Light-Activated Virtual Sensor Array with Machine Learning for Non-Invasive Diagnosis of Coronary Heart Disease
Corresponding Author: Yuan Lu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 274
Abstract
Early non-invasive diagnosis of coronary heart disease (CHD) is critical. However, it is challenging to achieve accurate CHD diagnosis via detecting breath. In this work, heterostructured complexes of black phosphorus (BP) and two-dimensional carbide and nitride (MXene) with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy. A light-activated virtual sensor array (LAVSA) based on BP/Ti3C2Tx was prepared under photomodulation and further assembled into an instant gas sensing platform (IGSP). In addition, a machine learning (ML) algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD. Due to the synergistic effect of BP and Ti3C2Tx as well as photo excitation, the synthesized heterostructured complexes exhibited higher performance than pristine Ti3C2Tx, with a response value 26% higher than that of pristine Ti3C2Tx. In addition, with the help of a pattern recognition algorithm, LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols, ketones, aldehydes, esters, and acids. Meanwhile, with the assistance of ML, the IGSP achieved 69.2% accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients. In conclusion, an immediate, low-cost, and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD, which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.
Highlights:
1 Photoresponsive black phosphorus (BP)/Ti3C2Tx composites were synthesized by a self-assembly strategy.
2 Enhanced gas sensitive property was achieved by visible light modulation.
3 Light activated virtual sensor array was fabricated based on BP/Ti3C2Tx composite.
4 Diagnosis of coronary heart disease was achieved with the help of machine learning.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Coffey, R. Roberts-Thomson, A. Brown, J. Carapetis, M. Chen et al., Global epidemiology of valvular heart disease. Nat. Rev. Cardiol. 18, 853–864 (2021). https://doi.org/10.1038/s41569-021-00570-z
- M.A. Khan, M.J. Hashim, H. Mustafa, M.Y. Baniyas, S.K.B.M. Al Suwaidi et al., Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus 12, e9349 (2020). https://doi.org/10.7759/cureus.9349
- N.F. Narvaez Linares, M. Poitras, J. Burkauskas, K. Nagaratnam, Z. Burr et al., Neuropsychological sequelae of coronary heart disease in women: a systematic review. Neurosci. Biobehav. Rev. 127, 837–851 (2021). https://doi.org/10.1016/j.neubiorev.2021.05.026
- J.A. Ladapo, S. Blecker, P.S. Douglas, Physician decision making and trends in the use of cardiac stress testing in the United States: an analysis of repeated cross-sectional data. Ann. Intern. Med. 161, 482–490 (2014). https://doi.org/10.7326/M14-0296
- T. Ikeda, Current use and future needs of noninvasive ambulatory electrocardiogram monitoring. Intern. Med. 60, 9–14 (2021). https://doi.org/10.2169/internalmedicine.5691-20
- U. Hoffmann, M. Ferencik, R.C. Cury, A.J. Pena, Coronary CT angiography. J. Am. Coll. Radiol. 3, 560–564 (2006). https://doi.org/10.1016/j.jacr.2006.02.034
- J. Limeres, J.F. Garcez, J.S. Marinho, A. Loureiro, M. Diniz et al., A breath ammonia analyser for monitoring patients with end-stage renal disease on haemodialysis. Br. J. Biomed. Sci. 74, 24–29 (2017). https://doi.org/10.1080/09674845.2016.1239886
- T. Karl, P. Prazeller, D. Mayr, A. Jordan, J. Rieder et al., Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. J. Appl. Physiol. 91, 762–770 (2001). https://doi.org/10.1152/jappl.2001.91.2.762
- I. Nardi Agmon, Y.Y. Broza, G. Alaa, A. Eisen, A. Hamdan et al., Detecting coronary artery disease using exhaled breath analysis. Cardiology 147, 389–397 (2022). https://doi.org/10.1159/000525688
- Y. Feng, J. Chang, X. Chen, Q. Zhang, Z. Wang et al., Application of TDM and FDM methods in TDLAS based multi-gas detection. Opt. Quantum Electron. 53, 195 (2021). https://doi.org/10.1007/s11082-021-02844-9
- R.K. Jha, Non-dispersive infrared gas sensing technology: a review. IEEE Sens. J. 22, 6–15 (2022). https://doi.org/10.1109/JSEN.2021.3130034
- W. Zhang, C. Zuo, T. Liao, G. Zhou, D. Zhao, Research on improving the performance of motor vehicle exhaust gas detection system based on DOAS technology. Ninth symposium on novel photoelectronic detection technology and applications. Hefei, China. SPIE, 2–4 Nov 2023 https://doi.org/10.1117/12.2664361
- S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: Materials and technologies. Sens. Int. 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
- I. Gaillard, S. Rouquier, D. Giorgi, Olfactory receptors. Cell. Mol. Life Sci. 61, 456–469 (2004). https://doi.org/10.1007/s00018-003-3273-7
- L.B. Buck, Olfactory receptors and odor coding in mammals. Nutr. Rev. 62, S184–S188 (2004). https://doi.org/10.1111/j.1753-4887.2004.tb00097.x
- C. Qin, Y. Wang, J. Hu, T. Wang, D. Liu et al., Artificial olfactory biohybrid system: an evolving sense of smell. Adv. Sci. 10, e2204726 (2023). https://doi.org/10.1002/advs.202204726
- D. Pan, J. Hu, B. Wang, X. Xia, Y. Cheng et al., Biomimetic wearable sensors: emerging combination of intelligence and electronics. Adv. Sci. 11, e2303264 (2024). https://doi.org/10.1002/advs.202303264
- A. Solórzano, J. Eichmann, L. Fernández, B. Ziems, J.M. Jiménez-Soto et al., Early fire detection based on gas sensor arrays: Multivariate calibration and validation. Sens. Actuat. B Chem. 352, 130961 (2022). https://doi.org/10.1016/j.snb.2021.130961
- M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7, 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
- S. Herberger, M. Herold, H. Ulmer, A. Burdack-Freitag, F. Mayer, Detection of human effluents by a MOS gas sensor in correlation to VOC quantification by GC/MS. Build. Environ. 45, 2430–2439 (2010). https://doi.org/10.1016/j.buildenv.2010.05.005
- S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003
- P. Samarasekara, N.N. Kumara, N.S. Yapa, Sputtered copper oxide (CuO) thin films for gas sensor devices. J. Phys. Condens. Matter 18, 2417–2420 (2006). https://doi.org/10.1088/0953-8984/18/8/007
- J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19, 6313–6329 (2017). https://doi.org/10.1039/c6cp07799d
- A. Trinchi, S. Kandasamy, W. Wlodarski, High temperature field effect hydrogen and hydrocarbon gas sensors based on SiC MOS devices. Sens. Actuat. B Chem. 133, 705–716 (2008). https://doi.org/10.1016/j.snb.2008.03.011
- Y. Yan, G. Yang, J.-L. Xu, M. Zhang, C.-C. Kuo et al., Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Sci. Technol. Adv. Mater. 21, 768–786 (2020). https://doi.org/10.1080/14686996.2020.1820845
- P.V. Shinde, A. Patra, C.S. Rout, A review on the sensing mechanisms and recent developments on metal halide-based perovskite gas sensors. J. Mater. Chem. C 10, 10196–10223 (2022). https://doi.org/10.1039/d2tc01980a
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
- H. Yu, Y. Wang, Y. Jing, J. Ma, C.-F. Du et al., Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 15, e1901503 (2019). https://doi.org/10.1002/smll.201901503
- X. Bai, J. Guan, MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 43, 2057–2090 (2022). https://doi.org/10.1016/s1872-2067(21)64030-5
- J. Hu, D. Liu, X. Xia, B. Wang, D. Pan et al., MXene/perovskite-based bionic human odor sensor array with machine learning. Chem. Eng. J. 468, 143752 (2023). https://doi.org/10.1016/j.cej.2023.143752
- S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang et al., W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuat. B Chem. 304, 127274 (2020). https://doi.org/10.1016/j.snb.2019.127274
- F. Xu, H.-P. Ho, Light-activated metal oxide gas sensors: a review. Micromachines 8, 333 (2017). https://doi.org/10.3390/mi8110333
- J. Wang, H. Shen, Y. Xia, S. Komarneni, Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram. Int. 47, 7353–7368 (2021). https://doi.org/10.1016/j.ceramint.2020.11.187
- I. Karaduman, D.E. Yıldız, M.M. Sincar, S. Acar, UV light activated gas sensor for NO2 detection. Mater. Sci. Semicond. Process. 28, 43–47 (2014). https://doi.org/10.1016/j.mssp.2014.04.011
- H. Tabata, H. Matsuyama, T. Goto, O. Kubo, M. Katayama, Visible-light-activated response originating from carrier-mobility modulation of NO2 gas sensors based on MoS2 monolayers. ACS Nano 15, 2542–2553 (2021). https://doi.org/10.1021/acsnano.0c06996
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- Q. Zhang, L. Yan, M. Yang, G. Wu, M. Hu et al., Ultrafast transient spectra and dynamics of MXene (Ti3C2Tx) in response to light excitations of various wavelengths. J. Phys. Chem. C 124, 6441–6447 (2020). https://doi.org/10.1021/acs.jpcc.9b11652
- X. Wang, S. Lan, Optical properties of black phosphorus. Adv. Opt. Photon. 8, 618 (2016). https://doi.org/10.1364/aop.8.000618
- M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus–based biomedical applications. Adv. Funct. Mater. 29, 1808306 (2019). https://doi.org/10.1002/adfm.201808306
- A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya et al., Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). https://doi.org/10.1088/2053-1583/1/2/025001
- A. Garavand, C. Salehnasab, A. Behmanesh, N. Aslani, A.H. Zadeh et al., Efficient model for coronary artery disease diagnosis: a comparative study of several machine learning algorithms. J. Healthc. Eng. 2022, 5359540 (2022). https://doi.org/10.1155/2022/5359540
- A. Gupta, J.J. Slater, D. Boyne, N. Mitsakakis, A. Béliveau et al., Probabilistic graphical modeling for estimating risk of coronary artery disease: applications of a flexible machine-learning method. Med. Decis. Making 39, 1032–1044 (2019). https://doi.org/10.1177/0272989X19879095
- J.H. Joloudari, E. Hassannataj Joloudari, H. Saadatfar, M. Ghasemigol, S.M. Razavi et al., Coronary artery disease diagnosis; ranking the significant features using a random trees model. Int. J. Environ. Res. Public Health 17, 731 (2020). https://doi.org/10.3390/ijerph17030731
- Q. Zhang, H. Lai, R. Fan, P. Ji, X. Fu et al., High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021). https://doi.org/10.1021/acsnano.0c10671
- Y. Guo, X. Zhou, D. Wang, X. Xu, Q. Xu, Nanomechanical properties of Ti3C2 Mxene. Langmuir 35, 14481–14485 (2019). https://doi.org/10.1021/acs.langmuir.9b02619
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng et al., Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9, 11362–11370 (2015). https://doi.org/10.1021/acsnano.5b05151
- D. Yang, C. Zhao, R. Lian, L. Yang, Y. Wang et al., Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 31, 2010987 (2021). https://doi.org/10.1002/adfm.202010987
- S.H. Aldave, M.N. Yogeesh, W. Zhu, J. Kim, S.S. Sonde et al., Characterization and sonochemical synthesis of black phosphorus from red phosphorus. 2D Mater. 3, 014007 (2016). https://doi.org/10.1088/2053-1583/3/1/014007
- Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, M. Pumera, Few-layer black phosphorus nanops. Chem. Commun. 52, 1563–1566 (2016). https://doi.org/10.1039/c5cc09150k
- Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori et al., Electrochemical and in situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun. 72, 50–53 (2016). https://doi.org/10.1016/j.elecom.2016.08.023
- C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable synthesis of Ti3C2Tx MXene. Adv. Engin. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
- L.-Å. Näslund, I. Persson, XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl. Surf. Sci. 593, 153442 (2022). https://doi.org/10.1016/j.apsusc.2022.153442
- Y. Lu, D. Li, F. Liu, Characterizing the chemical structure of Ti3C2Tx MXene by angle-resolved XPS combined with Argon ion etching. Materials 15, 307 (2022). https://doi.org/10.3390/ma15010307
- A. Ambrosi, Z. Sofer, M. Pumera, Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 56, 10443–10445 (2017). https://doi.org/10.1002/anie.201705071
- H. Asahina, A. Morita, Band structure and optical properties of black phosphorus. J. Phys. C Solid State Phys. 17, 1839–1852 (1984). https://doi.org/10.1088/0022-3719/17/11/006
- Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
- W. Eom, H. Shin, T.H. Han, Tracking the thermal dynamics of Ti3C2Tx MXene with XPS and two-dimensional correlation spectroscopy. Appl. Phys. Lett. 122, 211601 (2023). https://doi.org/10.1063/5.0143298
- Y. Geng, Y. Zhao, Y. Zhao, J. Feng, J. Zhang et al., Multifunctional organic single-crystalline microwire arrays toward optical applications. Adv. Funct. Mater. 32, 2113025 (2022). https://doi.org/10.1002/adfm.202113025
- Y.-J. Yuan, P. Wang, Z. Li, Y. Wu, W. Bai et al., The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D–2D black phosphorus/MoS2 photocatalyst. Appl. Catal. B Environ. 242, 1–8 (2019). https://doi.org/10.1016/j.apcatb.2018.09.100
- K. Wang, B.M. Szydłowska, G. Wang, X. Zhang, J.J. Wang et al., Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano 10, 6923–6932 (2016). https://doi.org/10.1021/acsnano.6b02770
- X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer Mxene Ti3C2Tx (t= F, O, or OH). Laser Photonics Rev. 12, 1700229 (2018). https://doi.org/10.1002/lpor.201870013
- T. Hou, Q. Li, Y. Zhang, W. Zhu, K. Yu et al., Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Appl. Catal. B Environ. 273, 119072 (2020). https://doi.org/10.1016/j.apcatb.2020.119072
- H. Ji, W. Qin, Z. Yuan, F. Meng, Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation. Sens. Actuat. B Chem. 348, 130698 (2021). https://doi.org/10.1016/j.snb.2021.130698
- P. Xu, K. Song, Y. Chen, G. Wei, Q. Wang, Fault diagnosis method of self-validating metal oxide semiconductor gas sensor based on t-distribution stochastic neighbor embedding and random forest. Rev. Sci. Instrum. 90, 055002 (2019). https://doi.org/10.1063/1.5090142
- J.M. Mann, M.J. Davies, Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94, 928–931 (1996). https://doi.org/10.1161/01.cir.94.5.928
- O.F. Donati, P. Stolzmann, L. Desbiolles, S. Leschka, S. Kozerke et al., Coronary artery disease: which degree of coronary artery stenosis is indicative of ischemia? Eur. J. Radiol. 80, 120–126 (2011). https://doi.org/10.1016/j.ejrad.2010.07.010
- S. Fan, Z. Li, K. Xia, D. Hao, Quantitative and qualitative analysis of multicomponent gas using sensor array. Sensors 19, 3917 (2019). https://doi.org/10.3390/s19183917
- U.N. Thakur, R. Bhardwaj, A. Hazra, Statistical analysis for selective identifications of VOCs by using surface functionalized MoS2 based sensor array. The 1st international electronic conference on chemical sensors and analytical chemistry. Basel Switzerland, MDPI, (2021). https://doi.org/10.3390/csac2021-10451
- Y. Yin, Y. Zhao, A feature selection strategy of E-nose data based on PCA coupled with Wilks Λ-statistic for discrimination of vinegar samples. J. Food Meas. Charact. 13, 2406–2416 (2019). https://doi.org/10.1007/s11694-019-00161-0
- T. Itoh, Y. Koyama, Y. Sakumura, T. Akamatsu, A. Tsuruta et al., Discrimination of volatile organic compounds using a sensor array via a rapid method based on linear discriminant analysis. Sens. Actuat. B Chem. 387, 133803 (2023). https://doi.org/10.1016/j.snb.2023.133803
- A. Boujnah, A. Boubaker, S. Pecqueur, K. Lmimouni, A. Kalboussi, An electronic nose using conductometric gas sensors based on P3HT doped with triflates for gas detection using computational techniques (PCA, LDA, and kNN). J. Mater. Sci. Mater. Electron. 33, 27132–27146 (2022). https://doi.org/10.1007/s10854-022-09376-2
- X. Zhao, P. Li, K. Xiao, X. Meng, L. Han et al., Sensor drift compensation based on the improved LSTM and SVM multi-class ensemble learning models. Sensors 19, 3844 (2019). https://doi.org/10.3390/s19183844
- M.A. Djeziri, O. Djedidi, N. Morati, J.-L. Seguin, M. Bendahan et al., A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Appl. Intell. 52, 6065–6078 (2022). https://doi.org/10.1007/s10489-021-02761-0
- B. Shao, J. Wang, Z. Liu, G. Zeng, L. Tang et al., Ti3C2Tx MXene decorated black phosphorus nanosheets with improved visible-light photocatalytic activity: experimental and theoretical studies. J. Mater. Chem. A 8, 5171–5185 (2020). https://doi.org/10.1039/c9ta13610j
- J. Wang, R. Xu, Y. Xia, S. Komarneni, Ti2CTx MXene: a novel p-type sensing material for visible light-enhanced room temperature methane detection. Ceram. Int. 47, 34437–34442 (2021). https://doi.org/10.1016/j.ceramint.2021.08.357
- C. Qiao, H. Wu, X. Xu, Z. Guan, W. Ou-Yang, Electrical conductivity enhancement and electronic applications of 2D Ti3C2Tx MXene materials. Adv. Mater. Interfaces 8, 2100903 (2021). https://doi.org/10.1002/admi.202100903
- L. Chen, X. Shi, N. Yu, X. Zhang, X. Du et al., Measurement and analysis of thermal conductivity of Ti3C2Tx MXene films. Materials 11, 1701 (2018). https://doi.org/10.3390/ma11091701
References
S. Coffey, R. Roberts-Thomson, A. Brown, J. Carapetis, M. Chen et al., Global epidemiology of valvular heart disease. Nat. Rev. Cardiol. 18, 853–864 (2021). https://doi.org/10.1038/s41569-021-00570-z
M.A. Khan, M.J. Hashim, H. Mustafa, M.Y. Baniyas, S.K.B.M. Al Suwaidi et al., Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus 12, e9349 (2020). https://doi.org/10.7759/cureus.9349
N.F. Narvaez Linares, M. Poitras, J. Burkauskas, K. Nagaratnam, Z. Burr et al., Neuropsychological sequelae of coronary heart disease in women: a systematic review. Neurosci. Biobehav. Rev. 127, 837–851 (2021). https://doi.org/10.1016/j.neubiorev.2021.05.026
J.A. Ladapo, S. Blecker, P.S. Douglas, Physician decision making and trends in the use of cardiac stress testing in the United States: an analysis of repeated cross-sectional data. Ann. Intern. Med. 161, 482–490 (2014). https://doi.org/10.7326/M14-0296
T. Ikeda, Current use and future needs of noninvasive ambulatory electrocardiogram monitoring. Intern. Med. 60, 9–14 (2021). https://doi.org/10.2169/internalmedicine.5691-20
U. Hoffmann, M. Ferencik, R.C. Cury, A.J. Pena, Coronary CT angiography. J. Am. Coll. Radiol. 3, 560–564 (2006). https://doi.org/10.1016/j.jacr.2006.02.034
J. Limeres, J.F. Garcez, J.S. Marinho, A. Loureiro, M. Diniz et al., A breath ammonia analyser for monitoring patients with end-stage renal disease on haemodialysis. Br. J. Biomed. Sci. 74, 24–29 (2017). https://doi.org/10.1080/09674845.2016.1239886
T. Karl, P. Prazeller, D. Mayr, A. Jordan, J. Rieder et al., Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. J. Appl. Physiol. 91, 762–770 (2001). https://doi.org/10.1152/jappl.2001.91.2.762
I. Nardi Agmon, Y.Y. Broza, G. Alaa, A. Eisen, A. Hamdan et al., Detecting coronary artery disease using exhaled breath analysis. Cardiology 147, 389–397 (2022). https://doi.org/10.1159/000525688
Y. Feng, J. Chang, X. Chen, Q. Zhang, Z. Wang et al., Application of TDM and FDM methods in TDLAS based multi-gas detection. Opt. Quantum Electron. 53, 195 (2021). https://doi.org/10.1007/s11082-021-02844-9
R.K. Jha, Non-dispersive infrared gas sensing technology: a review. IEEE Sens. J. 22, 6–15 (2022). https://doi.org/10.1109/JSEN.2021.3130034
W. Zhang, C. Zuo, T. Liao, G. Zhou, D. Zhao, Research on improving the performance of motor vehicle exhaust gas detection system based on DOAS technology. Ninth symposium on novel photoelectronic detection technology and applications. Hefei, China. SPIE, 2–4 Nov 2023 https://doi.org/10.1117/12.2664361
S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: Materials and technologies. Sens. Int. 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
I. Gaillard, S. Rouquier, D. Giorgi, Olfactory receptors. Cell. Mol. Life Sci. 61, 456–469 (2004). https://doi.org/10.1007/s00018-003-3273-7
L.B. Buck, Olfactory receptors and odor coding in mammals. Nutr. Rev. 62, S184–S188 (2004). https://doi.org/10.1111/j.1753-4887.2004.tb00097.x
C. Qin, Y. Wang, J. Hu, T. Wang, D. Liu et al., Artificial olfactory biohybrid system: an evolving sense of smell. Adv. Sci. 10, e2204726 (2023). https://doi.org/10.1002/advs.202204726
D. Pan, J. Hu, B. Wang, X. Xia, Y. Cheng et al., Biomimetic wearable sensors: emerging combination of intelligence and electronics. Adv. Sci. 11, e2303264 (2024). https://doi.org/10.1002/advs.202303264
A. Solórzano, J. Eichmann, L. Fernández, B. Ziems, J.M. Jiménez-Soto et al., Early fire detection based on gas sensor arrays: Multivariate calibration and validation. Sens. Actuat. B Chem. 352, 130961 (2022). https://doi.org/10.1016/j.snb.2021.130961
M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7, 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
S. Herberger, M. Herold, H. Ulmer, A. Burdack-Freitag, F. Mayer, Detection of human effluents by a MOS gas sensor in correlation to VOC quantification by GC/MS. Build. Environ. 45, 2430–2439 (2010). https://doi.org/10.1016/j.buildenv.2010.05.005
S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003
P. Samarasekara, N.N. Kumara, N.S. Yapa, Sputtered copper oxide (CuO) thin films for gas sensor devices. J. Phys. Condens. Matter 18, 2417–2420 (2006). https://doi.org/10.1088/0953-8984/18/8/007
J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19, 6313–6329 (2017). https://doi.org/10.1039/c6cp07799d
A. Trinchi, S. Kandasamy, W. Wlodarski, High temperature field effect hydrogen and hydrocarbon gas sensors based on SiC MOS devices. Sens. Actuat. B Chem. 133, 705–716 (2008). https://doi.org/10.1016/j.snb.2008.03.011
Y. Yan, G. Yang, J.-L. Xu, M. Zhang, C.-C. Kuo et al., Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Sci. Technol. Adv. Mater. 21, 768–786 (2020). https://doi.org/10.1080/14686996.2020.1820845
P.V. Shinde, A. Patra, C.S. Rout, A review on the sensing mechanisms and recent developments on metal halide-based perovskite gas sensors. J. Mater. Chem. C 10, 10196–10223 (2022). https://doi.org/10.1039/d2tc01980a
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
H. Yu, Y. Wang, Y. Jing, J. Ma, C.-F. Du et al., Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 15, e1901503 (2019). https://doi.org/10.1002/smll.201901503
X. Bai, J. Guan, MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 43, 2057–2090 (2022). https://doi.org/10.1016/s1872-2067(21)64030-5
J. Hu, D. Liu, X. Xia, B. Wang, D. Pan et al., MXene/perovskite-based bionic human odor sensor array with machine learning. Chem. Eng. J. 468, 143752 (2023). https://doi.org/10.1016/j.cej.2023.143752
S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang et al., W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuat. B Chem. 304, 127274 (2020). https://doi.org/10.1016/j.snb.2019.127274
F. Xu, H.-P. Ho, Light-activated metal oxide gas sensors: a review. Micromachines 8, 333 (2017). https://doi.org/10.3390/mi8110333
J. Wang, H. Shen, Y. Xia, S. Komarneni, Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram. Int. 47, 7353–7368 (2021). https://doi.org/10.1016/j.ceramint.2020.11.187
I. Karaduman, D.E. Yıldız, M.M. Sincar, S. Acar, UV light activated gas sensor for NO2 detection. Mater. Sci. Semicond. Process. 28, 43–47 (2014). https://doi.org/10.1016/j.mssp.2014.04.011
H. Tabata, H. Matsuyama, T. Goto, O. Kubo, M. Katayama, Visible-light-activated response originating from carrier-mobility modulation of NO2 gas sensors based on MoS2 monolayers. ACS Nano 15, 2542–2553 (2021). https://doi.org/10.1021/acsnano.0c06996
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
Q. Zhang, L. Yan, M. Yang, G. Wu, M. Hu et al., Ultrafast transient spectra and dynamics of MXene (Ti3C2Tx) in response to light excitations of various wavelengths. J. Phys. Chem. C 124, 6441–6447 (2020). https://doi.org/10.1021/acs.jpcc.9b11652
X. Wang, S. Lan, Optical properties of black phosphorus. Adv. Opt. Photon. 8, 618 (2016). https://doi.org/10.1364/aop.8.000618
M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus–based biomedical applications. Adv. Funct. Mater. 29, 1808306 (2019). https://doi.org/10.1002/adfm.201808306
A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya et al., Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). https://doi.org/10.1088/2053-1583/1/2/025001
A. Garavand, C. Salehnasab, A. Behmanesh, N. Aslani, A.H. Zadeh et al., Efficient model for coronary artery disease diagnosis: a comparative study of several machine learning algorithms. J. Healthc. Eng. 2022, 5359540 (2022). https://doi.org/10.1155/2022/5359540
A. Gupta, J.J. Slater, D. Boyne, N. Mitsakakis, A. Béliveau et al., Probabilistic graphical modeling for estimating risk of coronary artery disease: applications of a flexible machine-learning method. Med. Decis. Making 39, 1032–1044 (2019). https://doi.org/10.1177/0272989X19879095
J.H. Joloudari, E. Hassannataj Joloudari, H. Saadatfar, M. Ghasemigol, S.M. Razavi et al., Coronary artery disease diagnosis; ranking the significant features using a random trees model. Int. J. Environ. Res. Public Health 17, 731 (2020). https://doi.org/10.3390/ijerph17030731
Q. Zhang, H. Lai, R. Fan, P. Ji, X. Fu et al., High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021). https://doi.org/10.1021/acsnano.0c10671
Y. Guo, X. Zhou, D. Wang, X. Xu, Q. Xu, Nanomechanical properties of Ti3C2 Mxene. Langmuir 35, 14481–14485 (2019). https://doi.org/10.1021/acs.langmuir.9b02619
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng et al., Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9, 11362–11370 (2015). https://doi.org/10.1021/acsnano.5b05151
D. Yang, C. Zhao, R. Lian, L. Yang, Y. Wang et al., Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 31, 2010987 (2021). https://doi.org/10.1002/adfm.202010987
S.H. Aldave, M.N. Yogeesh, W. Zhu, J. Kim, S.S. Sonde et al., Characterization and sonochemical synthesis of black phosphorus from red phosphorus. 2D Mater. 3, 014007 (2016). https://doi.org/10.1088/2053-1583/3/1/014007
Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, M. Pumera, Few-layer black phosphorus nanops. Chem. Commun. 52, 1563–1566 (2016). https://doi.org/10.1039/c5cc09150k
Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori et al., Electrochemical and in situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun. 72, 50–53 (2016). https://doi.org/10.1016/j.elecom.2016.08.023
C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable synthesis of Ti3C2Tx MXene. Adv. Engin. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
L.-Å. Näslund, I. Persson, XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl. Surf. Sci. 593, 153442 (2022). https://doi.org/10.1016/j.apsusc.2022.153442
Y. Lu, D. Li, F. Liu, Characterizing the chemical structure of Ti3C2Tx MXene by angle-resolved XPS combined with Argon ion etching. Materials 15, 307 (2022). https://doi.org/10.3390/ma15010307
A. Ambrosi, Z. Sofer, M. Pumera, Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 56, 10443–10445 (2017). https://doi.org/10.1002/anie.201705071
H. Asahina, A. Morita, Band structure and optical properties of black phosphorus. J. Phys. C Solid State Phys. 17, 1839–1852 (1984). https://doi.org/10.1088/0022-3719/17/11/006
Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
W. Eom, H. Shin, T.H. Han, Tracking the thermal dynamics of Ti3C2Tx MXene with XPS and two-dimensional correlation spectroscopy. Appl. Phys. Lett. 122, 211601 (2023). https://doi.org/10.1063/5.0143298
Y. Geng, Y. Zhao, Y. Zhao, J. Feng, J. Zhang et al., Multifunctional organic single-crystalline microwire arrays toward optical applications. Adv. Funct. Mater. 32, 2113025 (2022). https://doi.org/10.1002/adfm.202113025
Y.-J. Yuan, P. Wang, Z. Li, Y. Wu, W. Bai et al., The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D–2D black phosphorus/MoS2 photocatalyst. Appl. Catal. B Environ. 242, 1–8 (2019). https://doi.org/10.1016/j.apcatb.2018.09.100
K. Wang, B.M. Szydłowska, G. Wang, X. Zhang, J.J. Wang et al., Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano 10, 6923–6932 (2016). https://doi.org/10.1021/acsnano.6b02770
X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer Mxene Ti3C2Tx (t= F, O, or OH). Laser Photonics Rev. 12, 1700229 (2018). https://doi.org/10.1002/lpor.201870013
T. Hou, Q. Li, Y. Zhang, W. Zhu, K. Yu et al., Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Appl. Catal. B Environ. 273, 119072 (2020). https://doi.org/10.1016/j.apcatb.2020.119072
H. Ji, W. Qin, Z. Yuan, F. Meng, Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation. Sens. Actuat. B Chem. 348, 130698 (2021). https://doi.org/10.1016/j.snb.2021.130698
P. Xu, K. Song, Y. Chen, G. Wei, Q. Wang, Fault diagnosis method of self-validating metal oxide semiconductor gas sensor based on t-distribution stochastic neighbor embedding and random forest. Rev. Sci. Instrum. 90, 055002 (2019). https://doi.org/10.1063/1.5090142
J.M. Mann, M.J. Davies, Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94, 928–931 (1996). https://doi.org/10.1161/01.cir.94.5.928
O.F. Donati, P. Stolzmann, L. Desbiolles, S. Leschka, S. Kozerke et al., Coronary artery disease: which degree of coronary artery stenosis is indicative of ischemia? Eur. J. Radiol. 80, 120–126 (2011). https://doi.org/10.1016/j.ejrad.2010.07.010
S. Fan, Z. Li, K. Xia, D. Hao, Quantitative and qualitative analysis of multicomponent gas using sensor array. Sensors 19, 3917 (2019). https://doi.org/10.3390/s19183917
U.N. Thakur, R. Bhardwaj, A. Hazra, Statistical analysis for selective identifications of VOCs by using surface functionalized MoS2 based sensor array. The 1st international electronic conference on chemical sensors and analytical chemistry. Basel Switzerland, MDPI, (2021). https://doi.org/10.3390/csac2021-10451
Y. Yin, Y. Zhao, A feature selection strategy of E-nose data based on PCA coupled with Wilks Λ-statistic for discrimination of vinegar samples. J. Food Meas. Charact. 13, 2406–2416 (2019). https://doi.org/10.1007/s11694-019-00161-0
T. Itoh, Y. Koyama, Y. Sakumura, T. Akamatsu, A. Tsuruta et al., Discrimination of volatile organic compounds using a sensor array via a rapid method based on linear discriminant analysis. Sens. Actuat. B Chem. 387, 133803 (2023). https://doi.org/10.1016/j.snb.2023.133803
A. Boujnah, A. Boubaker, S. Pecqueur, K. Lmimouni, A. Kalboussi, An electronic nose using conductometric gas sensors based on P3HT doped with triflates for gas detection using computational techniques (PCA, LDA, and kNN). J. Mater. Sci. Mater. Electron. 33, 27132–27146 (2022). https://doi.org/10.1007/s10854-022-09376-2
X. Zhao, P. Li, K. Xiao, X. Meng, L. Han et al., Sensor drift compensation based on the improved LSTM and SVM multi-class ensemble learning models. Sensors 19, 3844 (2019). https://doi.org/10.3390/s19183844
M.A. Djeziri, O. Djedidi, N. Morati, J.-L. Seguin, M. Bendahan et al., A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Appl. Intell. 52, 6065–6078 (2022). https://doi.org/10.1007/s10489-021-02761-0
B. Shao, J. Wang, Z. Liu, G. Zeng, L. Tang et al., Ti3C2Tx MXene decorated black phosphorus nanosheets with improved visible-light photocatalytic activity: experimental and theoretical studies. J. Mater. Chem. A 8, 5171–5185 (2020). https://doi.org/10.1039/c9ta13610j
J. Wang, R. Xu, Y. Xia, S. Komarneni, Ti2CTx MXene: a novel p-type sensing material for visible light-enhanced room temperature methane detection. Ceram. Int. 47, 34437–34442 (2021). https://doi.org/10.1016/j.ceramint.2021.08.357
C. Qiao, H. Wu, X. Xu, Z. Guan, W. Ou-Yang, Electrical conductivity enhancement and electronic applications of 2D Ti3C2Tx MXene materials. Adv. Mater. Interfaces 8, 2100903 (2021). https://doi.org/10.1002/admi.202100903
L. Chen, X. Shi, N. Yu, X. Zhang, X. Du et al., Measurement and analysis of thermal conductivity of Ti3C2Tx MXene films. Materials 11, 1701 (2018). https://doi.org/10.3390/ma11091701