An Ultra-Durable Windmill-Like Hybrid Nanogenerator for Steady and Efficient Harvesting of Low-Speed Wind Energy
Corresponding Author: Xue Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 175
Abstract
Wind energy is one of the most promising and renewable energy sources; however, owing to the limitations of device structures, collecting low-speed wind energy by triboelectric nanogenerators (TENGs) is still a huge challenge. To solve this problem, an ultra-durable and highly efficient windmill-like hybrid nanogenerator (W-HNG) is developed. Herein, the W-HNG composes coupled TENG and electromagnetic generator (EMG) and adopts a rotational contact-separation mode. This unique design efficiently avoids the wear of friction materials and ensures a prolonged service life. Moreover, the generator group is separated from the wind-driven part, which successfully prevents rotation resistance induced by the friction between rotor and stator in the conventional structures, and realizes low-speed wind energy harvesting. Additionally, the output characteristics of TENG can be complementary to the different performance advantages of EMG to achieve a satisfactory power production. The device is successfully driven when the wind speed is 1.8 m s−1, and the output power of TENG and EMG can achieve 0.95 and 3.7 mW, respectively. After power management, the W-HNG has been successfully applied as a power source for electronic devices. This work provides a simple, reliable, and durable device for improved performance toward large-scale low-speed breeze energy harvesting.
Highlights:
1 A novel windmill-like hybrid nanogenerator with contact-separation structure was proposed for harvesting breeze energy at low wind speed.
2 A spring steel sheet was creatively used both as an electrode of triboelectric nanogenerator and a booster for contact-separation activity.
3 A magnetic acting as a bifunctional element supplies magnetic flux variation in electromagnetic generator and overcomes electrostatic adsorption between tribolayers simultaneously.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010
- Article
- MATH
- Google Scholar
- J.H. Nord, A. Koohang, J. Paliszkiewicz, The internet of things: review and theoretical framework. Expert Syst. Appl. 133, 97–108 (2019). https://doi.org/10.1016/j.eswa.2019.05.014
- L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11, 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
- T.C. Li, H.Q. Fan, J. García, J.M. Corchado, Second-order statistics analysis and comparison between arithmet tracking IC and geometric average fusion: application to multi-sensor target. Inform. Fusion. 51, 233–243 (2019). https://doi.org/10.1016/j.inffus.2019.02.009
- H. Shao, P. Cheng, R. Chen, R.N. Sun, Q. Shen et al., Triboelectric–electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10, 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- Q.X. Zeng, Y. Wu, Q. Tang, W.L. Liu, J. Wu et al., A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy 70, 104524 (2020). https://doi.org/10.1016/j.nanoen.2020.104524
- Y. Wu, Q.X. Zeng, Q. Tang, W.L. Liu, G.L. Liu et al., A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 67, 104205 (2020). https://doi.org/10.1016/j.nanoen.2019.104205
- G.L. Liu, J. Chen, Q. Tang, L. Feng, H.K. Yang et al., Wireless electric energy transmission through various isolated solid media based on triboelectric nanogenerator. Adv. Energy Mater. 8(14), 1703086 (2018). https://doi.org/10.1002/aenm.201703086
- O. Artal, O. Pizarro, H.H. Sepúlveda, The impact of spring-neap tidal-stream cycles in tidal energy assessments in the chilean inland sea. Renew. Energy 139, 496–506 (2019). https://doi.org/10.1016/j.renene.2019.02.092
- H.J. Seok, A. Ali, J.H. Seo, H.H. Lee, N.E. Jung, Y. Yi, H.K. Kim, Zno:Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells. Sci. Technol. Adv. Mater. 20(1), 389–400 (2019). https://doi.org/10.1080/14686996.2019.1599695
- Z. Wen, H. Guo, Y. Zi, M.H. Yeh, X. Wang et al., Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526–6534 (2016). https://doi.org/10.1021/acsnano.6b03293
- H.Y. Shao, Z. Wen, P. Cheng, N. Sun, Q.Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
- J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C. PortilloGuisado et al., Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006). https://doi.org/10.1109/TIE.2006.878356
- Z. Chen, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. 24(8), 1859–1875 (2009). https://doi.org/10.1109/TPEL.2009.2017082
- Y.C. Xue, N.L. Tai, Review of contribution to frequency control through variable speed wind turbine. Renew. Energy 36(6), 1671–1677 (2011). https://doi.org/10.1016/j.renene.2010.11.009
- R.H. Qu, Y.Z. Liu, W. Jin, Review of superconducting generator topologies for direct-drive wind turbines. IEEE Trans. Appl. Supercond. 23(3), 5201108 (2013). https://doi.org/10.1109/TASC.2013.2241387
- D.W. Xiang, L. Ran, P.J. Tavner, S. Yang, Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Trans. Energy Convers. 21(3), 652–662 (2006). https://doi.org/10.1109/TEC.2006.875783
- Y. Lei, A. Mullane, G. Lightbody, R. Yacamini, Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Trans. Energy Convers. 21(1), 257–264 (2006). https://doi.org/10.1109/TEC.2005.847958
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- W.C. Wang, J.C. Xu, H.W. Zheng, F.Q. Chen, K. Jenkins et al., A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system. Nanoscale 10(30), 14747–14754 (2018). https://doi.org/10.1039/C8NR04276D
- C.R.S. Rodrigues, C.A.S. Alves, J. Puga, A.M. Pereira, J.O. Ventura, Triboelectric driven turbine to generate electricity from the motion of water. Nano Energy 30, 379–386 (2016). https://doi.org/10.1016/j.nanoen.2016.09.038
- Y.L. Zi, H.Y. Guo, Z. Wen, M.H. Yeh, C.G. Hu, Z.L. Wang, Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). https://doi.org/10.1021/acsnano.6b01569
- H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang et al., A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
- Y. Wu, S. Kuang, H. Li, H. Wang, R. Yang et al., Triboelectric-thermoelectric hybrid nanogenerator for harvesting energy from ambient environments. Adv. Mater. Technol. 3(11), 1800166 (2018). https://doi.org/10.1002/admt.201800166
- L.-B. Huang, W. Xu, G. Bai, M.-C. Wong, Z. Yang, J. Hao, Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30, 36–42 (2016). https://doi.org/10.1016/j.nanoen.2016.09.032
- S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han et al., Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14, 217–225 (2015). https://doi.org/10.1016/j.nanoen.2014.12.013
- Y.N. Xie, S.H. Wang, L. Lin, Q.S. Jing, Z.H. Lin et al., Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7(8), 7 (2013). https://doi.org/10.1021/nn402477h
- M. Perez, S. Boisseau, M. Geisler, G. Despesse, J.L. Reboud, A triboelectric wind turbine for small-scale energy harvesting. J. Phys: Conf. Ser. 773, 012118 (2016). https://doi.org/10.1088/1742-6596/773/1/012118
- H. Yong, J. Chung, D. Choi, D. Jung, M. Cho, S. Lee, Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range. Sci. Rep. 6, 33977 (2016). https://doi.org/10.1038/srep33977
- Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong et al., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7(10), 9461–9468 (2013). https://doi.org/10.1021/nn4043157
- J. Bae, J. Lee, S. Kim, J. Ha, B.S. Lee et al., Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5, 4929 (2014). https://doi.org/10.1038/ncomms5929
- T. Chen, Y. Xia, W. Liu, H. Liu, L. Sun, C. Lee, A hybrid flapping-blade wind energy harvester based on vortex shedding effect. J. Microelectromech. Syst. 25(5), 845–847 (2016). https://doi.org/10.1109/JMEMS.2016.2588529
- A.N. Ravichandran, C. Calmes, J.R. Serres, M. Ramuz, S. Blayac, Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy 62, 449–457 (2019). https://doi.org/10.1016/j.nanoen.2019.05.053
- Z. Quan, C.B. Han, T. Jiang, Z.L. Wang, Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6(5), 1501799 (2016). https://doi.org/10.1002/aenm.201501799
- H. Lin, M. He, Q. Jing, W. Yang, S. Wang et al., Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy 56, 269–276 (2019). https://doi.org/10.1016/j.nanoen.2018.11.037
- C.L. Archer, Evaluation of global wind power. J. Geophys. Res. 110(D12), D12110 (2005). https://doi.org/10.1029/2004JD005462
- Z. Zhao, X. Pu, C. Du, L. Li, C. Jiang, W. Hu, Z.L. Wang, Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 10(2), 1780–1787 (2016). https://doi.org/10.1021/acsnano.5b07157
- T. Chen, M. Zhao, Q. Shi, Z. Yang, H. Liu et al., Novel augmented reality interface using a self-powered triboelectric based virtual reality 3d-control sensor. Nano Energy 51, 162–172 (2018). https://doi.org/10.1016/j.nanoen.2018.06.022
- A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.-J. Kim, Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019). https://doi.org/10.1021/acssuschemeng.9b00175
- M. Xu, Y.-C. Wang, S.L. Zhang, W. Ding, J. Cheng et al., An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mech. Lett. 15, 122–129 (2017). https://doi.org/10.1016/j.eml.2017.07.005
- C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
- X. Wang, Z. Wen, H. Guo, C. Wu, X. He et al., Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
- P. Bai, G. Zhu, Y.S. Zhou, S. Wang, J. Ma, G. Zhang, Z.L. Wang, Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 7(7), 990–997 (2014). https://doi.org/10.1007/s12274-014-0461-8
- T. Zhou, L. Zhang, F. Xue, W. Tang, C. Zhang, Z.L. Wang, Multilayered electret films based triboelectric nanogenerator. Nano Res. 9(5), 1442–1451 (2016). https://doi.org/10.1007/s12274-016-1040-y
- G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
- H. Chu, H. Jang, Y. Lee, Y. Chae, J.-H. Ahn, Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy 27, 298–305 (2016). https://doi.org/10.1016/j.nanoen.2016.07.009
- B. Yang, W. Zeng, Z.-H. Peng, S.-R. Liu, K. Chen, X.-M. Tao, A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source. Adv. Energy Mater. 6(16), 1600505 (2016). https://doi.org/10.1002/aenm.201600505
- Z. Wang, W. Liu, J. Hu, W. He, H. Yang et al., Two voltages in contact-separation triboelectric nanogenerator: from asymmetry to symmetry for maximum output. Nano Energy 69, 104452 (2020). https://doi.org/10.1016/j.nanoen.2020.104452
- K.Y. Lee, J. Chun, J.H. Lee, K.N. Kim, N.R. Kang et al., Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26(29), 5037–5042 (2014). https://doi.org/10.1002/adma.201401184
- L. Zhang, L. Jin, B. Zhang, W. Deng, H. Pan et al., Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 16, 516–523 (2015). https://doi.org/10.1016/j.nanoen.2015.06.012
- W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9(10), 635–636 (1938). https://doi.org/10.1063/1.1710367
References
L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010
Article
MATH
Google Scholar
J.H. Nord, A. Koohang, J. Paliszkiewicz, The internet of things: review and theoretical framework. Expert Syst. Appl. 133, 97–108 (2019). https://doi.org/10.1016/j.eswa.2019.05.014
L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11, 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
T.C. Li, H.Q. Fan, J. García, J.M. Corchado, Second-order statistics analysis and comparison between arithmet tracking IC and geometric average fusion: application to multi-sensor target. Inform. Fusion. 51, 233–243 (2019). https://doi.org/10.1016/j.inffus.2019.02.009
H. Shao, P. Cheng, R. Chen, R.N. Sun, Q. Shen et al., Triboelectric–electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10, 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
Q.X. Zeng, Y. Wu, Q. Tang, W.L. Liu, J. Wu et al., A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy 70, 104524 (2020). https://doi.org/10.1016/j.nanoen.2020.104524
Y. Wu, Q.X. Zeng, Q. Tang, W.L. Liu, G.L. Liu et al., A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 67, 104205 (2020). https://doi.org/10.1016/j.nanoen.2019.104205
G.L. Liu, J. Chen, Q. Tang, L. Feng, H.K. Yang et al., Wireless electric energy transmission through various isolated solid media based on triboelectric nanogenerator. Adv. Energy Mater. 8(14), 1703086 (2018). https://doi.org/10.1002/aenm.201703086
O. Artal, O. Pizarro, H.H. Sepúlveda, The impact of spring-neap tidal-stream cycles in tidal energy assessments in the chilean inland sea. Renew. Energy 139, 496–506 (2019). https://doi.org/10.1016/j.renene.2019.02.092
H.J. Seok, A. Ali, J.H. Seo, H.H. Lee, N.E. Jung, Y. Yi, H.K. Kim, Zno:Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells. Sci. Technol. Adv. Mater. 20(1), 389–400 (2019). https://doi.org/10.1080/14686996.2019.1599695
Z. Wen, H. Guo, Y. Zi, M.H. Yeh, X. Wang et al., Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526–6534 (2016). https://doi.org/10.1021/acsnano.6b03293
H.Y. Shao, Z. Wen, P. Cheng, N. Sun, Q.Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C. PortilloGuisado et al., Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006). https://doi.org/10.1109/TIE.2006.878356
Z. Chen, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. 24(8), 1859–1875 (2009). https://doi.org/10.1109/TPEL.2009.2017082
Y.C. Xue, N.L. Tai, Review of contribution to frequency control through variable speed wind turbine. Renew. Energy 36(6), 1671–1677 (2011). https://doi.org/10.1016/j.renene.2010.11.009
R.H. Qu, Y.Z. Liu, W. Jin, Review of superconducting generator topologies for direct-drive wind turbines. IEEE Trans. Appl. Supercond. 23(3), 5201108 (2013). https://doi.org/10.1109/TASC.2013.2241387
D.W. Xiang, L. Ran, P.J. Tavner, S. Yang, Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Trans. Energy Convers. 21(3), 652–662 (2006). https://doi.org/10.1109/TEC.2006.875783
Y. Lei, A. Mullane, G. Lightbody, R. Yacamini, Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Trans. Energy Convers. 21(1), 257–264 (2006). https://doi.org/10.1109/TEC.2005.847958
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
W.C. Wang, J.C. Xu, H.W. Zheng, F.Q. Chen, K. Jenkins et al., A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system. Nanoscale 10(30), 14747–14754 (2018). https://doi.org/10.1039/C8NR04276D
C.R.S. Rodrigues, C.A.S. Alves, J. Puga, A.M. Pereira, J.O. Ventura, Triboelectric driven turbine to generate electricity from the motion of water. Nano Energy 30, 379–386 (2016). https://doi.org/10.1016/j.nanoen.2016.09.038
Y.L. Zi, H.Y. Guo, Z. Wen, M.H. Yeh, C.G. Hu, Z.L. Wang, Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). https://doi.org/10.1021/acsnano.6b01569
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang et al., A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
Y. Wu, S. Kuang, H. Li, H. Wang, R. Yang et al., Triboelectric-thermoelectric hybrid nanogenerator for harvesting energy from ambient environments. Adv. Mater. Technol. 3(11), 1800166 (2018). https://doi.org/10.1002/admt.201800166
L.-B. Huang, W. Xu, G. Bai, M.-C. Wong, Z. Yang, J. Hao, Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30, 36–42 (2016). https://doi.org/10.1016/j.nanoen.2016.09.032
S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han et al., Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14, 217–225 (2015). https://doi.org/10.1016/j.nanoen.2014.12.013
Y.N. Xie, S.H. Wang, L. Lin, Q.S. Jing, Z.H. Lin et al., Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7(8), 7 (2013). https://doi.org/10.1021/nn402477h
M. Perez, S. Boisseau, M. Geisler, G. Despesse, J.L. Reboud, A triboelectric wind turbine for small-scale energy harvesting. J. Phys: Conf. Ser. 773, 012118 (2016). https://doi.org/10.1088/1742-6596/773/1/012118
H. Yong, J. Chung, D. Choi, D. Jung, M. Cho, S. Lee, Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range. Sci. Rep. 6, 33977 (2016). https://doi.org/10.1038/srep33977
Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong et al., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7(10), 9461–9468 (2013). https://doi.org/10.1021/nn4043157
J. Bae, J. Lee, S. Kim, J. Ha, B.S. Lee et al., Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5, 4929 (2014). https://doi.org/10.1038/ncomms5929
T. Chen, Y. Xia, W. Liu, H. Liu, L. Sun, C. Lee, A hybrid flapping-blade wind energy harvester based on vortex shedding effect. J. Microelectromech. Syst. 25(5), 845–847 (2016). https://doi.org/10.1109/JMEMS.2016.2588529
A.N. Ravichandran, C. Calmes, J.R. Serres, M. Ramuz, S. Blayac, Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy 62, 449–457 (2019). https://doi.org/10.1016/j.nanoen.2019.05.053
Z. Quan, C.B. Han, T. Jiang, Z.L. Wang, Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6(5), 1501799 (2016). https://doi.org/10.1002/aenm.201501799
H. Lin, M. He, Q. Jing, W. Yang, S. Wang et al., Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy 56, 269–276 (2019). https://doi.org/10.1016/j.nanoen.2018.11.037
C.L. Archer, Evaluation of global wind power. J. Geophys. Res. 110(D12), D12110 (2005). https://doi.org/10.1029/2004JD005462
Z. Zhao, X. Pu, C. Du, L. Li, C. Jiang, W. Hu, Z.L. Wang, Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 10(2), 1780–1787 (2016). https://doi.org/10.1021/acsnano.5b07157
T. Chen, M. Zhao, Q. Shi, Z. Yang, H. Liu et al., Novel augmented reality interface using a self-powered triboelectric based virtual reality 3d-control sensor. Nano Energy 51, 162–172 (2018). https://doi.org/10.1016/j.nanoen.2018.06.022
A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.-J. Kim, Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019). https://doi.org/10.1021/acssuschemeng.9b00175
M. Xu, Y.-C. Wang, S.L. Zhang, W. Ding, J. Cheng et al., An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mech. Lett. 15, 122–129 (2017). https://doi.org/10.1016/j.eml.2017.07.005
C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
X. Wang, Z. Wen, H. Guo, C. Wu, X. He et al., Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
P. Bai, G. Zhu, Y.S. Zhou, S. Wang, J. Ma, G. Zhang, Z.L. Wang, Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 7(7), 990–997 (2014). https://doi.org/10.1007/s12274-014-0461-8
T. Zhou, L. Zhang, F. Xue, W. Tang, C. Zhang, Z.L. Wang, Multilayered electret films based triboelectric nanogenerator. Nano Res. 9(5), 1442–1451 (2016). https://doi.org/10.1007/s12274-016-1040-y
G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
H. Chu, H. Jang, Y. Lee, Y. Chae, J.-H. Ahn, Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy 27, 298–305 (2016). https://doi.org/10.1016/j.nanoen.2016.07.009
B. Yang, W. Zeng, Z.-H. Peng, S.-R. Liu, K. Chen, X.-M. Tao, A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source. Adv. Energy Mater. 6(16), 1600505 (2016). https://doi.org/10.1002/aenm.201600505
Z. Wang, W. Liu, J. Hu, W. He, H. Yang et al., Two voltages in contact-separation triboelectric nanogenerator: from asymmetry to symmetry for maximum output. Nano Energy 69, 104452 (2020). https://doi.org/10.1016/j.nanoen.2020.104452
K.Y. Lee, J. Chun, J.H. Lee, K.N. Kim, N.R. Kang et al., Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26(29), 5037–5042 (2014). https://doi.org/10.1002/adma.201401184
L. Zhang, L. Jin, B. Zhang, W. Deng, H. Pan et al., Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 16, 516–523 (2015). https://doi.org/10.1016/j.nanoen.2015.06.012
W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9(10), 635–636 (1938). https://doi.org/10.1063/1.1710367