High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium–Sulfur Batteries
Corresponding Author: Naiqing Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 40
Abstract
Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium–sulfur (Li–S) batteries. Herein, high-index faceted iron oxide (Fe2O3) nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts, effectively improving the electrochemical performance of Li–S batteries. The theoretical and experimental results all indicate that high-index Fe2O3 crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li2S. The Li–S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g−1 at 0.1 C and excellent cycling performance with a low capacity fading of 0.025% per cycle during 1600 cycles at 2 C. Even with a high sulfur loading of 9.41 mg cm−2, a remarkable areal capacity of 7.61 mAh cm−2 was maintained after 85 cycles. This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering, deepening the comprehending of facet-dependent activity of catalysts in Li–S chemistry, affording a novel perspective for the design of advanced sulfur electrodes.
Highlights:
1 High-index faceted Fe2O3 nanocrystals with abundant unsaturated Fe sites not only have strong adsorption capacity to anchor LiPSs but also have superior catalytic activity to facilitate the redox conversion of LiPSs and reduce the decomposition energy barrier of Li2S.
2 Our work deepens the comprehending of facet-dependent activity of catalysts in Li–S chemistry and affords a novel perspective for the design of advanced sulfur electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
- R.F. Service, Lithium-sulfur batteries poised for leap. Science 359(6380), 1080–1081 (2018). http://science.sciencemag.org/content/359/6380/1080
- C. Zhao, G.L. Xu, Z. Yu, L. Zhang, I. Hwang et al., A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
- B. Guan, X. Sun, Y. Zhang, X. Wu, Y. Qiu et al., The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. Chin. Chem. Lett. 32, 2249–2253 (2021). https://doi.org/10.1016/j.cclet.2020.12.051
- Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
- Y.X. Yao, X.Q. Zhang, B.Q. Li, C. Yan, P.Y. Chen et al., A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2(2), 379–388 (2020). https://doi.org/10.1002/inf2.12046
- X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui et al., Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. 60(5), 2371–2378 (2021). https://doi.org/10.1002/anie.202011493
- L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
- J.R. He, G. Hartmann, M. Lee, G.S. Hwang, Y.F. Chen et al., Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 12(1), 344–350 (2019). https://doi.org/10.1039/C8EE03252A
- L. Zhou, D.L. Danilov, R.A. Eichel, P.H.L. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 11(15), 2001304 (2021). https://doi.org/10.1002/aenm.202001304
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulphide mediator for lithium-sulphur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
- Z. Shi, M. Li, J. Sun, Z. Chen, Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives. Adv. Energy Mater. 11(23), 2100332 (2021). https://doi.org/10.1002/aenm.202100332
- G. Zhang, H.J. Peng, C.Z. Zhao, X. Chen, L.D. Zhao et al., The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium–sulfur batteries. Angew. Chem. Int. Ed. 57(51), 16732–16736 (2018). https://doi.org/10.1002/anie.201810132
- X. Song, D. Tian, Y. Qiu, X. Sun, B. Jiang et al., Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries. Energy Storage Mater. 41, 248–254 (2021). https://doi.org/10.1016/j.ensm.2021.05.028
- W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
- J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan et al., Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2(12), 2681–2693 (2018). https://doi.org/10.1016/j.joule.2018.08.010
- Z. Li, J. Zhang, B. Guan, D. Wang, L.M. Liu et al., A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 7, 13065 (2016). https://doi.org/10.1038/ncomms13065
- Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
- D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang et al., Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium–sulfur batteries. ACS Nano 15(10), 16515–16524 (2021). https://doi.org/10.1021/acsnano.1c06067
- J. Park, B.C. Yu, J.S. Park, J.W. Choi, C. Kim et al., Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater. 7, 1602567 (2017). https://doi.org/10.1002/aenm.201602567
- Y. Yan, P. Zhang, Z. Qu, M. Tong, S. Zhao et al., Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery. Nano Lett. 20(10), 7662–7669 (2020). https://doi.org/10.1021/acs.nanolett.0c03203
- N. Wei, L. Yu, Z. Sun, Y. Song, M. Wang et al., Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 13(7), 7517–7526 (2019). https://doi.org/10.1021/acsnano.9b03157
- Z. Wei, Y. Ren, J. Sokolowski, X. Zhu, G. Wu, Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2(3), 483–508 (2020). https://doi.org/10.1002/inf2.12097
- Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
- X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
- C. Ye, Y. Jiao, H. Jin, A.D. Slattery, K. Davey et al., 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem. Int. Ed. 57(51), 16703–16707 (2018). https://doi.org/10.1002/anie.201810579
- D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu et al., MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 9(46), 1901940 (2019). https://doi.org/10.1002/aenm.201901940
- X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
- J. Xu, L. Yang, S. Cao, J. Wang, Y. Ma et al., Sandwiched cathodes assembled from CoS2-modified carbon clothes for high-performance lithium-sulfur batteries. Adv. Sci. 8(16), 2101019 (2021). https://doi.org/10.1002/advs.202101019
- Y. You, Y. Ye, M. Wei, W. Sun, Q. Tang et al., Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 355, 671–678 (2019). https://doi.org/10.1016/j.cej.2018.08.176
- H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu et al., Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 140(4), 1455–1459 (2018). https://doi.org/10.1021/jacs.7b11434
- L. Wang, N.T. Nguyen, Z.Q. Shen, P. Schmuki, Y.P. Bi, Hematite dodecahedron crystals with high-index facets grown and grafted on one dimensional structures for efficient photoelectrochemical H2 generation. Nano Energy 50, 331–338 (2018). https://doi.org/10.1016/j.nanoen.2018.05.039
- J.Z. Yin, Z.N. Yu, F. Gao, J.J. Wang, H.A. Pang et al., Low-symmetry iron oxide nanocrystals bound by high-index facets. Angew. Chem. Int. Ed. 49(36), 6328–6332 (2010). https://doi.org/10.1002/anie.201002557
- X. Han, G. He, Y. He, J. Zhang, X. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8(10), 1702222 (2018). https://doi.org/10.1002/aenm.201702222
- J. Ouyang, J. Pei, Q. Kuang, Z. Xie, L. Zheng, Supersaturation-controlled shape evolution of α Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. ACS Appl. Mater. Interfaces 6(15), 12505–12514 (2014). https://doi.org/10.1021/am502358g
- N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825), 732–735 (2007). https://doi.org/10.1126/science.1140484
- C. Xiao, B.A. Lu, P. Xue, N. Tian, Z.Y. Zhou et al., High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 4(12), 2562–2598 (2020). https://doi.org/10.1016/j.joule.2020.10.002
- B. Jiang, L. Xu, W. Chen, C. Zou, Y. Yang et al., Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS). Nano Res. 10, 3509–3521 (2017). https://doi.org/10.1007/s12274-017-1562-y
- X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang et al., Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 48(48), 9180–9183 (2009). https://doi.org/10.1002/anie.200903926
- S. Sun, X. Zhang, J. Cui, Q. Yang, S. Liang, High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale 11(34), 15739–15762 (2019). https://doi.org/10.1039/C9NR05107D
- W. Guo, W. Sun, L.P. Lv, S. Kong, Y. Wang, Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11, 4198–4205 (2017). https://doi.org/10.1021/acsnano.7b01152
- X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333–3338 (2011). https://doi.org/10.1021/nn200493r
- W. Wu, R. Hao, F. Liu, X. Su, Y. Hou, Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. J. Mater. Chem. A 1(23), 6888–6894 (2013). https://doi.org/10.1039/C3TA10886D
- C.J. Jia, L.D. Sun, F. Luo, X.D. Han, L.J. Heyderman et al., Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 130, 16968–16977 (2008). https://doi.org/10.1021/ja805152t
- L. Sun, X. Han, K. Liu, S. Yin, Q. Chen et al., Template-free construction of hollow α-Fe2O3 hexagonal nanocolumn particles with an exposed special surface for advanced gas sensing properties. Nanoscale 7(21), 9416–9420 (2015). https://doi.org/10.1039/C5NR01790D
- H. Wu, T. Yang, Y. Du, L. Shen, G.W. Ho, Identification of facet-governing reactivity in hematite for oxygen evolution. Adv. Mater. 30(52), 1804341 (2018). https://doi.org/10.1002/adma.201804341
- H. Liang, X. Jiang, Z. Qi, W. Chen, Z. Wu et al., Hematite concave nanocubes and their superior catalytic activity for low temperature CO oxidation. Nanoscale 6(13), 7199–7203 (2014). https://doi.org/10.1039/C4NR00552J
- F. Gao, R. Liu, J. Yin, Q. Lu, Synthesis of polyhedral iron oxide nanocrystals bound by high-index facets. Sci. China Chem. 57, 114–121 (2014). https://doi.org/10.1007/s11426-013-4973-y
- C. Zheng, S. Niu, W. Lv, G. Zhou, J. Li et al., Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 33, 306–312 (2017). https://doi.org/10.1016/j.nanoen.2017.01.040
- D.P. Cai, T. Yang, B. Liu, D.D. Wang, Y. Liu et al., A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J. Mater. Chem. A 2(34), 13990–13995 (2014). https://doi.org/10.1039/C4TA01850H
- L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
- B. Jiang, Y. Yuan, W. Wang, K. He, C. Zou et al., Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nat. Commun. 12, 5661 (2021). https://doi.org/10.1038/s41467-021-25969-7
- Y. Niu, Y. Yuan, Q. Zhang, F. Chang, L. Yang et al., Morphology-controlled synthesis of metal-organic frameworks derived lattice plane-altered iron oxide for efficient trifunctional electrocatalysts. Nano Energy 82, 105699 (2021). https://doi.org/10.1016/j.nanoen.2020.105699
- B. Wei, C. Shang, X. Wang, G. Zhou, Conductive FeOOH as multifunctional interlayer for superior lithium-sulfur batteries. Small 16, 2002789 (2020). https://doi.org/10.1002/smll.202002789
- M. Chen, H. Yin, X. Li, Y. Qiu, G. Cao et al., Facet- and defect-engineered Pt/Fe2O3 nanocomposite catalyst for catalytic oxidation of airborne formaldehyde under ambient conditions. J. Hazard. Mater. 395, 122628 (2020). https://doi.org/10.1016/j.jhazmat.2020.122628
- Y. Qiu, L. Fan, M. Wang, X. Yin, X. Wu et al., Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium-sulfur batteries. ACS Nano 14(1), 16105–16113 (2020). https://doi.org/10.1021/acsnano.0c08056
- J. Shen, X. Xu, J. Liu, Z. Liu, F. Li et al., Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano 13(8), 8986–8996 (2019). https://doi.org/10.1021/acsnano.9b02903
- Z.Q. Ye, Y. Jiang, L. Li, F. Wu, R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
- H.B. Tao, L. Fang, J. Chen, H.B. Yang, J. Gao et al., Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 138, 9978–9985 (2016). https://doi.org/10.1021/jacs.6b05398
- J. Yu, J. Xiao, A. Li, Z. Yang, L. Zeng et al., Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem. Int. Ed. 59(31), 13071–13078 (2020). https://doi.org/10.1002/anie.202004914
- M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 5(9), 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
- Z.Z. Du, X.J. Chen, W. Hu, C.H. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
References
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
R.F. Service, Lithium-sulfur batteries poised for leap. Science 359(6380), 1080–1081 (2018). http://science.sciencemag.org/content/359/6380/1080
C. Zhao, G.L. Xu, Z. Yu, L. Zhang, I. Hwang et al., A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
B. Guan, X. Sun, Y. Zhang, X. Wu, Y. Qiu et al., The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. Chin. Chem. Lett. 32, 2249–2253 (2021). https://doi.org/10.1016/j.cclet.2020.12.051
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/C5CS00410A
Y.X. Yao, X.Q. Zhang, B.Q. Li, C. Yan, P.Y. Chen et al., A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2(2), 379–388 (2020). https://doi.org/10.1002/inf2.12046
X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui et al., Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. 60(5), 2371–2378 (2021). https://doi.org/10.1002/anie.202011493
L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
J.R. He, G. Hartmann, M. Lee, G.S. Hwang, Y.F. Chen et al., Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 12(1), 344–350 (2019). https://doi.org/10.1039/C8EE03252A
L. Zhou, D.L. Danilov, R.A. Eichel, P.H.L. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 11(15), 2001304 (2021). https://doi.org/10.1002/aenm.202001304
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulphide mediator for lithium-sulphur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
Z. Shi, M. Li, J. Sun, Z. Chen, Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives. Adv. Energy Mater. 11(23), 2100332 (2021). https://doi.org/10.1002/aenm.202100332
G. Zhang, H.J. Peng, C.Z. Zhao, X. Chen, L.D. Zhao et al., The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium–sulfur batteries. Angew. Chem. Int. Ed. 57(51), 16732–16736 (2018). https://doi.org/10.1002/anie.201810132
X. Song, D. Tian, Y. Qiu, X. Sun, B. Jiang et al., Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries. Energy Storage Mater. 41, 248–254 (2021). https://doi.org/10.1016/j.ensm.2021.05.028
W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan et al., Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2(12), 2681–2693 (2018). https://doi.org/10.1016/j.joule.2018.08.010
Z. Li, J. Zhang, B. Guan, D. Wang, L.M. Liu et al., A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 7, 13065 (2016). https://doi.org/10.1038/ncomms13065
Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang et al., Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium–sulfur batteries. ACS Nano 15(10), 16515–16524 (2021). https://doi.org/10.1021/acsnano.1c06067
J. Park, B.C. Yu, J.S. Park, J.W. Choi, C. Kim et al., Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater. 7, 1602567 (2017). https://doi.org/10.1002/aenm.201602567
Y. Yan, P. Zhang, Z. Qu, M. Tong, S. Zhao et al., Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery. Nano Lett. 20(10), 7662–7669 (2020). https://doi.org/10.1021/acs.nanolett.0c03203
N. Wei, L. Yu, Z. Sun, Y. Song, M. Wang et al., Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 13(7), 7517–7526 (2019). https://doi.org/10.1021/acsnano.9b03157
Z. Wei, Y. Ren, J. Sokolowski, X. Zhu, G. Wu, Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2(3), 483–508 (2020). https://doi.org/10.1002/inf2.12097
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
C. Ye, Y. Jiao, H. Jin, A.D. Slattery, K. Davey et al., 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem. Int. Ed. 57(51), 16703–16707 (2018). https://doi.org/10.1002/anie.201810579
D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu et al., MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 9(46), 1901940 (2019). https://doi.org/10.1002/aenm.201901940
X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
J. Xu, L. Yang, S. Cao, J. Wang, Y. Ma et al., Sandwiched cathodes assembled from CoS2-modified carbon clothes for high-performance lithium-sulfur batteries. Adv. Sci. 8(16), 2101019 (2021). https://doi.org/10.1002/advs.202101019
Y. You, Y. Ye, M. Wei, W. Sun, Q. Tang et al., Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 355, 671–678 (2019). https://doi.org/10.1016/j.cej.2018.08.176
H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu et al., Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 140(4), 1455–1459 (2018). https://doi.org/10.1021/jacs.7b11434
L. Wang, N.T. Nguyen, Z.Q. Shen, P. Schmuki, Y.P. Bi, Hematite dodecahedron crystals with high-index facets grown and grafted on one dimensional structures for efficient photoelectrochemical H2 generation. Nano Energy 50, 331–338 (2018). https://doi.org/10.1016/j.nanoen.2018.05.039
J.Z. Yin, Z.N. Yu, F. Gao, J.J. Wang, H.A. Pang et al., Low-symmetry iron oxide nanocrystals bound by high-index facets. Angew. Chem. Int. Ed. 49(36), 6328–6332 (2010). https://doi.org/10.1002/anie.201002557
X. Han, G. He, Y. He, J. Zhang, X. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8(10), 1702222 (2018). https://doi.org/10.1002/aenm.201702222
J. Ouyang, J. Pei, Q. Kuang, Z. Xie, L. Zheng, Supersaturation-controlled shape evolution of α Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. ACS Appl. Mater. Interfaces 6(15), 12505–12514 (2014). https://doi.org/10.1021/am502358g
N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825), 732–735 (2007). https://doi.org/10.1126/science.1140484
C. Xiao, B.A. Lu, P. Xue, N. Tian, Z.Y. Zhou et al., High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 4(12), 2562–2598 (2020). https://doi.org/10.1016/j.joule.2020.10.002
B. Jiang, L. Xu, W. Chen, C. Zou, Y. Yang et al., Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS). Nano Res. 10, 3509–3521 (2017). https://doi.org/10.1007/s12274-017-1562-y
X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang et al., Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 48(48), 9180–9183 (2009). https://doi.org/10.1002/anie.200903926
S. Sun, X. Zhang, J. Cui, Q. Yang, S. Liang, High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale 11(34), 15739–15762 (2019). https://doi.org/10.1039/C9NR05107D
W. Guo, W. Sun, L.P. Lv, S. Kong, Y. Wang, Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11, 4198–4205 (2017). https://doi.org/10.1021/acsnano.7b01152
X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333–3338 (2011). https://doi.org/10.1021/nn200493r
W. Wu, R. Hao, F. Liu, X. Su, Y. Hou, Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. J. Mater. Chem. A 1(23), 6888–6894 (2013). https://doi.org/10.1039/C3TA10886D
C.J. Jia, L.D. Sun, F. Luo, X.D. Han, L.J. Heyderman et al., Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 130, 16968–16977 (2008). https://doi.org/10.1021/ja805152t
L. Sun, X. Han, K. Liu, S. Yin, Q. Chen et al., Template-free construction of hollow α-Fe2O3 hexagonal nanocolumn particles with an exposed special surface for advanced gas sensing properties. Nanoscale 7(21), 9416–9420 (2015). https://doi.org/10.1039/C5NR01790D
H. Wu, T. Yang, Y. Du, L. Shen, G.W. Ho, Identification of facet-governing reactivity in hematite for oxygen evolution. Adv. Mater. 30(52), 1804341 (2018). https://doi.org/10.1002/adma.201804341
H. Liang, X. Jiang, Z. Qi, W. Chen, Z. Wu et al., Hematite concave nanocubes and their superior catalytic activity for low temperature CO oxidation. Nanoscale 6(13), 7199–7203 (2014). https://doi.org/10.1039/C4NR00552J
F. Gao, R. Liu, J. Yin, Q. Lu, Synthesis of polyhedral iron oxide nanocrystals bound by high-index facets. Sci. China Chem. 57, 114–121 (2014). https://doi.org/10.1007/s11426-013-4973-y
C. Zheng, S. Niu, W. Lv, G. Zhou, J. Li et al., Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 33, 306–312 (2017). https://doi.org/10.1016/j.nanoen.2017.01.040
D.P. Cai, T. Yang, B. Liu, D.D. Wang, Y. Liu et al., A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J. Mater. Chem. A 2(34), 13990–13995 (2014). https://doi.org/10.1039/C4TA01850H
L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
B. Jiang, Y. Yuan, W. Wang, K. He, C. Zou et al., Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nat. Commun. 12, 5661 (2021). https://doi.org/10.1038/s41467-021-25969-7
Y. Niu, Y. Yuan, Q. Zhang, F. Chang, L. Yang et al., Morphology-controlled synthesis of metal-organic frameworks derived lattice plane-altered iron oxide for efficient trifunctional electrocatalysts. Nano Energy 82, 105699 (2021). https://doi.org/10.1016/j.nanoen.2020.105699
B. Wei, C. Shang, X. Wang, G. Zhou, Conductive FeOOH as multifunctional interlayer for superior lithium-sulfur batteries. Small 16, 2002789 (2020). https://doi.org/10.1002/smll.202002789
M. Chen, H. Yin, X. Li, Y. Qiu, G. Cao et al., Facet- and defect-engineered Pt/Fe2O3 nanocomposite catalyst for catalytic oxidation of airborne formaldehyde under ambient conditions. J. Hazard. Mater. 395, 122628 (2020). https://doi.org/10.1016/j.jhazmat.2020.122628
Y. Qiu, L. Fan, M. Wang, X. Yin, X. Wu et al., Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium-sulfur batteries. ACS Nano 14(1), 16105–16113 (2020). https://doi.org/10.1021/acsnano.0c08056
J. Shen, X. Xu, J. Liu, Z. Liu, F. Li et al., Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano 13(8), 8986–8996 (2019). https://doi.org/10.1021/acsnano.9b02903
Z.Q. Ye, Y. Jiang, L. Li, F. Wu, R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
H.B. Tao, L. Fang, J. Chen, H.B. Yang, J. Gao et al., Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 138, 9978–9985 (2016). https://doi.org/10.1021/jacs.6b05398
J. Yu, J. Xiao, A. Li, Z. Yang, L. Zeng et al., Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem. Int. Ed. 59(31), 13071–13078 (2020). https://doi.org/10.1002/anie.202004914
M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 5(9), 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
Z.Z. Du, X.J. Chen, W. Hu, C.H. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973