y. Wei, T. Li, M. Ma et al., Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv. Compos. Hybrid Mater. 4(4), 938–945 (2021). https://doi.org/10.1007/s42114-021-00225-0
Y. Tong, W. Zhao, W. Wu, D. Zhang, G. He et al., Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design. Adv. Compos. Hybrid Mater. 5(1), 263–277 (2022). https://doi.org/10.1007/s42114-021-00333-x
K. Kim, H. Ju, J. Kim, Vertical p alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement. Compos. Sci. Technol. 123, 99–105 (2016). https://doi.org/10.1016/j.compscitech.2015.12.004
X. Zhang, Applications of kinetic methods in thermal analysis: a review. Eng. Sci. 14, 1–13 (2021). https://doi.org/10.30919/es8d1132
C. Liang, Y. Du, Y. Wang, A. Ma, S. Huang et al., Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 4(4), 979–988 (2021). https://doi.org/10.1007/s42114-021-00274-5
Y. Zhou, J. Zhang, C. Qu, L. Li, J. Kong et al., Synchronously improved wave-transparent performance and mechanical properties of cyanate ester resins via introducing fluorine-containing linear random copolymer. Adv. Compos. Hybrid Mater. 4(4), 1166–1175 (2021). https://doi.org/10.1007/s42114-021-00349-3
W. Wang, X. Deng, D. Liu, F. Luo, H. Cheng et al., Broadband radar-absorbing performance of square-hole structure. Adv. Compos. Hybrid Mater. 5, 525–535 (2022). https://doi.org/10.1007/s42114-021-00376-0
F. Luo, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 4(3), 591–601 (2021). https://doi.org/10.1007/s42114-021-00275-4
W. Shao, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on favorable comprehensive properties of superhydrophobic coating fabricated by polytetrafluoroethylene doped with graphene. Adv. Compos. Hybrid Mater. 4(3), 521–533 (2021). https://doi.org/10.1007/s42114-021-00243-y
S. Budumuru, M.S. Anuradha, Electromagnetic shielding and mechanical properties of al6061 metal matrix composite at x-band for oblique incidence. Adv. Compos. Hybrid Mater. 4(4), 1113–1121 (2021). https://doi.org/10.1007/s42114-021-00338-6
P. Zhang, X. Zhang, B. Li, L. Xu, F. Dang et al., Enhanced microwave absorption performance in an ultralight porous single-atom Co–N–C absorber. Adv. Compos. Hybrid Mater. 4(4), 1292–1301 (2021). https://doi.org/10.1007/s42114-021-00308-y
J. Zhang, W. Lei, J. Chen, D. Liu, B. Tang et al., Enhancing the thermal and mechanical properties of polyvinyl alcohol (PVA) with boron nitride nanosheets and cellulose nanocrystals. Polymer 148, 101–108 (2018). https://doi.org/10.1016/j.polymer.2018.06.029
T. Bai, Y. Guo, H. Liu, G. Song, D. Zhang et al., Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C 8(15), 5191–5201 (2020). https://doi.org/10.1039/d0tc00448k
C. Liu, Q. Fang, D. Wang, C. Yan, F. Liu et al., Carbon and boron nitride nanotubes: structure, property and fabrication. ES Mater. Manuf. 3, 2–15 (2019). https://doi.org/10.30919/esmm5f199
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), 202200705 (2022). https://doi.org/10.1002/anie.202200705
M.A. Kashfipour, N. Mehra, J. Zhu, A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater. 1(3), 415–439 (2018). https://doi.org/10.1007/s42114-018-0022-9
C. Yu, Q. Zhang, J. Zhang, R. Geng, W. Tian et al., One-step in situ ball milling synthesis of polymer-functionalized few-layered boron nitride and its application in high thermally conductive cellulose composites. ACS Appl. Nano Mater. 1(9), 4875–4883 (2018). https://doi.org/10.1021/acsanm.8b01047
H. Yan, Q. Li, Z. Wang, H. Wu, Y. Wu et al., Effect of different sintering additives on the microstructure, phase compositions and mechanical properties of Si3N4/SiC ceramics. ES Mater. Manuf. 15, 65–71 (2022). https://doi.org/10.30919/esmm5f487
T. Ishikawa, S. Kajii, K. Matsunaga, T. Hogami, Y. Kohtoku et al., A tough, thermally conductive silicon carbide composite with high strength up to 1600 degreesc in air. Science 282(5392), 1295–1297 (1998). https://doi.org/10.1126/science.282.5392.1295
X. Zhang, J. Dong, D. Pan, G. Yang, F. Su et al., Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties. Adv. Compos. Hybrid Mater. 4(4), 1102–1112 (2021). https://doi.org/10.1007/s42114-021-00335-9
Y. Xie, B. Zhou, A. Du, Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv. Comp. Hybrid Mater. 4(2), 248–256 (2021). https://doi.org/10.1007/s42114-021-00234-z
X. Li, W. Li, Q. Liu, S. Chen, L. Wang et al., Robust high-temperature supercapacitors based on sic nanowires. Adv. Funct. Mater. 31(8), 2008901 (2021). https://doi.org/10.1002/adfm.202008901
B. Du, D. Zhang, J. Qian, M. Cai, C. He et al., Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance. Adv. Compos. Hybrid Mater. 4(4), 1281–1291 (2021). https://doi.org/10.1007/s42114-021-00286-1
J. Xu, J. Cao, M. Guo, S. Yang, H. Yao et al., Metamaterial mechanical antenna for very low frequency wireless communication. Adv. Compos. Hybrid Mater. 4(3), 761–767 (2021). https://doi.org/10.1007/s42114-021-00278-1
Z. Guo, A. Li, Z. Sun, Z. Yan, H. Liu et al., Negative permittivity behavior in microwave frequency from cellulose-derived carbon nanofibers. Adv. Compos. Hybrid Mater. 5, 50–57 (2022). https://doi.org/10.1007/s42114-021-00314-0
D.M. Guo, Q.D. An, Z. Xiao, S.R. Zhai, Z. Shi, Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(vi) from aqueous solution. RSC Adv. 7(85), 54039–54052 (2017). https://doi.org/10.1039/c7ra09940a
Z. He, M. Yang, L. Wang, E. Bao, H. Zhang, Concentrated photovoltaic thermoelectric hybrid system: an experimental and machine learning study. Eng. Sci. 15, 47–56 (2021). https://doi.org/10.30919/es8d440
Y. Li, J. Guo, M. Li, Y. Tang, V. Murugadoss et al., Recent application of cellulose gel in flexible sensing-a review. ES Food Agrofor. 4, 9–27 (2021). https://doi.org/10.30919/esfaf466
M.A. Kashfipour, N. Mehra, R.S. Dent, J. Zhu, Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Eng. Sci. 8, 11–18 (2019). https://doi.org/10.30919/es8d508
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
N. Chen, T. Li, Y. Wang, L. Pan, W. Bao et al., Generalized “slope method” of the 3ω analysis to measure the thermal conductivity and heat capacity of solids: frequency- vs. current-sweep. ES Energy Environ. 10, 13–21 (2020). https://doi.org/10.30919/esee8c725
X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong et al., A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid Mater. 1(2), 207–230 (2018). https://doi.org/10.1007/s42114-018-0031-8
X. Hu, H. Wu, S. Liu, S. Gong, Y. Du et al., Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng. Sci. 17, 1–27 (2022). https://doi.org/10.30919/es8d474
J.P. Huang, Thermal metamaterials make it possible to control the flow of heat at will. ES Energy Environ. 6, 1–3 (2019). https://doi.org/10.30919/esee8c368
H. Fu, Y. Xiao, P. Li, W. Qian, D. Li et al., Ultrasonic-assisted soldering for graphite films as heat sinks with durably superior heat dissipating efficiency. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00255-8
Y. Xue, S. Lofland, X. Hu, Protein-based flexible thermal conductive materials with continuous network structure: Fabrication, properties, and theoretical modeling. Compos. Part B 201, 108377 (2020). https://doi.org/10.1016/j.compositesb.2020.108377
C. Fu, C. Yan, L. Ren, X. Zeng, G. Du et al., Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanops. Compos. Sci. Technol. 177, 118–126 (2019). https://doi.org/10.1016/j.compscitech.2019.04.026
Q.Y. Li, Q. Hao, T. Zhu, M. Zebarjadi, M. Zebarjadi, Nanostructured and heterostructured 2D materials for thermoelectrics. Eng. Sci. 13, 24–50 (2021). https://doi.org/10.30919/es8d1136
C. Liu, C. Wu, P. Lu, Y. Zhao, Non-monotonic thickness dependent hydrodynamic phonon transport in layered titanium trisulphide: first-principles calculation and improved callaway model fitting. ES Energy Environ. 14, 34–42 (2021). https://doi.org/10.30919/esee8c521
Q. Hao, J. Garg, A review on phonon transport within polycrystalline materials. ES Mater. Manuf. 14, 36–50 (2021). https://doi.org/10.30919/esmm5f480
R.K. Bhushan, Effect of SiC p size and weight % on mechanical properties of AA7075 sic composite. Adv. Compos. Hybrid Mater. 4(1), 74–85 (2021). https://doi.org/10.1007/s42114-020-00175-z
D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77, 756–774 (2014). https://doi.org/10.1016/j.carbon.2014.05.080
R. Asmatulu, P.K. Bollavaram, V.R. Patlolla, I.M. Alarifi, W.S. Khan, Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and emi shielding. Adv. Compos. Hybrid Mater. 3(1), 66–83 (2020). https://doi.org/10.1007/s42114-020-00135-7
P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4(1), 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4159-z
R. Dilli, R. Chandra, D. Jordhana, Ultra-massive MIMO technologies for 6G wireless networks. Eng. Sci. 16, 308–318 (2021). https://doi.org/10.30919/es8d571
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@ FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5