Fast and Stable Zinc Anode-Based Electrochromic Displays Enabled by Bimetallically Doped Vanadate and Aqueous Zn2+/Na+ Hybrid Electrolytes
Corresponding Author: Haizeng Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 229
Abstract
Vanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics. However, the slow switching times and vanadate dissolution issues of recently reported vanadates significantly hinder their diverse practical applications. Herein, novel strategies are developed to design electrochemically stable vanadates having rapid switching times. We show that the interlayer spacing is greatly broadened by introducing sodium and lanthanum ions into V3O8 interlayers, which facilitates the transportation of cations and enhances the electrochemical kinetics. In addition, a hybrid Zn2+/Na+ electrolyte is designed to inhibit vanadate dissolution while significantly accelerating electrochemical kinetics. As a result, our electrochromic displays yield the most rapid switching times in comparison with any reported Zn-vanadate electrochromic displays. It is envisioned that stable vanadate-based electrochromic displays having video speed switching are appearing on the near horizon.
Highlights:
1 La3+/Na+ bimetallically doped vanadate, designed for the first time, is promising in many electrochemical applications (e.g., batteries, electrochromics).
2 This is the first report of electrochromic displays employing bimetallically doped vanadate.
3 It is demonstrated for the first time that zinc dendrites and vanadate dissolution are significantly inhibited by employing an aqueous hybrid Zn2+/Na+ electrolyte.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Gu, A.B. Jia, Y.M. Zhang, S.X.A. Zhang, Emerging electrochromic materials and devices for future displays. Chem. Rev. 122(18), 14679–14721 (2022). https://doi.org/10.1021/acs.chemrev.1c01055
- W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang et al., Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nano-Micro Lett. 13(1), 20 (2021). https://doi.org/10.1007/s40820-020-00544-9
- H. Fu, L. Zhang, Y. Dong, C. Zhang, W. Li, Recent advances in electrochromic materials and devices for camouflage applications. Mater. Chem. Front. 7(12), 2337–2358 (2023). https://doi.org/10.1039/D3QM00121K
- K. Chen, J. He, D. Zhang, L. You, X. Li et al., Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 21(10), 4500–4507 (2021). https://doi.org/10.1021/acs.nanolett.1c01419
- H. Fu, S. Yan, T. Yang, M. Yin, L. Zhang et al., New dual conjugated polymer electrochromic device with remarkable yellow-to-green switch for adaptive camouflage. Chem. Eng. J. 438, 135455 (2022). https://doi.org/10.1016/j.cej.2022.135455
- B. Wang, Y. Huang, Y. Han, W. Zhang, C. Zhou et al., A facile strategy to construct Au@VxO2x+1 nanoflowers as a multicolor electrochromic material for adaptive camouflage. Nano Lett. 22(9), 3713–3720 (2022). https://doi.org/10.1021/acs.nanolett.2c00600
- M.C. Hartel, D. Lee, P.S. Weiss, J. Wang, J. Kim, Resettable sweat-powered wearable electrochromic biosensor. Biosens. Bioelectron. 215, 114565 (2022). https://doi.org/10.1016/j.bios.2022.114565
- T.G. Yun, M. Park, D.-H. Kim, D. Kim, J.Y. Cheong et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3), 3141–3150 (2019). https://doi.org/10.1021/acsnano.8b08560
- C. Wang, X. Jiang, P. Cui, M. Sheng, X. Gong et al., Multicolor and multistage response electrochromic color-memory wearable smart textile and flexible display. ACS Appl. Mater. Interfaces 13(10), 12313–12321 (2021). https://doi.org/10.1021/acsami.1c01333
- S.B. Singh, D.T. Tran, K.U. Jeong, N.H. Kim, J.H. Lee, A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable Zn-ion battery. Small 18(5), 2104462 (2022). https://doi.org/10.1002/smll.202104462
- X. Jiao, J. Wang, Z. Yuan, C. Zhang, Smart current collector for high-energy-density and high-contrast electrochromic supercapacitors toward intelligent and wearable power application. Energy Storage Mater. 54, 254–265 (2023). https://doi.org/10.1016/j.ensm.2022.10.042
- D. Bessinger, K. Muggli, M. Beetz, F. Auras, T. Bein, Fast-switching Vis–IR electrochromic covalent organic frameworks. J. Amer. Chem. Soc. 143(19), 7351–7357 (2021). https://doi.org/10.1021/jacs.0c12392
- M. Lahav, M.E. van der Boom, Polypyridyl metallo-organic assemblies for electrochromic applications. Adv. Mater. 30(41), 1706641 (2018). https://doi.org/10.1002/adma.201706641
- M. Yang, R. Zhao, S. Zhang, L. Wang, Z. Zhang et al., Facile synthesis of V2O5 films and devices exhibiting multicolor electrochromic properties. Mater. Sci. Eng. B 292, 116449 (2023). https://doi.org/10.1016/j.mseb.2023.116449
- W. Li, C. Han, Q. Gu, S.-L. Chou, J.-Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
- Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15(1), 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
- W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
- D. Zhang, J. Cao, Y. Yue, T. Pakornchote, T. Bovornratanaraks et al., Two birds with one stone: Boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 13(32), 38416–38424 (2021). https://doi.org/10.1021/acsami.1c11531
- C. Deng, K. Zhang, L. Liu, Z. He, J. Huang et al., High-performance all-solid-state electrochromic asymmetric Zn-ion supercapacitors for visualization of energy storage devices. J. Mater. Chem. A 10(33), 17326–17337 (2022). https://doi.org/10.1039/d2ta04198g
- C. Wu, H. Shi, L. Zhao, X. Chen, X. Zhang et al., High-performance aqueous Zn2+/Al3+ electrochromic batteries based on niobium tungsten oxides. Adv. Funct. Mater. 33(20), 2214886 (2023). https://doi.org/10.1002/adfm.202214886
- R. Ren, S. Liu, Y. Gao, P. Lei, J. Wang et al., Tunable interaction between Zn2+ and superstructured Nb18W16O93 bimetallic oxide for multistep tinted electrochromic device. ACS Energy Lett. 8(5), 2300–2307 (2023). https://doi.org/10.1021/acsenergylett.3c00484
- Z. Wu, Z. Lian, S. Yan, J. Li, J. Xu et al., Extraordinarily stable aqueous electrochromic battery based on Li4Ti5O12 and hybrid Al3+/Zn2+ electrolyte. ACS Nano 16(8), 13199–13210 (2022). https://doi.org/10.1021/acsnano.2c06479
- L. Liu, M. Zhen, L. Wang, B. Li, C. Deng et al., Full-temperature all-solid-state dendrite-free Zn-ion electrochromic energy storage devices for intelligent applications. Chem. Eng. J. 468, 143837 (2023). https://doi.org/10.1016/j.cej.2023.143837
- B. Wang, F. Zhao, W. Zhang, C. Li, K. Hu et al., Inhibiting vanadium dissolution of potassium vanadate for stable transparent electrochromic displays. Small Sci. (2023). https://doi.org/10.1002/smsc.202300046
- W. Zhang, H. Li, A.Y. Elezzabi, Electrochromic displays having two-dimensional CIE color space tunability. Adv. Funct. Mater. 32(7), 2108341 (2022). https://doi.org/10.1002/adfm.202108341
- Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13(1), 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
- W. Zhang, H. Li, M. Al-Hussein, A.Y. Elezzabi, Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanops. Adv. Opt. Mater. 8(2), 1901224 (2020). https://doi.org/10.1002/adom.201901224
- X. Gu, J. Wang, X. Zhao, X. Jin, Y. Jiang et al., Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries. J. Energy Chem. 85, 30–38 (2023). https://doi.org/10.1016/j.jechem.2023.05.043
- H. Li, J. Li, C. Hou, D. Ho, Q. Zhang et al., Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Adv. Mater. Technol. 2(8), 1700047 (2017). https://doi.org/10.1002/admt.201700047
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. Eur. J. 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
- Y. Gao, Z. Liu, S. Guo, X. Cao, G. Fang et al., Fundamental understanding and effect of anionic chemistry in zinc batteries. Energy Environ. Mater. 5(1), 186–200 (2022). https://doi.org/10.1002/eem2.12225
- C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
- L. Su, L. Liu, B. Liu, J. Meng, X. Yan, Revealing the impact of oxygen dissolved in electrolytes on aqueous zinc-ion batteries. iScience 23(4), 100995 (2020). https://doi.org/10.1016/j.isci.2020.100995
- F. Zhao, B. Wang, W. Zhang, S. Cao, L. Liu et al., Counterbalancing the interplay between electrochromism and energy storage for efficient electrochromic devices. Mater. Today 66, 431–447 (2023). https://doi.org/10.1016/j.mattod.2023.05.003
- W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Emerging Zn anode-based electrochromic devices. Small Sci. 1(12), 2100040 (2021). https://doi.org/10.1002/smsc.202100040
- Y. Liu, C. Jia, Z. Wan, X. Weng, J. Xie et al., Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Sol. Energy Mater. Sol. Cells 132, 467–475 (2015). https://doi.org/10.1016/j.solmat.2014.09.033
- W. He, Y. Liu, Z. Wan, C. Jia, Electrodeposition of V2O5 on TiO2 nanorod arrays and their electrochromic properties. RSC Adv. 6(73), 68997–69006 (2016). https://doi.org/10.1039/C6RA08809K
- I. Mjejri, A. Rougier, M. Gaudon, Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg. Chem. 56(3), 1734–1741 (2017). https://doi.org/10.1021/acs.inorgchem.6b02880
- K. Tang, Y. Zhang, Y. Shi, J. Cui, X. Shu et al., Preparation of V2O5 dot-decorated WO3 nanorod arrays for high performance multi-color electrochromic devices. J. Mater. Chem. C 6(45), 12206–12216 (2018). https://doi.org/10.1039/C8TC04247K
- W. Zhang, H. Li, A.Y. Elezzabi, A dual-mode electrochromic platform integrating zinc anode-based and rocking-chair electrochromic devices. Adv. Funct. Mater. 33, 2300155 (2023). https://doi.org/10.1002/adfm.202300155
References
C. Gu, A.B. Jia, Y.M. Zhang, S.X.A. Zhang, Emerging electrochromic materials and devices for future displays. Chem. Rev. 122(18), 14679–14721 (2022). https://doi.org/10.1021/acs.chemrev.1c01055
W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang et al., Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nano-Micro Lett. 13(1), 20 (2021). https://doi.org/10.1007/s40820-020-00544-9
H. Fu, L. Zhang, Y. Dong, C. Zhang, W. Li, Recent advances in electrochromic materials and devices for camouflage applications. Mater. Chem. Front. 7(12), 2337–2358 (2023). https://doi.org/10.1039/D3QM00121K
K. Chen, J. He, D. Zhang, L. You, X. Li et al., Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 21(10), 4500–4507 (2021). https://doi.org/10.1021/acs.nanolett.1c01419
H. Fu, S. Yan, T. Yang, M. Yin, L. Zhang et al., New dual conjugated polymer electrochromic device with remarkable yellow-to-green switch for adaptive camouflage. Chem. Eng. J. 438, 135455 (2022). https://doi.org/10.1016/j.cej.2022.135455
B. Wang, Y. Huang, Y. Han, W. Zhang, C. Zhou et al., A facile strategy to construct Au@VxO2x+1 nanoflowers as a multicolor electrochromic material for adaptive camouflage. Nano Lett. 22(9), 3713–3720 (2022). https://doi.org/10.1021/acs.nanolett.2c00600
M.C. Hartel, D. Lee, P.S. Weiss, J. Wang, J. Kim, Resettable sweat-powered wearable electrochromic biosensor. Biosens. Bioelectron. 215, 114565 (2022). https://doi.org/10.1016/j.bios.2022.114565
T.G. Yun, M. Park, D.-H. Kim, D. Kim, J.Y. Cheong et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3), 3141–3150 (2019). https://doi.org/10.1021/acsnano.8b08560
C. Wang, X. Jiang, P. Cui, M. Sheng, X. Gong et al., Multicolor and multistage response electrochromic color-memory wearable smart textile and flexible display. ACS Appl. Mater. Interfaces 13(10), 12313–12321 (2021). https://doi.org/10.1021/acsami.1c01333
S.B. Singh, D.T. Tran, K.U. Jeong, N.H. Kim, J.H. Lee, A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable Zn-ion battery. Small 18(5), 2104462 (2022). https://doi.org/10.1002/smll.202104462
X. Jiao, J. Wang, Z. Yuan, C. Zhang, Smart current collector for high-energy-density and high-contrast electrochromic supercapacitors toward intelligent and wearable power application. Energy Storage Mater. 54, 254–265 (2023). https://doi.org/10.1016/j.ensm.2022.10.042
D. Bessinger, K. Muggli, M. Beetz, F. Auras, T. Bein, Fast-switching Vis–IR electrochromic covalent organic frameworks. J. Amer. Chem. Soc. 143(19), 7351–7357 (2021). https://doi.org/10.1021/jacs.0c12392
M. Lahav, M.E. van der Boom, Polypyridyl metallo-organic assemblies for electrochromic applications. Adv. Mater. 30(41), 1706641 (2018). https://doi.org/10.1002/adma.201706641
M. Yang, R. Zhao, S. Zhang, L. Wang, Z. Zhang et al., Facile synthesis of V2O5 films and devices exhibiting multicolor electrochromic properties. Mater. Sci. Eng. B 292, 116449 (2023). https://doi.org/10.1016/j.mseb.2023.116449
W. Li, C. Han, Q. Gu, S.-L. Chou, J.-Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15(1), 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
D. Zhang, J. Cao, Y. Yue, T. Pakornchote, T. Bovornratanaraks et al., Two birds with one stone: Boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 13(32), 38416–38424 (2021). https://doi.org/10.1021/acsami.1c11531
C. Deng, K. Zhang, L. Liu, Z. He, J. Huang et al., High-performance all-solid-state electrochromic asymmetric Zn-ion supercapacitors for visualization of energy storage devices. J. Mater. Chem. A 10(33), 17326–17337 (2022). https://doi.org/10.1039/d2ta04198g
C. Wu, H. Shi, L. Zhao, X. Chen, X. Zhang et al., High-performance aqueous Zn2+/Al3+ electrochromic batteries based on niobium tungsten oxides. Adv. Funct. Mater. 33(20), 2214886 (2023). https://doi.org/10.1002/adfm.202214886
R. Ren, S. Liu, Y. Gao, P. Lei, J. Wang et al., Tunable interaction between Zn2+ and superstructured Nb18W16O93 bimetallic oxide for multistep tinted electrochromic device. ACS Energy Lett. 8(5), 2300–2307 (2023). https://doi.org/10.1021/acsenergylett.3c00484
Z. Wu, Z. Lian, S. Yan, J. Li, J. Xu et al., Extraordinarily stable aqueous electrochromic battery based on Li4Ti5O12 and hybrid Al3+/Zn2+ electrolyte. ACS Nano 16(8), 13199–13210 (2022). https://doi.org/10.1021/acsnano.2c06479
L. Liu, M. Zhen, L. Wang, B. Li, C. Deng et al., Full-temperature all-solid-state dendrite-free Zn-ion electrochromic energy storage devices for intelligent applications. Chem. Eng. J. 468, 143837 (2023). https://doi.org/10.1016/j.cej.2023.143837
B. Wang, F. Zhao, W. Zhang, C. Li, K. Hu et al., Inhibiting vanadium dissolution of potassium vanadate for stable transparent electrochromic displays. Small Sci. (2023). https://doi.org/10.1002/smsc.202300046
W. Zhang, H. Li, A.Y. Elezzabi, Electrochromic displays having two-dimensional CIE color space tunability. Adv. Funct. Mater. 32(7), 2108341 (2022). https://doi.org/10.1002/adfm.202108341
Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13(1), 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
W. Zhang, H. Li, M. Al-Hussein, A.Y. Elezzabi, Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanops. Adv. Opt. Mater. 8(2), 1901224 (2020). https://doi.org/10.1002/adom.201901224
X. Gu, J. Wang, X. Zhao, X. Jin, Y. Jiang et al., Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries. J. Energy Chem. 85, 30–38 (2023). https://doi.org/10.1016/j.jechem.2023.05.043
H. Li, J. Li, C. Hou, D. Ho, Q. Zhang et al., Solution-processed porous tungsten molybdenum oxide electrodes for energy storage smart windows. Adv. Mater. Technol. 2(8), 1700047 (2017). https://doi.org/10.1002/admt.201700047
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. Eur. J. 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
Y. Gao, Z. Liu, S. Guo, X. Cao, G. Fang et al., Fundamental understanding and effect of anionic chemistry in zinc batteries. Energy Environ. Mater. 5(1), 186–200 (2022). https://doi.org/10.1002/eem2.12225
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
L. Su, L. Liu, B. Liu, J. Meng, X. Yan, Revealing the impact of oxygen dissolved in electrolytes on aqueous zinc-ion batteries. iScience 23(4), 100995 (2020). https://doi.org/10.1016/j.isci.2020.100995
F. Zhao, B. Wang, W. Zhang, S. Cao, L. Liu et al., Counterbalancing the interplay between electrochromism and energy storage for efficient electrochromic devices. Mater. Today 66, 431–447 (2023). https://doi.org/10.1016/j.mattod.2023.05.003
W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Emerging Zn anode-based electrochromic devices. Small Sci. 1(12), 2100040 (2021). https://doi.org/10.1002/smsc.202100040
Y. Liu, C. Jia, Z. Wan, X. Weng, J. Xie et al., Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Sol. Energy Mater. Sol. Cells 132, 467–475 (2015). https://doi.org/10.1016/j.solmat.2014.09.033
W. He, Y. Liu, Z. Wan, C. Jia, Electrodeposition of V2O5 on TiO2 nanorod arrays and their electrochromic properties. RSC Adv. 6(73), 68997–69006 (2016). https://doi.org/10.1039/C6RA08809K
I. Mjejri, A. Rougier, M. Gaudon, Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg. Chem. 56(3), 1734–1741 (2017). https://doi.org/10.1021/acs.inorgchem.6b02880
K. Tang, Y. Zhang, Y. Shi, J. Cui, X. Shu et al., Preparation of V2O5 dot-decorated WO3 nanorod arrays for high performance multi-color electrochromic devices. J. Mater. Chem. C 6(45), 12206–12216 (2018). https://doi.org/10.1039/C8TC04247K
W. Zhang, H. Li, A.Y. Elezzabi, A dual-mode electrochromic platform integrating zinc anode-based and rocking-chair electrochromic devices. Adv. Funct. Mater. 33, 2300155 (2023). https://doi.org/10.1002/adfm.202300155