Correction to: Reversible Zn2+ Insertion in Tungsten Ion Activated Titanium Dioxide Nanocrystals for Electrochromic Windows
Corresponding Author: Bingsuo Zou
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 217
Abstract
Zinc-anode-based electrochromic devices (ZECDs) are emerging as the next-generation energy-efficient transparent electronics. We report anatase W-doped TiO2 nanocrystals (NCs) as a Zn2+ active electrochromic material. It demonstrates that the W doping in TiO2 highly reduces the Zn2+ intercalation energy, thus triggering the electrochromism. The prototype ZECDs based on W-doped TiO2 NCs deliver a high optical modulation (66% at 550 nm), fast spectral response times (9/2.7 s at 550 nm for coloration/bleaching), and good electrochemical stability (8.2% optical modulation loss after 1000 cycles).
Highlights:
1 A reversible Zn2+ insertion in anatase TiO2 nanocrystals is reported for the first time.
2 This is the first report regarding TiO2 for zinc-anode-based electrochromic devices, which will subsequently broaden its applications to zinc-ion electrochemical cells.
3 A prototype device based on the TiO2 nanocrystals delivers a high optical modulation, fast response times, and robust electrochemical stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Islam, T.S. Hernandez, M.D. McGehee, C.J. Barile, Hybrid dynamic windows using reversible metal electrodeposition and ion insertion. Nat. Energy 4, 223–229 (2019). https://doi.org/10.1038/s41560-019-0332-3
- G. Cai, J. Wang, P.S. Lee, Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49, 1469–1476 (2016). https://doi.org/10.1021/acs.accounts.6b00183
- S. Zhang, S. Cao, T. Zhang, Q. Yao, A. Fisher et al., Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater. Horiz. 5, 291–297 (2018). https://doi.org/10.1039/c7mh01128h
- S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dual-band smart window with internal energy storage. Joule 3, 1152–1162 (2019). https://doi.org/10.1016/j.joule.2018.12.010
- Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing Electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R Rep. 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
- Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu et al., WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020). https://doi.org/10.1016/j.nanoen.2019.104350
- J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie et al., A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014). https://doi.org/10.1038/ncomms5921
- S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32, e2004686 (2020). https://doi.org/10.1002/adma.202004686
- S. Zhou, S. Wang, S. Zhou, H. Xu, J. Zhao et al., An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. Nanoscale 12, 8934–8941 (2020). https://doi.org/10.1039/d0nr01152e
- Y. Lee, J. Yun, M. Seo, S.J. Kim, J. Oh et al., Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film. Nano Lett. 20, 6084–6090 (2020). https://doi.org/10.1021/acs.nanolett.0c02097
- S. Heo, C.J. Dahlman, C.M. Staller, T. Jiang, A. Dolocan et al., Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ions. Nano Lett. 20, 2072–2079 (2020). https://doi.org/10.1021/acs.nanolett.0c00052
- R.T. Wen, G.A. Niklasson, C.G. Granqvist, Eliminating electrochromic degradation in amorphous TiO2 through Li-Ion detrapping. ACS Appl. Mater. Interfaces 8, 5777–5782 (2016). https://doi.org/10.1021/acsami.6b00457
- H.Y. Wang, H.Y. Chen, Y.Y. Hsu, U. Stimming, H.M. Chen et al., Modulation of crystal surface and lattice by doping: achieving ultrafast metal-ion insertion in anatase TiO2. ACS Appl. Mater. Interfaces 8, 29186–29193 (2016). https://doi.org/10.1021/acsami.6b11185
- Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji et al., Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Sci. China Chem. 60, 13–37 (2016). https://doi.org/10.1007/s11426-016-0283-0
- W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
- Q. Huang, S. Cao, Y. Liu, Y. Liang, J. Guo et al., Boosting the Zn2+-Based electrochromic properties of tungsten oxide through morphology control. Sol. Energy Mater. Sol. Cells 220, 110853 (2021). https://doi.org/10.1016/j.solmat.2020.110853
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- T. Koketsu, J. Ma, B.J. Morgan, M. Body, C. Legein et al., Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017). https://doi.org/10.1038/nmat4976
- M. Kazazi, P. Abdollahi, M. Mirzaei-Moghadam, High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ionics 300, 32–37 (2017). https://doi.org/10.1016/j.ssi.2016.11.028
- H. Li, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 3, 2268–2278 (2019). https://doi.org/10.1016/j.joule.2019.06.021
- N. Zhu, F. Wu, Z. Wang, L. Ling, H. Yang et al., Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. J. Energy Chem. 51, 72–80 (2020). https://doi.org/10.1016/j.jechem.2020.03.032
- T.S. Le, T.H. Hoa, D.Q. Truong, Shape-controlled f-doped TiO2 nanocrystals for Mg-ion batteries. J. Electroanal. Chem. 848, 113293 (2019). https://doi.org/10.1016/j.jelechem.2019.113293
- P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9, 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
- Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng et al., Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Adv. Funct. Mater. 25, 5833–5839 (2015). https://doi.org/10.1002/adfm.201502638
- X. Ju, F. Yang, X. Zhu, X. Jia, Zinc ion intercalation/deintercalation of metal organic framework-derived nanostructured NiO@C for low-transmittance and high-performance electrochromism. ACS Sustainable Chem. Eng. 8, 12222–12229 (2020). https://doi.org/10.1021/acssuschemeng.0c03837
- H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32, e2003574 (2020). https://doi.org/10.1002/adma.202003574
- H. Li, L. McRae, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous electrochromic batteries utilizing ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv. Mater. 31, e1807065 (2019). https://doi.org/10.1002/adma.201807065
- C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao et al., Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30, 1705580 (2018). https://doi.org/10.1002/adma.201705580
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- T. Xiong, Y. Zhang, W.S.V. Lee, J. Xue, Defect engineering in manganese-based oxides for aqueous rechargeable Zinc-Ion batteries: a review. Adv. Energy Mater. 10, 2001769 (2020). https://doi.org/10.1002/aenm.202001769
- Y. Shi, Y. Chen, L. Shi, K. Wang, B. Wang et al., An overview and future perspectives of rechargeable zinc batteries. Small 16, e2000730 (2020). https://doi.org/10.1002/smll.202000730
- Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge Zn-Ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 13, 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
- S.M. Islam, C.J. Barile, Dynamic Windows using reversible zinc electrodeposition in neutral electrolytes with high opacity and excellent resting stability. Adv. Energy Mater. 11, 2100417 (2021). https://doi.org/10.1002/aenm.202100417
- L. Zhang, D. Chao, P. Yang, L. Weber, J. Li et al., Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 10, 2000142 (2020). https://doi.org/10.1002/aenm.202000142
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium Ion stabilized vanadium oxide nanowire cathode for high-performance Zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- S. Liu, X. Qu, Construction of nanocomposite film of dawson-type polyoxometalate and TiO2 Nanowires for electrochromic applications. Appl. Surf. Sci. 412, 189–195 (2017). https://doi.org/10.1016/j.apsusc.2017.03.244
- S. Cao, S. Zhang, T. Zhang, J.Y. Lee, Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem. Mater. 30, 4838–4846 (2018). https://doi.org/10.1021/acs.chemmater.8b02196
- T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, C. Gopalakrishnan, C. Sanjeeviraja et al., High coloration efficiency, high reversibility and fast switching response of nebulized spray deposited anatase TiO2 thin films for electrochromic applications. Electrochim. Acta 255, 358–368 (2017). https://doi.org/10.1016/j.electacta.2017.09.187
- K.R. Reyes-Gil, Z.D. Stephens, V. Stavila, D.B. Robinson, Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl. Mater. Interfaces 7, 2202–2213 (2015). https://doi.org/10.1021/am5050696
- W. Li, G. Wu, C.M. Araújo, R.H. Scheicher, A. Blomqvist et al., Li+ Ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 3, 1524 (2010). https://doi.org/10.1039/c0ee00052c
- F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang et al., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010). https://doi.org/10.1038/nature08777
- S. Cao, S. Zhang, T. Zhang, A. Fisher, J.Y. Lee, Metal-doped TiO2 colloidal nanocrystals with broadly tunable plasmon resonance absorption. J. Mater. Chem. C 6, 4007–4014 (2018). https://doi.org/10.1039/c8tc00185e
- L. De Trizio, R. Buonsanti, A.M. Schimpf, A. Llordes, D.R. Gamelin et al., Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chem. Mater. 25, 3383–3390 (2013). https://doi.org/10.1021/cm402396c
- L.J. Hardwick, M. Holzapfel, P. Novák, L. Dupont, E. Baudrin, Electrochemical lithium insertion into anatase-type TiO2: an in situ raman microscopy investigation. Electrochim. Acta 52, 5357–5367 (2007). https://doi.org/10.1016/j.electacta.2007.02.050
- R.T. Wen, C.G. Granqvist, G.A. Niklasson, Eliminating degradation and uncovering Ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14, 996–1001 (2015). https://doi.org/10.1038/nmat4368
- M. Ni, D. Sun, X. Zhu, Q. Xia, Y. Zhao et al., Fluorine triggered surface and lattice regulation in anatase TiO2-xFx nanocrystals for ultrafast pseudocapacitive sodium storage. Small 16, e2006366 (2020). https://doi.org/10.1002/smll.202006366
- C.J. Dahlman, Y. Tan, M.A. Marcus, D.J. Milliron, Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 137, 9160–9166 (2015). https://doi.org/10.1021/jacs.5b04933
- L.F. Wan, D. Prendergast, Ion-pair dissociation on α-MoO3 Surfaces: focus on the electrolyte–cathode compatibility issue in Mg batteries. J. Phys. Chem. C 122, 398–405 (2017). https://doi.org/10.1021/acs.jpcc.7b09124
- C. Legein, B.J. Morgan, F. Fayon, T. Koketsu, J. Ma et al., Atomic insights into Aluminium-Ion insertion in defective anatase for batteries. Angew. Chem. Int. Ed. 59, 19247–19253 (2020). https://doi.org/10.1002/anie.202007983
- S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle Life. Energy Environ. Sci. 11, 2884–2892 (2018). https://doi.org/10.1039/c8ee01718b
References
S.M. Islam, T.S. Hernandez, M.D. McGehee, C.J. Barile, Hybrid dynamic windows using reversible metal electrodeposition and ion insertion. Nat. Energy 4, 223–229 (2019). https://doi.org/10.1038/s41560-019-0332-3
G. Cai, J. Wang, P.S. Lee, Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49, 1469–1476 (2016). https://doi.org/10.1021/acs.accounts.6b00183
S. Zhang, S. Cao, T. Zhang, Q. Yao, A. Fisher et al., Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater. Horiz. 5, 291–297 (2018). https://doi.org/10.1039/c7mh01128h
S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dual-band smart window with internal energy storage. Joule 3, 1152–1162 (2019). https://doi.org/10.1016/j.joule.2018.12.010
Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing Electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R Rep. 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu et al., WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020). https://doi.org/10.1016/j.nanoen.2019.104350
J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie et al., A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014). https://doi.org/10.1038/ncomms5921
S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32, e2004686 (2020). https://doi.org/10.1002/adma.202004686
S. Zhou, S. Wang, S. Zhou, H. Xu, J. Zhao et al., An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. Nanoscale 12, 8934–8941 (2020). https://doi.org/10.1039/d0nr01152e
Y. Lee, J. Yun, M. Seo, S.J. Kim, J. Oh et al., Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film. Nano Lett. 20, 6084–6090 (2020). https://doi.org/10.1021/acs.nanolett.0c02097
S. Heo, C.J. Dahlman, C.M. Staller, T. Jiang, A. Dolocan et al., Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ions. Nano Lett. 20, 2072–2079 (2020). https://doi.org/10.1021/acs.nanolett.0c00052
R.T. Wen, G.A. Niklasson, C.G. Granqvist, Eliminating electrochromic degradation in amorphous TiO2 through Li-Ion detrapping. ACS Appl. Mater. Interfaces 8, 5777–5782 (2016). https://doi.org/10.1021/acsami.6b00457
H.Y. Wang, H.Y. Chen, Y.Y. Hsu, U. Stimming, H.M. Chen et al., Modulation of crystal surface and lattice by doping: achieving ultrafast metal-ion insertion in anatase TiO2. ACS Appl. Mater. Interfaces 8, 29186–29193 (2016). https://doi.org/10.1021/acsami.6b11185
Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji et al., Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Sci. China Chem. 60, 13–37 (2016). https://doi.org/10.1007/s11426-016-0283-0
W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
Q. Huang, S. Cao, Y. Liu, Y. Liang, J. Guo et al., Boosting the Zn2+-Based electrochromic properties of tungsten oxide through morphology control. Sol. Energy Mater. Sol. Cells 220, 110853 (2021). https://doi.org/10.1016/j.solmat.2020.110853
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
T. Koketsu, J. Ma, B.J. Morgan, M. Body, C. Legein et al., Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017). https://doi.org/10.1038/nmat4976
M. Kazazi, P. Abdollahi, M. Mirzaei-Moghadam, High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ionics 300, 32–37 (2017). https://doi.org/10.1016/j.ssi.2016.11.028
H. Li, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 3, 2268–2278 (2019). https://doi.org/10.1016/j.joule.2019.06.021
N. Zhu, F. Wu, Z. Wang, L. Ling, H. Yang et al., Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. J. Energy Chem. 51, 72–80 (2020). https://doi.org/10.1016/j.jechem.2020.03.032
T.S. Le, T.H. Hoa, D.Q. Truong, Shape-controlled f-doped TiO2 nanocrystals for Mg-ion batteries. J. Electroanal. Chem. 848, 113293 (2019). https://doi.org/10.1016/j.jelechem.2019.113293
P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9, 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng et al., Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Adv. Funct. Mater. 25, 5833–5839 (2015). https://doi.org/10.1002/adfm.201502638
X. Ju, F. Yang, X. Zhu, X. Jia, Zinc ion intercalation/deintercalation of metal organic framework-derived nanostructured NiO@C for low-transmittance and high-performance electrochromism. ACS Sustainable Chem. Eng. 8, 12222–12229 (2020). https://doi.org/10.1021/acssuschemeng.0c03837
H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32, e2003574 (2020). https://doi.org/10.1002/adma.202003574
H. Li, L. McRae, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous electrochromic batteries utilizing ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv. Mater. 31, e1807065 (2019). https://doi.org/10.1002/adma.201807065
C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao et al., Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30, 1705580 (2018). https://doi.org/10.1002/adma.201705580
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
T. Xiong, Y. Zhang, W.S.V. Lee, J. Xue, Defect engineering in manganese-based oxides for aqueous rechargeable Zinc-Ion batteries: a review. Adv. Energy Mater. 10, 2001769 (2020). https://doi.org/10.1002/aenm.202001769
Y. Shi, Y. Chen, L. Shi, K. Wang, B. Wang et al., An overview and future perspectives of rechargeable zinc batteries. Small 16, e2000730 (2020). https://doi.org/10.1002/smll.202000730
Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge Zn-Ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 13, 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
S.M. Islam, C.J. Barile, Dynamic Windows using reversible zinc electrodeposition in neutral electrolytes with high opacity and excellent resting stability. Adv. Energy Mater. 11, 2100417 (2021). https://doi.org/10.1002/aenm.202100417
L. Zhang, D. Chao, P. Yang, L. Weber, J. Li et al., Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 10, 2000142 (2020). https://doi.org/10.1002/aenm.202000142
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium Ion stabilized vanadium oxide nanowire cathode for high-performance Zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
S. Liu, X. Qu, Construction of nanocomposite film of dawson-type polyoxometalate and TiO2 Nanowires for electrochromic applications. Appl. Surf. Sci. 412, 189–195 (2017). https://doi.org/10.1016/j.apsusc.2017.03.244
S. Cao, S. Zhang, T. Zhang, J.Y. Lee, Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem. Mater. 30, 4838–4846 (2018). https://doi.org/10.1021/acs.chemmater.8b02196
T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, C. Gopalakrishnan, C. Sanjeeviraja et al., High coloration efficiency, high reversibility and fast switching response of nebulized spray deposited anatase TiO2 thin films for electrochromic applications. Electrochim. Acta 255, 358–368 (2017). https://doi.org/10.1016/j.electacta.2017.09.187
K.R. Reyes-Gil, Z.D. Stephens, V. Stavila, D.B. Robinson, Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl. Mater. Interfaces 7, 2202–2213 (2015). https://doi.org/10.1021/am5050696
W. Li, G. Wu, C.M. Araújo, R.H. Scheicher, A. Blomqvist et al., Li+ Ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 3, 1524 (2010). https://doi.org/10.1039/c0ee00052c
F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang et al., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010). https://doi.org/10.1038/nature08777
S. Cao, S. Zhang, T. Zhang, A. Fisher, J.Y. Lee, Metal-doped TiO2 colloidal nanocrystals with broadly tunable plasmon resonance absorption. J. Mater. Chem. C 6, 4007–4014 (2018). https://doi.org/10.1039/c8tc00185e
L. De Trizio, R. Buonsanti, A.M. Schimpf, A. Llordes, D.R. Gamelin et al., Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chem. Mater. 25, 3383–3390 (2013). https://doi.org/10.1021/cm402396c
L.J. Hardwick, M. Holzapfel, P. Novák, L. Dupont, E. Baudrin, Electrochemical lithium insertion into anatase-type TiO2: an in situ raman microscopy investigation. Electrochim. Acta 52, 5357–5367 (2007). https://doi.org/10.1016/j.electacta.2007.02.050
R.T. Wen, C.G. Granqvist, G.A. Niklasson, Eliminating degradation and uncovering Ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14, 996–1001 (2015). https://doi.org/10.1038/nmat4368
M. Ni, D. Sun, X. Zhu, Q. Xia, Y. Zhao et al., Fluorine triggered surface and lattice regulation in anatase TiO2-xFx nanocrystals for ultrafast pseudocapacitive sodium storage. Small 16, e2006366 (2020). https://doi.org/10.1002/smll.202006366
C.J. Dahlman, Y. Tan, M.A. Marcus, D.J. Milliron, Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 137, 9160–9166 (2015). https://doi.org/10.1021/jacs.5b04933
L.F. Wan, D. Prendergast, Ion-pair dissociation on α-MoO3 Surfaces: focus on the electrolyte–cathode compatibility issue in Mg batteries. J. Phys. Chem. C 122, 398–405 (2017). https://doi.org/10.1021/acs.jpcc.7b09124
C. Legein, B.J. Morgan, F. Fayon, T. Koketsu, J. Ma et al., Atomic insights into Aluminium-Ion insertion in defective anatase for batteries. Angew. Chem. Int. Ed. 59, 19247–19253 (2020). https://doi.org/10.1002/anie.202007983
S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle Life. Energy Environ. Sci. 11, 2884–2892 (2018). https://doi.org/10.1039/c8ee01718b