Collective Molecular Machines: Multidimensionality and Reconfigurability
Corresponding Author: Yuan Lu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 155
Abstract
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work. During the last 60 years, designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research. Effective progress has been made, attributed to advances in various fields such as supramolecular chemistry, biology and nanotechnology, and informatics. However, individual molecular machines are only capable of producing nanometer work and generally have only a single functionality. In order to address these problems, collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm. In this review, we comprehensively discuss recent developments in the collective behaviors of molecular machines. In particular, collective behavior is divided into two paradigms. One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials. The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations. We discuss design strategies for both modes and focus on the modulation of features and properties. Subsequently, in order to address existing challenges, the idea of transferring experience gained in the field of micro/nano robotics is presented, offering prospects for future developments in the collective behavior of molecular machines.
Highlights:
1 Recent advances and design strategies for molecular machines working as collectives in building smart responsive materials and micro/nanoscale operations are summarized in this review.
2 The modulation of collective behaviors characteristics and properties is summarized in focus, including reversibility, amplification, anisotropy and reconfigurability of smart materials, as well as reconfigurability, orthogonality and logical control of swarming.
3 Experiences and paradigms in the field of micro/nanorobotics in collective construction, control strategies, and model transformations are expected to provide guidance for molecular machines to build reconfigurable, multi-dimensional, and multi-modularity advanced collectives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Aprahamian, The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020). https://doi.org/10.1021/acscentsci.0c00064
- C. Cheng, J.F. Stoddart, Wholly synthetic molecular machines. ChemPhysChem 17, 1780–1793 (2016). https://doi.org/10.1002/cphc.201501155
- M. Schliwa, in Molecular motors. ed.by (Springer Berlin Heidelberg; Berlin, Heidelberg, 2006), pp. 1160–1174. https://doi.org/10.1007/3-540-29623-9_3980
- D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot et al., Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020). https://doi.org/10.1021/acs.chemrev.9b00288
- R.D. Astumian, How molecular motors work - insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017). https://doi.org/10.1039/c6sc04806d
- V. Richards, Molecular machines. Nat. Chem. 8, 1090 (2016). https://doi.org/10.1038/nchem.2687
- B.L. Feringa, The art of building small: from molecular switches to motors (nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017). https://doi.org/10.1002/anie.201702979
- J.-P. Sauvage, From chemical topology to molecular machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017). https://doi.org/10.1002/anie.201702992
- J. Fraser Stoddart, Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017). https://doi.org/10.1002/anie.201703216
- V. Balzani, M. Gómez-López, J.F. Stoddart, Molecular machines. Acc. Chem. Res. 31, 405–414 (1998). https://doi.org/10.1021/ar970340y
- S. Erbas-Cakmak, D.A. Leigh, C.T. McTernan, A.L. Nussbaumer, Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015). https://doi.org/10.1021/acs.chemrev.5b00146
- S. Kassem, T. van Leeuwen, A.S. Lubbe, M.R. Wilson, B.L. Feringa et al., Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017). https://doi.org/10.1039/c7cs00245a
- Q. Wang, D. Chen, H. Tian, Artificial molecular machines that can perform work. Sci. China Chem. 61, 1261–1273 (2018). https://doi.org/10.1007/s11426-018-9267-3
- F. Tanaka, T. Mochizuki, X. Liang, H. Asanuma, S. Tanaka et al., Robust and photocontrollable DNA capsules using azobenzenes. Nano Lett. 10, 3560–3565 (2010). https://doi.org/10.1021/nl101829m
- Y. Yang, M. Endo, K. Hidaka, H. Sugiyama, Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012). https://doi.org/10.1021/ja307785r
- Y. Suzuki, M. Endo, Y. Yang, H. Sugiyama, Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J. Am. Chem. Soc. 136, 1714–1717 (2014). https://doi.org/10.1021/ja4109819
- M. Endo, R. Miyazaki, T. Emura, K. Hidaka, H. Sugiyama, Transcription regulation system mediated by mechanical operation of a DNA nanostructure. J. Am. Chem. Soc. 134, 2852–2855 (2012). https://doi.org/10.1021/ja2074856
- H. Saito, T. Kobayashi, T. Hara, Y. Fujita, K. Hayashi et al., Synthetic translational regulation by an L7Ae–kink-turn RNP switch. Nat. Chem. Biol. 6, 71–78 (2010). https://doi.org/10.1038/nchembio.273
- H. Saito, Y. Fujita, S. Kashida, K. Hayashi, T. Inoue, Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2, 160 (2011). https://doi.org/10.1038/ncomms1157
- Y. Yoshimura, K. Fujimoto, Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10, 3227–3230 (2008). https://doi.org/10.1021/ol801112j
- A.S. Amrutha, K.R. Sunil Kumar, N. Tamaoki, Azobenzene-based photoswitches facilitating reversible regulation of kinesin and myosin motor systems for nanotechnological applications. ChemPhotoChem 3, 337–346 (2019). https://doi.org/10.1002/cptc.201900037
- H. Hess, J.L. Ross, Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem. Soc. Rev. 46, 5570–5587 (2017). https://doi.org/10.1039/C7CS00030H
- H. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger et al., Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat. Mater. 1, 173–177 (2002). https://doi.org/10.1038/nmat761
- R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura et al., Hybrid nanotransport system by biomolecular linear motors. J. Microelectromech. Syst. 13, 612–619 (2004). https://doi.org/10.1109/JMEMS.2004.832193
- K.-Y. Chen, O. Ivashenko, G.T. Carroll, J. Robertus, J.C.M. Kistemaker et al., Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014). https://doi.org/10.1021/ja412110t
- M. Pollard, M. Lubomska, P. Rudolf, B. Feringa, Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278–1280 (2007). https://doi.org/10.1002/anie.200603618
- G.T. Carroll, M.M. Pollard, R. van Delden, B.L. Feringa, Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 1, 97–101 (2010). https://doi.org/10.1039/C0SC00162G
- G. Xie, P. Li, Z. Zhao, X.-Y. Kong, Z. Zhang et al., Bacteriorhodopsin-inspired light-driven artificial molecule motors for transmembrane mass transportation. Angew. Chem. Int. Ed. 57, 16708–16712 (2018). https://doi.org/10.1002/anie.201809627
- V. García-López, F. Chen, L.G. Nilewski, G. Duret, A. Aliyan et al., Molecular machines open cell membranes. Nature 548, 567–572 (2017). https://doi.org/10.1038/nature23657
- S. Chen, Y. Wang, T. Nie, C. Bao, C. Wang et al., An artificial molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992–17998 (2018). https://doi.org/10.1021/jacs.8b09580
- J. Wang, B.L. Feringa, Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011). https://doi.org/10.1126/science.1199844
- C. Biagini, S.D.P. Fielden, D.A. Leigh, F. Schaufelberger, S. Di Stefano et al., Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019). https://doi.org/10.1002/anie.201905250
- E. Kay, D. Leigh, F. Zerbetto, Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007). https://doi.org/10.1002/anie.200504313
- N. Koumura, E.M. Geertsema, A. Meetsma, B.L. Feringa, Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005–12006 (2000). https://doi.org/10.1021/ja002755b
- A.G. Campaña, D.A. Leigh, U. Lewandowska, One-dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J. Am. Chem. Soc. 135, 8639–8645 (2013). https://doi.org/10.1021/ja402382n
- H. Hess, G. Saper, Engineering with biomolecular motors. Acc. Chem. Res. 51, 3015–3022 (2018). https://doi.org/10.1021/acs.accounts.8b00296
- X. Mao, M. Liu, Q. Li, C. Fan, X. Zuo, DNA-based molecular machines. JACS Au 2, 2381–2399 (2022). https://doi.org/10.1021/jacsau.2c00292
- H. Zhou, C.C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
- L. Kobr, K. Zhao, Y. Shen, A. Comotti, S. Bracco et al., Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion. J. Am. Chem. Soc. 134, 10122–10131 (2012). https://doi.org/10.1021/ja302173y
- C. Lemouchi, K. Iliopoulos, L. Zorina, S. Simonov, P. Wzietek et al., Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J. Am. Chem. Soc. 135, 9366–9376 (2013). https://doi.org/10.1021/ja4044517
- X. Jiang, B. Rodríguez-Molina, N. Nazarian, M.A. Garcia-Garibay, Rotation of a bulky triptycene in the solid state: toward engineered nanoscale artificial molecular machines. J. Am. Chem. Soc. 136, 8871–8874 (2014). https://doi.org/10.1021/ja503467e
- T.R. Kelly, H. De Silva, R.A. Silva, Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999). https://doi.org/10.1038/43639
- N. Koumura, R.W. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999). https://doi.org/10.1038/43646
- G. Haberhauer, A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011). https://doi.org/10.1002/anie.201101501
- G. Bringmann, A.J. Price Mortimer, P.A. Keller, M.J. Gresser, J. Garner et al., Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005). https://doi.org/10.1002/anie.200462661
- S.P. Fletcher, F. Dumur, M.M. Pollard, B.L. Feringa, A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005). https://doi.org/10.1126/science.1117090
- B.J. Dahl, B.P. Branchaud, Synthesis and characterization of a functionalized chiral biaryl capable of exhibiting unidirectional bond rotation. Tetrahedron Lett. 45, 9599–9602 (2004). https://doi.org/10.1016/j.tetlet.2004.10.147
- J.C.M. Kistemaker, P. Štacko, J. Visser, B.L. Feringa, Unidirectional rotary motion in achiral molecular motors. Nat. Chem. 7, 890–896 (2015). https://doi.org/10.1038/nchem.2362
- L. Greb, J.-M. Lehn, Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014). https://doi.org/10.1021/ja506034n
- R.A. van Delden, M.K. ter Wiel, M.M. Pollard, J. Vicario, N. Koumura et al., Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005). https://doi.org/10.1038/nature04127
- T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis et al., Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011). https://doi.org/10.1038/nature10587
- G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch et al., Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proc. Natl. Acad. Sci. U.S.A. 104, 9937–9942 (2007). https://doi.org/10.1073/pnas.0703748104
- A. Harada, Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001). https://doi.org/10.1021/ar000174l
- V. Ferri, M. Elbing, G. Pace, M. Dickey, M. Zharnikov et al., Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew. Chem. Int. Ed. 47, 3407–3409 (2008). https://doi.org/10.1002/anie.200705339
- G. Yu, C. Han, Z. Zhang, J. Chen, X. Yan et al., Pillar[6]arene-based photoresponsive host–guest complexation. J. Am. Chem. Soc. 134, 8711–8717 (2012). https://doi.org/10.1021/ja302998q
- C.-L. Lee, T. Liebig, S. Hecht, D. Bléger, J.P. Rabe, Light-induced contraction and extension of single macromolecules on a modified graphite surface. ACS Nano 8, 11987–11993 (2014). https://doi.org/10.1021/nn505325w
- D.-H. Qu, Q.-C. Wang, H. Tian, A half adder based on a photochemically driven[2]rotaxane. Angew. Chem. Int. Ed. 44, 5296–5299 (2005). https://doi.org/10.1002/anie.200501215
- W.T. Sun, S.L. Huang, H.H. Yao, I.C. Chen, Y.C. Lin et al., An antilock molecular braking system. Org. Lett. 14, 4154–4157 (2012). https://doi.org/10.1021/ol3018193
- A. Arduini, R. Bussolati, A. Credi, S. Monaco, A. Secchi et al., Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel. Chem 18, 16203–16213 (2012). https://doi.org/10.1002/chem.201201625
- D. Taura, H. Min, C. Katan, E. Yashima, Synthesis of a double-stranded spiroborate helicate bearing stilbene units and its photoresponsive behaviour. New J. Chem. 39, 3259–3269 (2015). https://doi.org/10.1039/c4nj01669f
- M. Morimoto, M. Irie, A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172–14178 (2010). https://doi.org/10.1021/ja105356w
- Z. Li, F. Hu, G. Liu, W. Xue, X. Chen et al., Photo-responsive[2]catenanes: synthesis and properties. Org. Biomol. Chem. 12, 7702–7711 (2014). https://doi.org/10.1039/c4ob01120a
- M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014). https://doi.org/10.1021/cr500249p
- S. Ohshima, M. Morimoto, M. Irie, Light-driven bending of diarylethene mixed crystals. Chem. Sci. 6, 5746–5752 (2015). https://doi.org/10.1039/c5sc01994j
- K. Fukushima, A.J. Vandenbos, T. Fujiwara, Spiropyran dimer toward photo-switchable molecular machine. Chem. Mater. 19, 644–646 (2007). https://doi.org/10.1021/cm061968i
- S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo et al., A simple molecular machine operated by photoinduced proton transfer. J. Am. Chem. Soc. 129, 13378–13379 (2007). https://doi.org/10.1021/ja0753851
- L.A. Tatum, J.T. Foy, I. Aprahamian, Waste management of chemically activated switches: using a photoacid to eliminate accumulation of side products. J. Am. Chem. Soc. 136, 17438–17441 (2014). https://doi.org/10.1021/ja511135k
- L. Sheng, M. Li, S. Zhu, H. Li, G. Xi et al., Hydrochromic molecular switches for water-jet rewritable paper. Nat. Commun. 5, 3044 (2014). https://doi.org/10.1038/ncomms4044
- R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014). https://doi.org/10.1039/c3cs60181a
- P.L. Anelli, N. Spencer, J.F. Stoddart, A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991). https://doi.org/10.1021/ja00013a096
- R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994). https://doi.org/10.1038/369133a0
- H.-R. Tseng, S.A. Vignon, J.F. Stoddart, Toward chemically controlled nanoscale molecular machinery. Angew. Chem. Int. Ed. 42, 1491–1495 (2003). https://doi.org/10.1002/anie.200250453
- P.R. McGonigal, J.F. Stoddart, A molecular production line. Nat. Chem. 5, 260–262 (2013). https://doi.org/10.1038/nchem.1599
- B. Lewandowski, G. De Bo, J.W. Ward, M. Papmeyer, S. Kuschel et al., Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013). https://doi.org/10.1126/science.1229753
- C.J. Bruns, J.F. Stoddart, Molecular machines muscle up. Nat. Nanotechnol. 8, 9–10 (2013). https://doi.org/10.1038/nnano.2012.239
- G. Yu, B.C. Yung, Z. Zhou, Z. Mao, X. Chen, Artificial molecular machines in nanotheranostics. ACS Nano 12, 7–12 (2018). https://doi.org/10.1021/acsnano.7b07851
- G. Saper, H. Hess, Synthetic systems powered by biological molecular motors. Chem. Rev. 120, 288–309 (2020). https://doi.org/10.1021/acs.chemrev.9b00249
- J. Howard, The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996). https://doi.org/10.1146/annurev.physiol.58.1.703
- M. Nishiyama, H. Higuchi, T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002). https://doi.org/10.1038/ncb857
- S.A. Burgess, M.L. Walker, H. Sakakibara, P.J. Knight, K. Oiwa, Dynein structure and power stroke. Nature 421, 715–718 (2003). https://doi.org/10.1038/nature01377
- A. Gennerich, A.P. Carter, S.L. Reck-Peterson, R.D. Vale, Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007). https://doi.org/10.1016/j.cell.2007.10.016
- T. Kon, T. Oyama, R. Shimo-Kon, K. Imamula, T. Shima et al., The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012). https://doi.org/10.1038/nature10955
- A.J. Roberts, T. Kon, P.J. Knight, K. Sutoh, S.A. Burgess, Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713–726 (2013). https://doi.org/10.1038/nrm3667
- H. Li, D.J. DeRosier, W.V. Nicholson, E. Nogales, K.H. Downing, Microtubule structure at 8 Å resolution. Structure 10, 1317–1328 (2002). https://doi.org/10.1016/s0969-2126(02)00827-4
- W.H. Guilford, D.E. Dupuis, G. Kennedy, J. Wu, J.B. Patlak et al., Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys. J. 72, 1006–1021 (1997). https://doi.org/10.1016/S0006-3495(97)78753-8
- J.A. Spudich, The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2, 387–392 (2001). https://doi.org/10.1038/35073086
- M. Persson, E. Bengtsson, L. ten Siethoff, A. Månsson, Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin. Biophys. J. 105, 1871–1881 (2013). https://doi.org/10.1016/j.bpj.2013.08.044
- E.H.C. Bromley, N.J. Kuwada, M.J. Zuckermann, R. Donadini, L. Samii et al., The Tumbleweed: towards a synthetic protein motor. HFSP J. 3, 204–212 (2009). https://doi.org/10.2976/1.3111282
- H. Ramezani, H. Dietz, Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020). https://doi.org/10.1038/s41576-019-0175-6
- A.M.R. Kabir, D. Inoue, A. Kakugo, Molecular swarm robots: recent progress and future challenges. Sci. Technol. Adv. Mater. 21, 323–332 (2020). https://doi.org/10.1080/14686996.2020.1761761
- B. Yurke, A.J. Turberfield, A.P. Mills Jr., F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000). https://doi.org/10.1038/35020524
- W. Zhou, R. Saran, J. Liu, Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017). https://doi.org/10.1021/acs.chemrev.7b00063
- Y. Tian, Y. He, Y. Chen, P. Yin, C. Mao, A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005). https://doi.org/10.1002/anie.200500703
- H.-M. Chuang, J.G. Reifenberger, H. Cao, K.D. Dorfman, Sequence-dependent persistence length of long DNA. Phys. Rev. Lett. 119, 227802 (2017). https://doi.org/10.1103/PhysRevLett.119.227802
- P.J. Hagerman, Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988). https://doi.org/10.1146/annurev.bb.17.060188.001405
- Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019). https://doi.org/10.1021/acs.chemrev.7b00663
- A. Krissanaprasit, C.M. Key, S. Pontula, T.H. LaBean, Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev. 121, 13797–13868 (2021). https://doi.org/10.1021/acs.chemrev.0c01332
- J. Li, A.A. Green, H. Yan, C. Fan, Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017). https://doi.org/10.1038/nchem.2852
- D. Han, C. Wu, M. You, T. Zhang, S. Wan et al., A cade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 835–841 (2015). https://doi.org/10.1038/nchem.2325
- R. Peng, L. Xu, H. Wang, Y. Lyu, D. Wang et al., DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat. Commun. 11, 978 (2020). https://doi.org/10.1038/s41467-020-14739-6
- D. Fan, E. Wang, S. Dong, Upconversion-chameleon-driven DNA computing: the DNA-unlocked inner-filter-effect (DU-IFE) for operating a multicolor upconversion luminescent DNA logic library and Its biosensing application. Mater. Horiz. 6, 375–384 (2019). https://doi.org/10.1039/C8MH01151F
- F. Wang, H. Lv, Q. Li, J. Li, X. Zhang et al., Implementing digital computing with DNA-based switching circuits. Nat. Commun. 11, 121 (2020). https://doi.org/10.1038/s41467-019-13980-y
- S.F.J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka et al., A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012). https://doi.org/10.1038/nnano.2011.253
- G. Chatterjee, N. Dalchau, R.A. Muscat, A. Phillips, G. Seelig, A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017). https://doi.org/10.1038/nnano.2017.127
- J. Pan, F. Li, T.-G. Cha, H. Chen, J.H. Choi, Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015). https://doi.org/10.1016/j.copbio.2014.11.017
- W. Meng, R.A. Muscat, M.L. McKee, P.J. Milnes, A.H. El-Sagheer et al., An autonomous molecular assembler for programmable chemical synthesis. Nat. Chem. 8, 542–548 (2016). https://doi.org/10.1038/nchem.2495
- D. Zhao, T.M. Neubauer, B.L. Feringa, Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015). https://doi.org/10.1038/ncomms7652
- S. Kassem, A.T.L. Lee, D.A. Leigh, A. Markevicius, J. Solà, Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016). https://doi.org/10.1038/nchem.2410
- Y. He, D.R. Liu, Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotechnol. 5, 778–782 (2010). https://doi.org/10.1038/nnano.2010.190
- H. Gu, J. Chao, S.-J. Xiao, N.C. Seeman, A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010). https://doi.org/10.1038/nature09026
- T. Funck, F. Nicoli, A. Kuzyk, T. Liedl, Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem. Int. Ed. 57, 13495–13498 (2018). https://doi.org/10.1002/anie.201807029
- S.M. Douglas, I. Bachelet, G.M. Church, A logic-gated nanorobot for targeted transport of molecular paylo. Science 335, 831–834 (2012). https://doi.org/10.1126/science.1214081
- C. Zhou, X. Duan, N. Liu, A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015). https://doi.org/10.1038/ncomms9102
- A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl et al., Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014). https://doi.org/10.1038/nmat4031
- F. Lancia, A. Ryabchun, N. Katsonis, Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019). https://doi.org/10.1038/s41570-019-0122-2
- Z. Tong, L. Jin, J.M. Oliveira, R.L. Reis, Q. Zhong et al., Adaptable hydrogel with reversible linkages for regenerative medicine: dynamic mechanical microenvironment for cells. Bioact. Mater. 6, 1375–1387 (2020). https://doi.org/10.1016/j.bioactmat.2020.10.029
- S. Krause, B.L. Feringa, Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020). https://doi.org/10.1038/s41570-020-0209-9
- K.C.-F. Leung, C.-P. Chak, C.-M. Lo, W.-Y. Wong, S. Xuan et al., pH-controllable supramolecular systems. Chem 4, 364–381 (2009). https://doi.org/10.1002/asia.200800320
- S.M. Landge, I. Aprahamian, A pH activated configurational rotary switch: controlling the E/Z isomerization in hydrazones. J. Am. Chem. Soc. 131, 18269–18271 (2009). https://doi.org/10.1021/ja909149z
- S. Angelos, N.M. Khashab, Y.-W. Yang, A. Trabolsi, H.A. Khatib et al., pH clock-operated mechanized nanops. J. Am. Chem. Soc. 131, 12912–12914 (2009). https://doi.org/10.1021/ja9010157
- Z. Meng, Y. Han, L.-N. Wang, J.-F. Xiang, S.-G. He et al., Stepwise motion in a multivalent[2](3)catenane. J. Am. Chem. Soc. 137, 9739–9745 (2015). https://doi.org/10.1021/jacs.5b05758
- S. Corra, M. Curcio, M. Baroncini, S. Silvi, A. Credi, Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, e1906064 (2020). https://doi.org/10.1002/adma.201906064
- V. Balzani, M. Clemente-León, A. Credi, B. Ferrer, M. Venturi et al., Autonomous artificial nanomotor powered by sunlight. PNAS 103, 1178–1183 (2006). https://doi.org/10.1073/pnas.0509011103
- F. Ji, Y. Wu, M. Pumera, L. Zhang, Collective behaviors of active matter learning from natural Taxes across scales. Adv. Mater. 35, 2203959 (2023). https://doi.org/10.1002/adma.202203959
- S.J. Wezenberg, C.M. Croisetu, M.C.A. Stuart, B.L. Feringa, Reversible gel–sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chem. Sci. 7, 4341–4346 (2016). https://doi.org/10.1039/C6SC00659K
- Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso et al., Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015). https://doi.org/10.1038/nnano.2014.315
- J.T. Foy, Q. Li, A. Goujon, J.-R. Colard-Itté, G. Fuks et al., Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017). https://doi.org/10.1038/nnano.2017.28
- A. Goujon, G. Du, E. Moulin, G. Fuks, M. Maaloum et al., Hierarchical self-assembly of supramolecular muscle-like fibers. Angew. Chem. Int. Ed. 55, 703–707 (2016). https://doi.org/10.1002/anie.201509813
- W.-J. Li, W. Wang, X.-Q. Wang, M. Li, Y. Ke et al., Daisy chain dendrimers: integrated mechanically interlocked molecules with stimuli-induced dimension modulation feature. J. Am. Chem. Soc. 142, 8473–8482 (2020). https://doi.org/10.1021/jacs.0c02475
- J. Hou, A. Mondal, G. Long, L. de Haan, W. Zhao et al., Photo-responsive helical motion by light-driven molecular motors in a liquid-crystal network. Angew. Chem. Int. Ed. 60, 8251–8257 (2021). https://doi.org/10.1002/anie.202016254
- J. Choi, J. Jeon, J. Lee, A. Nauman, J.G. Lee et al., Steerable and agile light-fueled rolling locomotors by curvature-engineered torsional torque. Adv. Sci. 10(30), 2304715 (2023). https://doi.org/10.1002/advs.202304715
- Z.-T. Shi, Q. Zhang, H. Tian, D.-H. Qu, Driving smart molecular systems by artificial molecular machines. Adv. Intell. Syst. 2, 1900169 (2020). https://doi.org/10.1002/aisy.201900169
- L. Fang, M. Hmadeh, J. Wu, M.A. Olson, J.M. Spruell et al., Acid−base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131(20), 7126–7134 (2009). https://doi.org/10.1021/ja900859d
- P.G. Clark, M.W. Day, R.H. Grubbs, Switching and extension of a[c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009). https://doi.org/10.1021/ja905924u
- G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012). https://doi.org/10.1002/anie.201206571
- L. Gao, Z. Zhang, B. Zheng, F. Huang, Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based[c2]daisy chain. Polym. Chem. 5, 5734–5739 (2014). https://doi.org/10.1039/C4PY00733F
- Q. Zhang, S.-J. Rao, T. Xie, X. Li, T.-Y. Xu et al., Muscle-like artificial molecular actuators for nanops. Chem 4, 2670–2684 (2018). https://doi.org/10.1016/j.chempr.2018.08.030
- A. Goujon, T. Lang, G. Mariani, E. Moulin, G. Fuks et al., Bistable[c2]daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139, 14825–14828 (2017). https://doi.org/10.1021/jacs.7b06710
- J.-C. Chang, S.-H. Tseng, C.-C. Lai, Y.-H. Liu, S.-M. Peng et al., Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nat. Chem. 9, 128–134 (2017). https://doi.org/10.1038/nchem.2608
- X. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai et al., Amplification of integrated microscopic motions of high-density[2]rotaxanes in mechanically interlocked networks. Nat. Commun. 13, 6654 (2022). https://doi.org/10.1038/s41467-022-34286-6
- W.-J. Li, W.-T. Xu, X.-Q. Wang, Y. Jiang, Y. Zhu et al., Photoresponsive rotaxane-branched dendrimers: from nanoscale dimension modulation to macroscopic soft actuators. J. Am. Chem. Soc. 145(26), 14498–14509 (2023). https://doi.org/10.1021/jacs.3c04103
- R. Eelkema, B.L. Feringa, Amplification of chirality in liquid crystals. Org. Biomol. Chem. 4, 3729 (2006). https://doi.org/10.1039/b608749c
- F. Lancia, A. Ryabchun, A.-D. Nguindjel, S. Kwangmettatam, N. Katsonis, Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 10, 4819 (2019). https://doi.org/10.1038/s41467-019-12786-2
- M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307–310 (2004). https://doi.org/10.1038/nmat1118
- R. Eelkema, M.M. Pollard, J. Vicario, N. Katsonis, B.S. Ramon et al., Nanomotor rotates microscale objects. Nature 440, 163 (2006). https://doi.org/10.1038/440163a
- S. Iamsaard, S.J. Aßhoff, B. Matt, T. Kudernac, J.J.L.M. Cornelissen et al., Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014). https://doi.org/10.1038/nchem.1859
- S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softmicrorobots. Nat. Mater. 15, 647–653 (2016). https://doi.org/10.1038/nmat4569
- A.H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme et al., Making waves in a photoactive polymer film. Nature 546, 632–636 (2017). https://doi.org/10.1038/nature22987
- J. Chen, F.K. Leung, M.C.A. Stuart, T. Kajitani, T. Fukushima et al., Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018). https://doi.org/10.1038/nchem.2887
- A. Kakugo, S. Sugimoto, J.P. Gong, Y. Osada, Gel machines constructed from chemically cross-linked actins and myosins. Adv. Mater. 14, 1124 (2002). https://doi.org/10.1002/1521-4095
- A. Kakugo, S. Sugimoto, K. Shikinaka, J.P. Gong, Y. Osada, Characteristics of chemically cross-linked myosin gels. J. Biomater. Sci. Polym. Ed. 16, 203–218 (2005). https://doi.org/10.1163/1568562053115408
- K. Shikinaka, S. Takaoka, A. Kakugo, Y. Osada, J.P. Gong, ATP-fueled soft gel machine with well-oriented structure constructed using actin-myosin system. J. Appl. Polym. Sci. 114, 2087–2092 (2009). https://doi.org/10.1002/app.30821
- H. Jia, J. Flommersfeld, M. Heymann, S.K. Vogel, H.G. Franquelim et al., 3D printed protein-based robotic structures actuated by molecular motor assemblies. Nat. Mater. 21, 703–709 (2022). https://doi.org/10.1038/s41563-022-01258-6
- T. Nitta, Y. Wang, Z. Du, K. Morishima, Y. Hiratsuka, A printable active network actuator built from an engineered biomolecular motor. Nat. Mater. 20, 1149–1155 (2021). https://doi.org/10.1038/s41563-021-00969-6
- Y. Wang, T. Nitta, Y. Hiratsuka, K. Morishima, In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci. Robot. 7, eaba8212 (2022). https://doi.org/10.1126/scirobotics.aba8212
- K. Yoshida, K. Kohno, Y. Hiratsuka, H. Onoe, Macroscale collagen-actomyosin hybrid actuator built from bioderived materials. Adv. Funct. Mater. 33, 2307766 (2023). https://doi.org/10.1002/adfm.202307766
- J. Zhang, B. Gao, B. Ye, Z. Sun, Z. Qian et al., Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35, e2208571 (2023). https://doi.org/10.1002/adma.202208571
- W. Danowski, T. van Leeuwen, S. Abdolahzadeh, D. Roke, W.R. Browne et al., Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019). https://doi.org/10.1038/s41565-019-0401-6
- S. Tsitkov, Y. Song, J.B. Rodriguez 3rd., Y. Zhang, H. Hess, Kinesin-recruiting microtubules exhibit collective gliding motion while forming motor trails. ACS Nano 14, 16547–16557 (2020). https://doi.org/10.1021/acsnano.0c03263
- S. Araki, K. Beppu, A.M.R. Kabir, A. Kakugo, Y.T. Maeda, Controlling collective motion of kinesin-driven microtubules via patterning of topographic landscapes. Nano Lett. 21, 10478–10485 (2021). https://doi.org/10.1021/acs.nanolett.1c03952
- H. Inaba, Y. Sueki, M. Ichikawa, A.M.R. Kabir, T. Iwasaki et al., Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci. Adv. 8, eabq3817 (2022). https://doi.org/10.1126/sciadv.abq3817
- F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi et al., Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014). https://doi.org/10.1126/science.1254784
- V. Schaller, C.A. Weber, B. Hammerich, E. Frey, A.R. Bausch, Frozen steady states in active systems. Proc. Natl. Acad. Sci. U.S.A. 108, 19183–19188 (2011). https://doi.org/10.1073/pnas.1107540108
- L. Huber, R. Suzuki, T. Krüger, E. Frey, A.R. Bausch, Emergence of coexisting ordered states in active matter systems. Science 361, 255–258 (2018). https://doi.org/10.1126/science.aao5434
- J.J. Keya, R. Suzuki, A.M.R. Kabir, D. Inoue, H. Asanuma et al., DNA-assisted swarm control in a biomolecular motor system. Nat. Commun. 9, 453 (2018). https://doi.org/10.1038/s41467-017-02778-5
- J.J. Keya, A.M.R. Kabir, D. Inoue, K. Sada, H. Hess et al., Control of swarming of molecular robots. Sci. Rep. 8, 11756 (2018). https://doi.org/10.1038/s41598-018-30187-1
- H. Hess, J. Clemmens, C. Brunner, R. Doot, S. Luna et al., Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett. 5, 629–633 (2005). https://doi.org/10.1021/nl0478427
- M.S. Islam, K. Kuribayashi-Shigetomi, A.M.R. Kabir, D. Inoue, K. Sada et al., Role of confinement in the active self-organization of kinesin-driven microtubules. Sens. Actuat. B Chem. 247, 53–60 (2017). https://doi.org/10.1016/j.snb.2017.03.006
- O. Idan, A. Lam, J. Kamcev, J. Gonzales, A. Agarwal et al., Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett. 12, 240–245 (2012). https://doi.org/10.1021/nl203450h
- A. Saito, T.I. Farhana, A.M.R. Kabir, D. Inoue, A. Konagaya et al., Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv. 7, 13191–13197 (2017). https://doi.org/10.1039/C6RA27449H
- D. Inoue, B. Mahmot, A.M.R. Kabir, T.I. Farhana, K. Tokuraku et al., Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7, 18054–18061 (2015). https://doi.org/10.1039/C5NR02213D
- Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa et al., Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012). https://doi.org/10.1038/nature10874
- T. Sanchez, D. Welch, D. Nitro, Z. Dogic, Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011). https://doi.org/10.1126/science.1203963
- P. Bieling, I.A. Telley, J. Piehler, T. Surrey, Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Rep. 9, 1121–1127 (2008). https://doi.org/10.1038/embor.2008.169
- G. Saper, S. Tsitkov, P. Katira, H. Hess, Robotic end-to-end fusion of microtubules powered by kinesin. Sci. Robot. 6, eabj7200 (2021). https://doi.org/10.1126/scirobotics.abj7200
- A.J. Thubagere, W. Li, R.F. Johnson, Z. Chen, S. Doroudi et al., A cargo-sorting DNA robot. Science 357, eaan6558 (2017). https://doi.org/10.1126/science.aan6558
- M. Akter, J.J. Keya, A.M.R. Kabir, H. Asanuma, K. Murayama et al., Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem. Commun. 56, 7953–7956 (2020). https://doi.org/10.1039/d0cc03124k
- M. Akter, J.J. Keya, K. Kayano, A.M.R. Kabir, D. Inoue et al., Cooperative cargo transportation by a swarm of molecular machines. Sci. Robot. 7, eabm0677 (2022). https://doi.org/10.1126/scirobotics.abm0677
- Y. Sato, Y. Hiratsuka, I. Kawamata, S. Murata, S.-I.M. Nomura, Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2, eaal3735 (2017). https://doi.org/10.1126/scirobotics.aal3735
- K. Matsuda, A.M.R. Kabir, N. Akamatsu, A. Saito, S. Ishikawa et al., Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 19, 3933–3938 (2019). https://doi.org/10.1021/acs.nanolett.9b01201
- S. Ishii, M. Akter, K. Murayama, A.M.R. Kabir, H. Asanuma et al., Kinesin motors driven microtubule swarming triggered by UV light. Polym. J. 54, 1501–1507 (2022). https://doi.org/10.1038/s41428-022-00693-1
- A. Senoussi, J.-C. Galas, A. Estevez-Torres, Programmed mechano-chemical coupling in reaction-diffusion active matter. Sci. Adv. 7, eabi9865 (2021). https://doi.org/10.1126/sciadv.abi9865
- R. Ibusuki, T. Morishita, A. Furuta, S. Nakayama, M. Yoshio et al., Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159–1164 (2022). https://doi.org/10.1126/science.abj5170
- Z. Liu, W. Zhou, C. Qi, T. Kong, Interface engineering in multiphase systems toward synthetic cells and organelles: from soft matter fundamentals to biomedical applications. Adv. Mater. 32, e2002932 (2020). https://doi.org/10.1002/adma.202002932
- B.L. Feringa, Vision statement: materials in motion. Adv. Mater. 32, e1906416 (2020). https://doi.org/10.1002/adma.201906416
- Y. Zhang, K. Yan, F. Ji, L. Zhang, Enhanced removal of toxic heavy metals using swarming biohybrid orbents. Adv. Funct. Mater. 28, 1806340 (2018). https://doi.org/10.1002/adfm.201806340
- D. Wang, G. Zhao, C.H. Chen, H. Zhang, R.M. Duan et al., One-step fabrication of dual optically/magnetically modulated walnut-like micromotor. Langmuir 35(7), 2801–2807 (2019). https://doi.org/10.1021/acs.langmuir.8b02904
- R. Das, V.S. Sypu, H.K. Paumo, M. Bhaumik, V. Maharaj et al., Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B Environ. 244, 546–558 (2019). https://doi.org/10.1016/j.apcatb.2018.11.073
- H. Park, A. May, L. Portilla, H. Dietrich, F. Münch et al., Magnetite nanops as efficient materials for removal of glyphosate from water. Nat. Sustain. 3, 129–135 (2020). https://doi.org/10.1038/s41893-019-0452-6
- Y. Ren, H. Li, J. Liu, M. Zhou, J. Pan, Crescent-shaped micromotor sorbents with sulfonic acid functionalized convex surface: the synthesis by A Janus emulsion strategy and orption for Li+. J. Hazard. Mater. 422, 126870 (2022). https://doi.org/10.1016/j.jhazmat.2021.126870
- Z.C. Chen, J.W. Jiang, X. Wang, H. Zhang, B. Song et al., Visible light-regulated bivo4-based micromotor with biomimetic “predator-bait” behavior. J. Mater. Sci. 57(6), 4092–4103 (2022). https://doi.org/10.1007/s10853-022-06882-w
- Y. Ji, X. Lin, Z. Wu, Y. Wu, W. Gao et al., Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angew. Chem. Int. Ed. 58, 12200–12205 (2019). https://doi.org/10.1002/anie.201907733
- J. Yu, L. Yang, L. Zhang, Pattern generation and motion control of a vortex-like paramagnetic nanop swarm. Int. J. Robot. Res. 37, 912–930 (2018). https://doi.org/10.1177/0278364918784366
- Q. Wang, L. Yang, B. Wang, E. Yu, J. Yu et al., Collective behavior of reconfigurable magnetic droplets via dynamic self-assembly. ACS Appl. Mater. Interfaces 11, 1630–1637 (2019). https://doi.org/10.1021/acsami.8b17402
- T. Bhuyan, A.K. Singh, D. Dutta, A. Unal, S.S. Ghosh et al., Magnetic field guided chemotaxis of iMushbots for targeted anticancer therapeutics. ACS Biomater. Sci. Eng. 3, 1627–1640 (2017). https://doi.org/10.1021/acsbiomaterials.7b00086
- D. Liu, R. Guo, S. Mao, Y. Huang, B. Wang et al., 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Res. 16, 1021–1032 (2023). https://doi.org/10.1007/s12274-022-4851-z
- H. Lee, D.-I. Kim, S.-H. Kwon, S. Park, Magnetically actuated drug delivery helical microrobot with magnetic nanop retrieval ability. ACS Appl. Mater. Interfaces 13, 19633–19647 (2021). https://doi.org/10.1021/acsami.1c01742
- S. Jeon, B.C. Park, S. Lim, H.Y. Yoon, Y.S. Jeon et al., Heat-generating iron oxide multigranule nanoclusters for enhancing hyperthermic efficacy in tumor treatment. ACS Appl. Mater. Interfaces 12, 33483–33491 (2020). https://doi.org/10.1021/acsami.0c07419
- A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B.J. Nelson, Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981–2988 (2015). https://doi.org/10.1002/adma.201404444
- Q. Wang, X. Du, D. Jin, L. Zhang, Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604–616 (2022). https://doi.org/10.1021/acsnano.1c07830
- L. Xie, X. Pang, X. Yan, Q. Dai, H. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14, 2880–2893 (2020). https://doi.org/10.1021/acsnano.9b06731
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
- B. Wang, Y. Lu, Multi-dimensional micro/nanorobots with collective behaviors. SmartMat (2024). https://doi.org/10.1002/smm2.1263
- D. Jin, J. Yu, K. Yuan, L. Zhang, Mimicking the structure and function of ant bridges in a reconfigurable microswarm for electronic applications. ACS Nano 13, 5999–6007 (2019). https://doi.org/10.1021/acsnano.9b02139
- F. Ji, D. Jin, B. Wang, L. Zhang, Light-driven hovering of a magnetic microswarm in fluid. ACS Nano 14, 6990–6998 (2020). https://doi.org/10.1021/acsnano.0c01464
- F. Mou, X. Li, Q. Xie, J. Zhang, K. Xiong et al., Active micromotor systems built from passive ps with biomimetic predator-prey interactions. ACS Nano 14, 406–414 (2020). https://doi.org/10.1021/acsnano.9b05996
- S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396–401 (2012). https://doi.org/10.1021/nl203717q
- C. Liang, C. Zhan, F. Zeng, D. Xu, Y. Wang et al., Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 10, 35099–35107 (2018). https://doi.org/10.1021/acsami.8b10921
- Y. Huang, D. Liu, R. Guo, B. Wang, Z. Liu et al., Magnetic-controlled dandelion-like nanocatalytic swarm for targeted biofilm elimination. Nanoscale 14, 6497–6506 (2022). https://doi.org/10.1039/d2nr00765g
- M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile ps and patterned surfaces under redox conditions. ACS Nano 4, 4845–4851 (2010). https://doi.org/10.1021/nn101289p
- W. Duan, R. Liu, A. Sen, Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135, 1280–1283 (2013). https://doi.org/10.1021/ja3120357
- M. Ibele, T.E. Mallouk, A. Sen, Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009). https://doi.org/10.1002/anie.200804704
- S. Du, H. Wang, C. Zhou, W. Wang, Z. Zhang, Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 142, 2213–2217 (2020). https://doi.org/10.1021/jacs.9b13093
- C. Chen, F. Mou, L. Xu, S. Wang, J. Guan et al., Light-steered isotropic semiconductor micromotors. Adv. Mater. 29, 1603374 (2017). https://doi.org/10.1002/adma.201603374
- K. Bian, X. Zhang, K. Liu, T. Yin, H. Liu et al., Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal therapy. ACS Sustain. Chem. Eng. 6, 7574–7588 (2018). https://doi.org/10.1021/acssuschemeng.8b00415
- Y. Hu, W. Liu, Y. Sun, Multiwavelength phototactic micromotor with controllable swarming motion for “chemistry-on-the-fly.” ACS Appl. Mater. Interfaces 12, 41495–41505 (2020). https://doi.org/10.1021/acsami.0c11443
- Z. Lin, X. Fan, M. Sun, C. Gao, Q. He et al., Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano 12, 2539–2545 (2018). https://doi.org/10.1021/acsnano.7b08344
- F. Soto, A. Martin, S. Ibsen, M. Vaidyanathan, V. Garcia-Gradilla et al., Acoustic microcannons: toward advanced microballistics. ACS Nano 10, 1522–1528 (2016). https://doi.org/10.1021/acsnano.5b07080
- W. Wang, L.A. tro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122–6132 (2012). https://doi.org/10.1021/nn301312z
- H. Inaba, M. Yamada, M.R. Rashid, A.M.R. Kabir, A. Kakugo et al., Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanops using a tau-derived peptide. Nano Lett. 20, 5251–5258 (2020). https://doi.org/10.1021/acs.nanolett.0c01573
- H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen et al., Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4, eaav8006 (2019). https://doi.org/10.1126/scirobotics.aav8006
- W.H. Fissell, What is nanotechnology? Adv. Chronic Kidney Dis. 20, 452–453 (2013). https://doi.org/10.1053/j.ackd.2013.08.008
- A. Kuzuya, S-I M. Nomura, T. Toyota, T. Nakakuki, S. Murata, From molecular robotics to molecular cybernetics: the first step toward chemical artificial intelligence. IEEE Trans. Mol. Biol. Multi Scale Commun. 9, 354–363 (2023). https://doi.org/10.1109/TMBMC.2023.3304243
References
I. Aprahamian, The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020). https://doi.org/10.1021/acscentsci.0c00064
C. Cheng, J.F. Stoddart, Wholly synthetic molecular machines. ChemPhysChem 17, 1780–1793 (2016). https://doi.org/10.1002/cphc.201501155
M. Schliwa, in Molecular motors. ed.by (Springer Berlin Heidelberg; Berlin, Heidelberg, 2006), pp. 1160–1174. https://doi.org/10.1007/3-540-29623-9_3980
D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot et al., Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020). https://doi.org/10.1021/acs.chemrev.9b00288
R.D. Astumian, How molecular motors work - insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017). https://doi.org/10.1039/c6sc04806d
V. Richards, Molecular machines. Nat. Chem. 8, 1090 (2016). https://doi.org/10.1038/nchem.2687
B.L. Feringa, The art of building small: from molecular switches to motors (nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017). https://doi.org/10.1002/anie.201702979
J.-P. Sauvage, From chemical topology to molecular machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017). https://doi.org/10.1002/anie.201702992
J. Fraser Stoddart, Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017). https://doi.org/10.1002/anie.201703216
V. Balzani, M. Gómez-López, J.F. Stoddart, Molecular machines. Acc. Chem. Res. 31, 405–414 (1998). https://doi.org/10.1021/ar970340y
S. Erbas-Cakmak, D.A. Leigh, C.T. McTernan, A.L. Nussbaumer, Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015). https://doi.org/10.1021/acs.chemrev.5b00146
S. Kassem, T. van Leeuwen, A.S. Lubbe, M.R. Wilson, B.L. Feringa et al., Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017). https://doi.org/10.1039/c7cs00245a
Q. Wang, D. Chen, H. Tian, Artificial molecular machines that can perform work. Sci. China Chem. 61, 1261–1273 (2018). https://doi.org/10.1007/s11426-018-9267-3
F. Tanaka, T. Mochizuki, X. Liang, H. Asanuma, S. Tanaka et al., Robust and photocontrollable DNA capsules using azobenzenes. Nano Lett. 10, 3560–3565 (2010). https://doi.org/10.1021/nl101829m
Y. Yang, M. Endo, K. Hidaka, H. Sugiyama, Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012). https://doi.org/10.1021/ja307785r
Y. Suzuki, M. Endo, Y. Yang, H. Sugiyama, Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J. Am. Chem. Soc. 136, 1714–1717 (2014). https://doi.org/10.1021/ja4109819
M. Endo, R. Miyazaki, T. Emura, K. Hidaka, H. Sugiyama, Transcription regulation system mediated by mechanical operation of a DNA nanostructure. J. Am. Chem. Soc. 134, 2852–2855 (2012). https://doi.org/10.1021/ja2074856
H. Saito, T. Kobayashi, T. Hara, Y. Fujita, K. Hayashi et al., Synthetic translational regulation by an L7Ae–kink-turn RNP switch. Nat. Chem. Biol. 6, 71–78 (2010). https://doi.org/10.1038/nchembio.273
H. Saito, Y. Fujita, S. Kashida, K. Hayashi, T. Inoue, Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2, 160 (2011). https://doi.org/10.1038/ncomms1157
Y. Yoshimura, K. Fujimoto, Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10, 3227–3230 (2008). https://doi.org/10.1021/ol801112j
A.S. Amrutha, K.R. Sunil Kumar, N. Tamaoki, Azobenzene-based photoswitches facilitating reversible regulation of kinesin and myosin motor systems for nanotechnological applications. ChemPhotoChem 3, 337–346 (2019). https://doi.org/10.1002/cptc.201900037
H. Hess, J.L. Ross, Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem. Soc. Rev. 46, 5570–5587 (2017). https://doi.org/10.1039/C7CS00030H
H. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger et al., Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat. Mater. 1, 173–177 (2002). https://doi.org/10.1038/nmat761
R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura et al., Hybrid nanotransport system by biomolecular linear motors. J. Microelectromech. Syst. 13, 612–619 (2004). https://doi.org/10.1109/JMEMS.2004.832193
K.-Y. Chen, O. Ivashenko, G.T. Carroll, J. Robertus, J.C.M. Kistemaker et al., Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014). https://doi.org/10.1021/ja412110t
M. Pollard, M. Lubomska, P. Rudolf, B. Feringa, Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278–1280 (2007). https://doi.org/10.1002/anie.200603618
G.T. Carroll, M.M. Pollard, R. van Delden, B.L. Feringa, Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 1, 97–101 (2010). https://doi.org/10.1039/C0SC00162G
G. Xie, P. Li, Z. Zhao, X.-Y. Kong, Z. Zhang et al., Bacteriorhodopsin-inspired light-driven artificial molecule motors for transmembrane mass transportation. Angew. Chem. Int. Ed. 57, 16708–16712 (2018). https://doi.org/10.1002/anie.201809627
V. García-López, F. Chen, L.G. Nilewski, G. Duret, A. Aliyan et al., Molecular machines open cell membranes. Nature 548, 567–572 (2017). https://doi.org/10.1038/nature23657
S. Chen, Y. Wang, T. Nie, C. Bao, C. Wang et al., An artificial molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992–17998 (2018). https://doi.org/10.1021/jacs.8b09580
J. Wang, B.L. Feringa, Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011). https://doi.org/10.1126/science.1199844
C. Biagini, S.D.P. Fielden, D.A. Leigh, F. Schaufelberger, S. Di Stefano et al., Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019). https://doi.org/10.1002/anie.201905250
E. Kay, D. Leigh, F. Zerbetto, Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007). https://doi.org/10.1002/anie.200504313
N. Koumura, E.M. Geertsema, A. Meetsma, B.L. Feringa, Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005–12006 (2000). https://doi.org/10.1021/ja002755b
A.G. Campaña, D.A. Leigh, U. Lewandowska, One-dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J. Am. Chem. Soc. 135, 8639–8645 (2013). https://doi.org/10.1021/ja402382n
H. Hess, G. Saper, Engineering with biomolecular motors. Acc. Chem. Res. 51, 3015–3022 (2018). https://doi.org/10.1021/acs.accounts.8b00296
X. Mao, M. Liu, Q. Li, C. Fan, X. Zuo, DNA-based molecular machines. JACS Au 2, 2381–2399 (2022). https://doi.org/10.1021/jacsau.2c00292
H. Zhou, C.C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
L. Kobr, K. Zhao, Y. Shen, A. Comotti, S. Bracco et al., Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion. J. Am. Chem. Soc. 134, 10122–10131 (2012). https://doi.org/10.1021/ja302173y
C. Lemouchi, K. Iliopoulos, L. Zorina, S. Simonov, P. Wzietek et al., Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J. Am. Chem. Soc. 135, 9366–9376 (2013). https://doi.org/10.1021/ja4044517
X. Jiang, B. Rodríguez-Molina, N. Nazarian, M.A. Garcia-Garibay, Rotation of a bulky triptycene in the solid state: toward engineered nanoscale artificial molecular machines. J. Am. Chem. Soc. 136, 8871–8874 (2014). https://doi.org/10.1021/ja503467e
T.R. Kelly, H. De Silva, R.A. Silva, Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999). https://doi.org/10.1038/43639
N. Koumura, R.W. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999). https://doi.org/10.1038/43646
G. Haberhauer, A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011). https://doi.org/10.1002/anie.201101501
G. Bringmann, A.J. Price Mortimer, P.A. Keller, M.J. Gresser, J. Garner et al., Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005). https://doi.org/10.1002/anie.200462661
S.P. Fletcher, F. Dumur, M.M. Pollard, B.L. Feringa, A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005). https://doi.org/10.1126/science.1117090
B.J. Dahl, B.P. Branchaud, Synthesis and characterization of a functionalized chiral biaryl capable of exhibiting unidirectional bond rotation. Tetrahedron Lett. 45, 9599–9602 (2004). https://doi.org/10.1016/j.tetlet.2004.10.147
J.C.M. Kistemaker, P. Štacko, J. Visser, B.L. Feringa, Unidirectional rotary motion in achiral molecular motors. Nat. Chem. 7, 890–896 (2015). https://doi.org/10.1038/nchem.2362
L. Greb, J.-M. Lehn, Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014). https://doi.org/10.1021/ja506034n
R.A. van Delden, M.K. ter Wiel, M.M. Pollard, J. Vicario, N. Koumura et al., Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005). https://doi.org/10.1038/nature04127
T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis et al., Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011). https://doi.org/10.1038/nature10587
G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch et al., Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proc. Natl. Acad. Sci. U.S.A. 104, 9937–9942 (2007). https://doi.org/10.1073/pnas.0703748104
A. Harada, Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001). https://doi.org/10.1021/ar000174l
V. Ferri, M. Elbing, G. Pace, M. Dickey, M. Zharnikov et al., Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew. Chem. Int. Ed. 47, 3407–3409 (2008). https://doi.org/10.1002/anie.200705339
G. Yu, C. Han, Z. Zhang, J. Chen, X. Yan et al., Pillar[6]arene-based photoresponsive host–guest complexation. J. Am. Chem. Soc. 134, 8711–8717 (2012). https://doi.org/10.1021/ja302998q
C.-L. Lee, T. Liebig, S. Hecht, D. Bléger, J.P. Rabe, Light-induced contraction and extension of single macromolecules on a modified graphite surface. ACS Nano 8, 11987–11993 (2014). https://doi.org/10.1021/nn505325w
D.-H. Qu, Q.-C. Wang, H. Tian, A half adder based on a photochemically driven[2]rotaxane. Angew. Chem. Int. Ed. 44, 5296–5299 (2005). https://doi.org/10.1002/anie.200501215
W.T. Sun, S.L. Huang, H.H. Yao, I.C. Chen, Y.C. Lin et al., An antilock molecular braking system. Org. Lett. 14, 4154–4157 (2012). https://doi.org/10.1021/ol3018193
A. Arduini, R. Bussolati, A. Credi, S. Monaco, A. Secchi et al., Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel. Chem 18, 16203–16213 (2012). https://doi.org/10.1002/chem.201201625
D. Taura, H. Min, C. Katan, E. Yashima, Synthesis of a double-stranded spiroborate helicate bearing stilbene units and its photoresponsive behaviour. New J. Chem. 39, 3259–3269 (2015). https://doi.org/10.1039/c4nj01669f
M. Morimoto, M. Irie, A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172–14178 (2010). https://doi.org/10.1021/ja105356w
Z. Li, F. Hu, G. Liu, W. Xue, X. Chen et al., Photo-responsive[2]catenanes: synthesis and properties. Org. Biomol. Chem. 12, 7702–7711 (2014). https://doi.org/10.1039/c4ob01120a
M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014). https://doi.org/10.1021/cr500249p
S. Ohshima, M. Morimoto, M. Irie, Light-driven bending of diarylethene mixed crystals. Chem. Sci. 6, 5746–5752 (2015). https://doi.org/10.1039/c5sc01994j
K. Fukushima, A.J. Vandenbos, T. Fujiwara, Spiropyran dimer toward photo-switchable molecular machine. Chem. Mater. 19, 644–646 (2007). https://doi.org/10.1021/cm061968i
S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo et al., A simple molecular machine operated by photoinduced proton transfer. J. Am. Chem. Soc. 129, 13378–13379 (2007). https://doi.org/10.1021/ja0753851
L.A. Tatum, J.T. Foy, I. Aprahamian, Waste management of chemically activated switches: using a photoacid to eliminate accumulation of side products. J. Am. Chem. Soc. 136, 17438–17441 (2014). https://doi.org/10.1021/ja511135k
L. Sheng, M. Li, S. Zhu, H. Li, G. Xi et al., Hydrochromic molecular switches for water-jet rewritable paper. Nat. Commun. 5, 3044 (2014). https://doi.org/10.1038/ncomms4044
R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014). https://doi.org/10.1039/c3cs60181a
P.L. Anelli, N. Spencer, J.F. Stoddart, A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991). https://doi.org/10.1021/ja00013a096
R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994). https://doi.org/10.1038/369133a0
H.-R. Tseng, S.A. Vignon, J.F. Stoddart, Toward chemically controlled nanoscale molecular machinery. Angew. Chem. Int. Ed. 42, 1491–1495 (2003). https://doi.org/10.1002/anie.200250453
P.R. McGonigal, J.F. Stoddart, A molecular production line. Nat. Chem. 5, 260–262 (2013). https://doi.org/10.1038/nchem.1599
B. Lewandowski, G. De Bo, J.W. Ward, M. Papmeyer, S. Kuschel et al., Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013). https://doi.org/10.1126/science.1229753
C.J. Bruns, J.F. Stoddart, Molecular machines muscle up. Nat. Nanotechnol. 8, 9–10 (2013). https://doi.org/10.1038/nnano.2012.239
G. Yu, B.C. Yung, Z. Zhou, Z. Mao, X. Chen, Artificial molecular machines in nanotheranostics. ACS Nano 12, 7–12 (2018). https://doi.org/10.1021/acsnano.7b07851
G. Saper, H. Hess, Synthetic systems powered by biological molecular motors. Chem. Rev. 120, 288–309 (2020). https://doi.org/10.1021/acs.chemrev.9b00249
J. Howard, The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996). https://doi.org/10.1146/annurev.physiol.58.1.703
M. Nishiyama, H. Higuchi, T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002). https://doi.org/10.1038/ncb857
S.A. Burgess, M.L. Walker, H. Sakakibara, P.J. Knight, K. Oiwa, Dynein structure and power stroke. Nature 421, 715–718 (2003). https://doi.org/10.1038/nature01377
A. Gennerich, A.P. Carter, S.L. Reck-Peterson, R.D. Vale, Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007). https://doi.org/10.1016/j.cell.2007.10.016
T. Kon, T. Oyama, R. Shimo-Kon, K. Imamula, T. Shima et al., The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012). https://doi.org/10.1038/nature10955
A.J. Roberts, T. Kon, P.J. Knight, K. Sutoh, S.A. Burgess, Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713–726 (2013). https://doi.org/10.1038/nrm3667
H. Li, D.J. DeRosier, W.V. Nicholson, E. Nogales, K.H. Downing, Microtubule structure at 8 Å resolution. Structure 10, 1317–1328 (2002). https://doi.org/10.1016/s0969-2126(02)00827-4
W.H. Guilford, D.E. Dupuis, G. Kennedy, J. Wu, J.B. Patlak et al., Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys. J. 72, 1006–1021 (1997). https://doi.org/10.1016/S0006-3495(97)78753-8
J.A. Spudich, The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2, 387–392 (2001). https://doi.org/10.1038/35073086
M. Persson, E. Bengtsson, L. ten Siethoff, A. Månsson, Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin. Biophys. J. 105, 1871–1881 (2013). https://doi.org/10.1016/j.bpj.2013.08.044
E.H.C. Bromley, N.J. Kuwada, M.J. Zuckermann, R. Donadini, L. Samii et al., The Tumbleweed: towards a synthetic protein motor. HFSP J. 3, 204–212 (2009). https://doi.org/10.2976/1.3111282
H. Ramezani, H. Dietz, Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020). https://doi.org/10.1038/s41576-019-0175-6
A.M.R. Kabir, D. Inoue, A. Kakugo, Molecular swarm robots: recent progress and future challenges. Sci. Technol. Adv. Mater. 21, 323–332 (2020). https://doi.org/10.1080/14686996.2020.1761761
B. Yurke, A.J. Turberfield, A.P. Mills Jr., F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000). https://doi.org/10.1038/35020524
W. Zhou, R. Saran, J. Liu, Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017). https://doi.org/10.1021/acs.chemrev.7b00063
Y. Tian, Y. He, Y. Chen, P. Yin, C. Mao, A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005). https://doi.org/10.1002/anie.200500703
H.-M. Chuang, J.G. Reifenberger, H. Cao, K.D. Dorfman, Sequence-dependent persistence length of long DNA. Phys. Rev. Lett. 119, 227802 (2017). https://doi.org/10.1103/PhysRevLett.119.227802
P.J. Hagerman, Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988). https://doi.org/10.1146/annurev.bb.17.060188.001405
Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019). https://doi.org/10.1021/acs.chemrev.7b00663
A. Krissanaprasit, C.M. Key, S. Pontula, T.H. LaBean, Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev. 121, 13797–13868 (2021). https://doi.org/10.1021/acs.chemrev.0c01332
J. Li, A.A. Green, H. Yan, C. Fan, Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017). https://doi.org/10.1038/nchem.2852
D. Han, C. Wu, M. You, T. Zhang, S. Wan et al., A cade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 835–841 (2015). https://doi.org/10.1038/nchem.2325
R. Peng, L. Xu, H. Wang, Y. Lyu, D. Wang et al., DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat. Commun. 11, 978 (2020). https://doi.org/10.1038/s41467-020-14739-6
D. Fan, E. Wang, S. Dong, Upconversion-chameleon-driven DNA computing: the DNA-unlocked inner-filter-effect (DU-IFE) for operating a multicolor upconversion luminescent DNA logic library and Its biosensing application. Mater. Horiz. 6, 375–384 (2019). https://doi.org/10.1039/C8MH01151F
F. Wang, H. Lv, Q. Li, J. Li, X. Zhang et al., Implementing digital computing with DNA-based switching circuits. Nat. Commun. 11, 121 (2020). https://doi.org/10.1038/s41467-019-13980-y
S.F.J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka et al., A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012). https://doi.org/10.1038/nnano.2011.253
G. Chatterjee, N. Dalchau, R.A. Muscat, A. Phillips, G. Seelig, A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017). https://doi.org/10.1038/nnano.2017.127
J. Pan, F. Li, T.-G. Cha, H. Chen, J.H. Choi, Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015). https://doi.org/10.1016/j.copbio.2014.11.017
W. Meng, R.A. Muscat, M.L. McKee, P.J. Milnes, A.H. El-Sagheer et al., An autonomous molecular assembler for programmable chemical synthesis. Nat. Chem. 8, 542–548 (2016). https://doi.org/10.1038/nchem.2495
D. Zhao, T.M. Neubauer, B.L. Feringa, Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015). https://doi.org/10.1038/ncomms7652
S. Kassem, A.T.L. Lee, D.A. Leigh, A. Markevicius, J. Solà, Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016). https://doi.org/10.1038/nchem.2410
Y. He, D.R. Liu, Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotechnol. 5, 778–782 (2010). https://doi.org/10.1038/nnano.2010.190
H. Gu, J. Chao, S.-J. Xiao, N.C. Seeman, A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010). https://doi.org/10.1038/nature09026
T. Funck, F. Nicoli, A. Kuzyk, T. Liedl, Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem. Int. Ed. 57, 13495–13498 (2018). https://doi.org/10.1002/anie.201807029
S.M. Douglas, I. Bachelet, G.M. Church, A logic-gated nanorobot for targeted transport of molecular paylo. Science 335, 831–834 (2012). https://doi.org/10.1126/science.1214081
C. Zhou, X. Duan, N. Liu, A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015). https://doi.org/10.1038/ncomms9102
A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl et al., Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014). https://doi.org/10.1038/nmat4031
F. Lancia, A. Ryabchun, N. Katsonis, Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019). https://doi.org/10.1038/s41570-019-0122-2
Z. Tong, L. Jin, J.M. Oliveira, R.L. Reis, Q. Zhong et al., Adaptable hydrogel with reversible linkages for regenerative medicine: dynamic mechanical microenvironment for cells. Bioact. Mater. 6, 1375–1387 (2020). https://doi.org/10.1016/j.bioactmat.2020.10.029
S. Krause, B.L. Feringa, Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020). https://doi.org/10.1038/s41570-020-0209-9
K.C.-F. Leung, C.-P. Chak, C.-M. Lo, W.-Y. Wong, S. Xuan et al., pH-controllable supramolecular systems. Chem 4, 364–381 (2009). https://doi.org/10.1002/asia.200800320
S.M. Landge, I. Aprahamian, A pH activated configurational rotary switch: controlling the E/Z isomerization in hydrazones. J. Am. Chem. Soc. 131, 18269–18271 (2009). https://doi.org/10.1021/ja909149z
S. Angelos, N.M. Khashab, Y.-W. Yang, A. Trabolsi, H.A. Khatib et al., pH clock-operated mechanized nanops. J. Am. Chem. Soc. 131, 12912–12914 (2009). https://doi.org/10.1021/ja9010157
Z. Meng, Y. Han, L.-N. Wang, J.-F. Xiang, S.-G. He et al., Stepwise motion in a multivalent[2](3)catenane. J. Am. Chem. Soc. 137, 9739–9745 (2015). https://doi.org/10.1021/jacs.5b05758
S. Corra, M. Curcio, M. Baroncini, S. Silvi, A. Credi, Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, e1906064 (2020). https://doi.org/10.1002/adma.201906064
V. Balzani, M. Clemente-León, A. Credi, B. Ferrer, M. Venturi et al., Autonomous artificial nanomotor powered by sunlight. PNAS 103, 1178–1183 (2006). https://doi.org/10.1073/pnas.0509011103
F. Ji, Y. Wu, M. Pumera, L. Zhang, Collective behaviors of active matter learning from natural Taxes across scales. Adv. Mater. 35, 2203959 (2023). https://doi.org/10.1002/adma.202203959
S.J. Wezenberg, C.M. Croisetu, M.C.A. Stuart, B.L. Feringa, Reversible gel–sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chem. Sci. 7, 4341–4346 (2016). https://doi.org/10.1039/C6SC00659K
Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso et al., Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015). https://doi.org/10.1038/nnano.2014.315
J.T. Foy, Q. Li, A. Goujon, J.-R. Colard-Itté, G. Fuks et al., Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017). https://doi.org/10.1038/nnano.2017.28
A. Goujon, G. Du, E. Moulin, G. Fuks, M. Maaloum et al., Hierarchical self-assembly of supramolecular muscle-like fibers. Angew. Chem. Int. Ed. 55, 703–707 (2016). https://doi.org/10.1002/anie.201509813
W.-J. Li, W. Wang, X.-Q. Wang, M. Li, Y. Ke et al., Daisy chain dendrimers: integrated mechanically interlocked molecules with stimuli-induced dimension modulation feature. J. Am. Chem. Soc. 142, 8473–8482 (2020). https://doi.org/10.1021/jacs.0c02475
J. Hou, A. Mondal, G. Long, L. de Haan, W. Zhao et al., Photo-responsive helical motion by light-driven molecular motors in a liquid-crystal network. Angew. Chem. Int. Ed. 60, 8251–8257 (2021). https://doi.org/10.1002/anie.202016254
J. Choi, J. Jeon, J. Lee, A. Nauman, J.G. Lee et al., Steerable and agile light-fueled rolling locomotors by curvature-engineered torsional torque. Adv. Sci. 10(30), 2304715 (2023). https://doi.org/10.1002/advs.202304715
Z.-T. Shi, Q. Zhang, H. Tian, D.-H. Qu, Driving smart molecular systems by artificial molecular machines. Adv. Intell. Syst. 2, 1900169 (2020). https://doi.org/10.1002/aisy.201900169
L. Fang, M. Hmadeh, J. Wu, M.A. Olson, J.M. Spruell et al., Acid−base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131(20), 7126–7134 (2009). https://doi.org/10.1021/ja900859d
P.G. Clark, M.W. Day, R.H. Grubbs, Switching and extension of a[c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009). https://doi.org/10.1021/ja905924u
G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012). https://doi.org/10.1002/anie.201206571
L. Gao, Z. Zhang, B. Zheng, F. Huang, Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based[c2]daisy chain. Polym. Chem. 5, 5734–5739 (2014). https://doi.org/10.1039/C4PY00733F
Q. Zhang, S.-J. Rao, T. Xie, X. Li, T.-Y. Xu et al., Muscle-like artificial molecular actuators for nanops. Chem 4, 2670–2684 (2018). https://doi.org/10.1016/j.chempr.2018.08.030
A. Goujon, T. Lang, G. Mariani, E. Moulin, G. Fuks et al., Bistable[c2]daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139, 14825–14828 (2017). https://doi.org/10.1021/jacs.7b06710
J.-C. Chang, S.-H. Tseng, C.-C. Lai, Y.-H. Liu, S.-M. Peng et al., Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nat. Chem. 9, 128–134 (2017). https://doi.org/10.1038/nchem.2608
X. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai et al., Amplification of integrated microscopic motions of high-density[2]rotaxanes in mechanically interlocked networks. Nat. Commun. 13, 6654 (2022). https://doi.org/10.1038/s41467-022-34286-6
W.-J. Li, W.-T. Xu, X.-Q. Wang, Y. Jiang, Y. Zhu et al., Photoresponsive rotaxane-branched dendrimers: from nanoscale dimension modulation to macroscopic soft actuators. J. Am. Chem. Soc. 145(26), 14498–14509 (2023). https://doi.org/10.1021/jacs.3c04103
R. Eelkema, B.L. Feringa, Amplification of chirality in liquid crystals. Org. Biomol. Chem. 4, 3729 (2006). https://doi.org/10.1039/b608749c
F. Lancia, A. Ryabchun, A.-D. Nguindjel, S. Kwangmettatam, N. Katsonis, Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 10, 4819 (2019). https://doi.org/10.1038/s41467-019-12786-2
M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307–310 (2004). https://doi.org/10.1038/nmat1118
R. Eelkema, M.M. Pollard, J. Vicario, N. Katsonis, B.S. Ramon et al., Nanomotor rotates microscale objects. Nature 440, 163 (2006). https://doi.org/10.1038/440163a
S. Iamsaard, S.J. Aßhoff, B. Matt, T. Kudernac, J.J.L.M. Cornelissen et al., Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014). https://doi.org/10.1038/nchem.1859
S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softmicrorobots. Nat. Mater. 15, 647–653 (2016). https://doi.org/10.1038/nmat4569
A.H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme et al., Making waves in a photoactive polymer film. Nature 546, 632–636 (2017). https://doi.org/10.1038/nature22987
J. Chen, F.K. Leung, M.C.A. Stuart, T. Kajitani, T. Fukushima et al., Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018). https://doi.org/10.1038/nchem.2887
A. Kakugo, S. Sugimoto, J.P. Gong, Y. Osada, Gel machines constructed from chemically cross-linked actins and myosins. Adv. Mater. 14, 1124 (2002). https://doi.org/10.1002/1521-4095
A. Kakugo, S. Sugimoto, K. Shikinaka, J.P. Gong, Y. Osada, Characteristics of chemically cross-linked myosin gels. J. Biomater. Sci. Polym. Ed. 16, 203–218 (2005). https://doi.org/10.1163/1568562053115408
K. Shikinaka, S. Takaoka, A. Kakugo, Y. Osada, J.P. Gong, ATP-fueled soft gel machine with well-oriented structure constructed using actin-myosin system. J. Appl. Polym. Sci. 114, 2087–2092 (2009). https://doi.org/10.1002/app.30821
H. Jia, J. Flommersfeld, M. Heymann, S.K. Vogel, H.G. Franquelim et al., 3D printed protein-based robotic structures actuated by molecular motor assemblies. Nat. Mater. 21, 703–709 (2022). https://doi.org/10.1038/s41563-022-01258-6
T. Nitta, Y. Wang, Z. Du, K. Morishima, Y. Hiratsuka, A printable active network actuator built from an engineered biomolecular motor. Nat. Mater. 20, 1149–1155 (2021). https://doi.org/10.1038/s41563-021-00969-6
Y. Wang, T. Nitta, Y. Hiratsuka, K. Morishima, In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci. Robot. 7, eaba8212 (2022). https://doi.org/10.1126/scirobotics.aba8212
K. Yoshida, K. Kohno, Y. Hiratsuka, H. Onoe, Macroscale collagen-actomyosin hybrid actuator built from bioderived materials. Adv. Funct. Mater. 33, 2307766 (2023). https://doi.org/10.1002/adfm.202307766
J. Zhang, B. Gao, B. Ye, Z. Sun, Z. Qian et al., Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35, e2208571 (2023). https://doi.org/10.1002/adma.202208571
W. Danowski, T. van Leeuwen, S. Abdolahzadeh, D. Roke, W.R. Browne et al., Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019). https://doi.org/10.1038/s41565-019-0401-6
S. Tsitkov, Y. Song, J.B. Rodriguez 3rd., Y. Zhang, H. Hess, Kinesin-recruiting microtubules exhibit collective gliding motion while forming motor trails. ACS Nano 14, 16547–16557 (2020). https://doi.org/10.1021/acsnano.0c03263
S. Araki, K. Beppu, A.M.R. Kabir, A. Kakugo, Y.T. Maeda, Controlling collective motion of kinesin-driven microtubules via patterning of topographic landscapes. Nano Lett. 21, 10478–10485 (2021). https://doi.org/10.1021/acs.nanolett.1c03952
H. Inaba, Y. Sueki, M. Ichikawa, A.M.R. Kabir, T. Iwasaki et al., Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci. Adv. 8, eabq3817 (2022). https://doi.org/10.1126/sciadv.abq3817
F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi et al., Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014). https://doi.org/10.1126/science.1254784
V. Schaller, C.A. Weber, B. Hammerich, E. Frey, A.R. Bausch, Frozen steady states in active systems. Proc. Natl. Acad. Sci. U.S.A. 108, 19183–19188 (2011). https://doi.org/10.1073/pnas.1107540108
L. Huber, R. Suzuki, T. Krüger, E. Frey, A.R. Bausch, Emergence of coexisting ordered states in active matter systems. Science 361, 255–258 (2018). https://doi.org/10.1126/science.aao5434
J.J. Keya, R. Suzuki, A.M.R. Kabir, D. Inoue, H. Asanuma et al., DNA-assisted swarm control in a biomolecular motor system. Nat. Commun. 9, 453 (2018). https://doi.org/10.1038/s41467-017-02778-5
J.J. Keya, A.M.R. Kabir, D. Inoue, K. Sada, H. Hess et al., Control of swarming of molecular robots. Sci. Rep. 8, 11756 (2018). https://doi.org/10.1038/s41598-018-30187-1
H. Hess, J. Clemmens, C. Brunner, R. Doot, S. Luna et al., Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett. 5, 629–633 (2005). https://doi.org/10.1021/nl0478427
M.S. Islam, K. Kuribayashi-Shigetomi, A.M.R. Kabir, D. Inoue, K. Sada et al., Role of confinement in the active self-organization of kinesin-driven microtubules. Sens. Actuat. B Chem. 247, 53–60 (2017). https://doi.org/10.1016/j.snb.2017.03.006
O. Idan, A. Lam, J. Kamcev, J. Gonzales, A. Agarwal et al., Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett. 12, 240–245 (2012). https://doi.org/10.1021/nl203450h
A. Saito, T.I. Farhana, A.M.R. Kabir, D. Inoue, A. Konagaya et al., Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv. 7, 13191–13197 (2017). https://doi.org/10.1039/C6RA27449H
D. Inoue, B. Mahmot, A.M.R. Kabir, T.I. Farhana, K. Tokuraku et al., Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7, 18054–18061 (2015). https://doi.org/10.1039/C5NR02213D
Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa et al., Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012). https://doi.org/10.1038/nature10874
T. Sanchez, D. Welch, D. Nitro, Z. Dogic, Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011). https://doi.org/10.1126/science.1203963
P. Bieling, I.A. Telley, J. Piehler, T. Surrey, Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Rep. 9, 1121–1127 (2008). https://doi.org/10.1038/embor.2008.169
G. Saper, S. Tsitkov, P. Katira, H. Hess, Robotic end-to-end fusion of microtubules powered by kinesin. Sci. Robot. 6, eabj7200 (2021). https://doi.org/10.1126/scirobotics.abj7200
A.J. Thubagere, W. Li, R.F. Johnson, Z. Chen, S. Doroudi et al., A cargo-sorting DNA robot. Science 357, eaan6558 (2017). https://doi.org/10.1126/science.aan6558
M. Akter, J.J. Keya, A.M.R. Kabir, H. Asanuma, K. Murayama et al., Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem. Commun. 56, 7953–7956 (2020). https://doi.org/10.1039/d0cc03124k
M. Akter, J.J. Keya, K. Kayano, A.M.R. Kabir, D. Inoue et al., Cooperative cargo transportation by a swarm of molecular machines. Sci. Robot. 7, eabm0677 (2022). https://doi.org/10.1126/scirobotics.abm0677
Y. Sato, Y. Hiratsuka, I. Kawamata, S. Murata, S.-I.M. Nomura, Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2, eaal3735 (2017). https://doi.org/10.1126/scirobotics.aal3735
K. Matsuda, A.M.R. Kabir, N. Akamatsu, A. Saito, S. Ishikawa et al., Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 19, 3933–3938 (2019). https://doi.org/10.1021/acs.nanolett.9b01201
S. Ishii, M. Akter, K. Murayama, A.M.R. Kabir, H. Asanuma et al., Kinesin motors driven microtubule swarming triggered by UV light. Polym. J. 54, 1501–1507 (2022). https://doi.org/10.1038/s41428-022-00693-1
A. Senoussi, J.-C. Galas, A. Estevez-Torres, Programmed mechano-chemical coupling in reaction-diffusion active matter. Sci. Adv. 7, eabi9865 (2021). https://doi.org/10.1126/sciadv.abi9865
R. Ibusuki, T. Morishita, A. Furuta, S. Nakayama, M. Yoshio et al., Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159–1164 (2022). https://doi.org/10.1126/science.abj5170
Z. Liu, W. Zhou, C. Qi, T. Kong, Interface engineering in multiphase systems toward synthetic cells and organelles: from soft matter fundamentals to biomedical applications. Adv. Mater. 32, e2002932 (2020). https://doi.org/10.1002/adma.202002932
B.L. Feringa, Vision statement: materials in motion. Adv. Mater. 32, e1906416 (2020). https://doi.org/10.1002/adma.201906416
Y. Zhang, K. Yan, F. Ji, L. Zhang, Enhanced removal of toxic heavy metals using swarming biohybrid orbents. Adv. Funct. Mater. 28, 1806340 (2018). https://doi.org/10.1002/adfm.201806340
D. Wang, G. Zhao, C.H. Chen, H. Zhang, R.M. Duan et al., One-step fabrication of dual optically/magnetically modulated walnut-like micromotor. Langmuir 35(7), 2801–2807 (2019). https://doi.org/10.1021/acs.langmuir.8b02904
R. Das, V.S. Sypu, H.K. Paumo, M. Bhaumik, V. Maharaj et al., Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B Environ. 244, 546–558 (2019). https://doi.org/10.1016/j.apcatb.2018.11.073
H. Park, A. May, L. Portilla, H. Dietrich, F. Münch et al., Magnetite nanops as efficient materials for removal of glyphosate from water. Nat. Sustain. 3, 129–135 (2020). https://doi.org/10.1038/s41893-019-0452-6
Y. Ren, H. Li, J. Liu, M. Zhou, J. Pan, Crescent-shaped micromotor sorbents with sulfonic acid functionalized convex surface: the synthesis by A Janus emulsion strategy and orption for Li+. J. Hazard. Mater. 422, 126870 (2022). https://doi.org/10.1016/j.jhazmat.2021.126870
Z.C. Chen, J.W. Jiang, X. Wang, H. Zhang, B. Song et al., Visible light-regulated bivo4-based micromotor with biomimetic “predator-bait” behavior. J. Mater. Sci. 57(6), 4092–4103 (2022). https://doi.org/10.1007/s10853-022-06882-w
Y. Ji, X. Lin, Z. Wu, Y. Wu, W. Gao et al., Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angew. Chem. Int. Ed. 58, 12200–12205 (2019). https://doi.org/10.1002/anie.201907733
J. Yu, L. Yang, L. Zhang, Pattern generation and motion control of a vortex-like paramagnetic nanop swarm. Int. J. Robot. Res. 37, 912–930 (2018). https://doi.org/10.1177/0278364918784366
Q. Wang, L. Yang, B. Wang, E. Yu, J. Yu et al., Collective behavior of reconfigurable magnetic droplets via dynamic self-assembly. ACS Appl. Mater. Interfaces 11, 1630–1637 (2019). https://doi.org/10.1021/acsami.8b17402
T. Bhuyan, A.K. Singh, D. Dutta, A. Unal, S.S. Ghosh et al., Magnetic field guided chemotaxis of iMushbots for targeted anticancer therapeutics. ACS Biomater. Sci. Eng. 3, 1627–1640 (2017). https://doi.org/10.1021/acsbiomaterials.7b00086
D. Liu, R. Guo, S. Mao, Y. Huang, B. Wang et al., 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Res. 16, 1021–1032 (2023). https://doi.org/10.1007/s12274-022-4851-z
H. Lee, D.-I. Kim, S.-H. Kwon, S. Park, Magnetically actuated drug delivery helical microrobot with magnetic nanop retrieval ability. ACS Appl. Mater. Interfaces 13, 19633–19647 (2021). https://doi.org/10.1021/acsami.1c01742
S. Jeon, B.C. Park, S. Lim, H.Y. Yoon, Y.S. Jeon et al., Heat-generating iron oxide multigranule nanoclusters for enhancing hyperthermic efficacy in tumor treatment. ACS Appl. Mater. Interfaces 12, 33483–33491 (2020). https://doi.org/10.1021/acsami.0c07419
A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B.J. Nelson, Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981–2988 (2015). https://doi.org/10.1002/adma.201404444
Q. Wang, X. Du, D. Jin, L. Zhang, Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604–616 (2022). https://doi.org/10.1021/acsnano.1c07830
L. Xie, X. Pang, X. Yan, Q. Dai, H. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14, 2880–2893 (2020). https://doi.org/10.1021/acsnano.9b06731
X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
B. Wang, Y. Lu, Multi-dimensional micro/nanorobots with collective behaviors. SmartMat (2024). https://doi.org/10.1002/smm2.1263
D. Jin, J. Yu, K. Yuan, L. Zhang, Mimicking the structure and function of ant bridges in a reconfigurable microswarm for electronic applications. ACS Nano 13, 5999–6007 (2019). https://doi.org/10.1021/acsnano.9b02139
F. Ji, D. Jin, B. Wang, L. Zhang, Light-driven hovering of a magnetic microswarm in fluid. ACS Nano 14, 6990–6998 (2020). https://doi.org/10.1021/acsnano.0c01464
F. Mou, X. Li, Q. Xie, J. Zhang, K. Xiong et al., Active micromotor systems built from passive ps with biomimetic predator-prey interactions. ACS Nano 14, 406–414 (2020). https://doi.org/10.1021/acsnano.9b05996
S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396–401 (2012). https://doi.org/10.1021/nl203717q
C. Liang, C. Zhan, F. Zeng, D. Xu, Y. Wang et al., Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 10, 35099–35107 (2018). https://doi.org/10.1021/acsami.8b10921
Y. Huang, D. Liu, R. Guo, B. Wang, Z. Liu et al., Magnetic-controlled dandelion-like nanocatalytic swarm for targeted biofilm elimination. Nanoscale 14, 6497–6506 (2022). https://doi.org/10.1039/d2nr00765g
M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile ps and patterned surfaces under redox conditions. ACS Nano 4, 4845–4851 (2010). https://doi.org/10.1021/nn101289p
W. Duan, R. Liu, A. Sen, Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135, 1280–1283 (2013). https://doi.org/10.1021/ja3120357
M. Ibele, T.E. Mallouk, A. Sen, Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009). https://doi.org/10.1002/anie.200804704
S. Du, H. Wang, C. Zhou, W. Wang, Z. Zhang, Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 142, 2213–2217 (2020). https://doi.org/10.1021/jacs.9b13093
C. Chen, F. Mou, L. Xu, S. Wang, J. Guan et al., Light-steered isotropic semiconductor micromotors. Adv. Mater. 29, 1603374 (2017). https://doi.org/10.1002/adma.201603374
K. Bian, X. Zhang, K. Liu, T. Yin, H. Liu et al., Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal therapy. ACS Sustain. Chem. Eng. 6, 7574–7588 (2018). https://doi.org/10.1021/acssuschemeng.8b00415
Y. Hu, W. Liu, Y. Sun, Multiwavelength phototactic micromotor with controllable swarming motion for “chemistry-on-the-fly.” ACS Appl. Mater. Interfaces 12, 41495–41505 (2020). https://doi.org/10.1021/acsami.0c11443
Z. Lin, X. Fan, M. Sun, C. Gao, Q. He et al., Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano 12, 2539–2545 (2018). https://doi.org/10.1021/acsnano.7b08344
F. Soto, A. Martin, S. Ibsen, M. Vaidyanathan, V. Garcia-Gradilla et al., Acoustic microcannons: toward advanced microballistics. ACS Nano 10, 1522–1528 (2016). https://doi.org/10.1021/acsnano.5b07080
W. Wang, L.A. tro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122–6132 (2012). https://doi.org/10.1021/nn301312z
H. Inaba, M. Yamada, M.R. Rashid, A.M.R. Kabir, A. Kakugo et al., Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanops using a tau-derived peptide. Nano Lett. 20, 5251–5258 (2020). https://doi.org/10.1021/acs.nanolett.0c01573
H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen et al., Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4, eaav8006 (2019). https://doi.org/10.1126/scirobotics.aav8006
W.H. Fissell, What is nanotechnology? Adv. Chronic Kidney Dis. 20, 452–453 (2013). https://doi.org/10.1053/j.ackd.2013.08.008
A. Kuzuya, S-I M. Nomura, T. Toyota, T. Nakakuki, S. Murata, From molecular robotics to molecular cybernetics: the first step toward chemical artificial intelligence. IEEE Trans. Mol. Biol. Multi Scale Commun. 9, 354–363 (2023). https://doi.org/10.1109/TMBMC.2023.3304243