Highly Dispersed RuOOH Nanoparticles on Silica Spheres: An Efficient Photothermal Catalyst for Selective Aerobic Oxidation of Benzyl Alcohol
Corresponding Author: Yugang Sun
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 41
Abstract
Photothermal catalysis represents a promising strategy to utilize the renewable energy source (e.g., solar energy) to drive chemical reactions more efficiently. Successful and efficient photothermal catalysis relies on the availability of ideal photothermal catalysts, which can provide both large areas of catalytically active surface and strong light absorption power simultaneously. Such duplex requirements of a photothermal catalyst exhibit opposing dependence on the size of the catalyst nanoparticles, i.e., smaller size is beneficial for achieving higher surface area and more active surface, whereas larger size favors the light absorption in the nanoparticles. In this article, we report the synthesis of ultrafine RuOOH nanoparticles with a size of 2–3 nm uniformly dispersed on the surfaces of silica (SiOx) nanospheres of hundreds of nanometers in size to tackle this challenge of forming an ideal photothermal catalyst. The ultrasmall RuOOH nanoparticles exhibit a large surface area as well as the ability to activate adsorbed molecular oxygen. The SiOx nanospheres exhibit strong surface light scattering resonances to enhance the light absorption power of the small RuOOH nanoparticles anchored on the SiOx surface. Therefore, the RuOOH/SiOx composite particles represent a new class of efficient photothermal catalysts with a photothermal energy conversion efficiency of 92.5% for selective aerobic oxidation of benzyl alcohol to benzylaldehyde under ambient conditions.
Highlights:
1 Ultrasmall RuOOH nanoparticles of 2–3 nm are loaded on submicron silica spheres and capable of activating molecular oxygen.
2 Photothermal conversion efficiency of the supported RuOOH nanoparticles is nearly unity.
3 Photothermal effect promotes selective oxidation of benzyl alcohol under the illumination of visible light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004). https://doi.org/10.1021/cr0200116
- U.R. Pillai, E. Sahle-Demessie, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives. Green Chem. 6, 161–165 (2004). https://doi.org/10.1039/B316414B
- P.A. Shapley, N. Zhang, J.L. Allen, D.H. Pool, H.-C. Liang, Selective alcohol oxidation with molecular oxygen catalyzed by Os–Cr and Ru–Cr complexes. J. Am. Chem. Soc. 122, 1079–1091 (2000). https://doi.org/10.1021/ja982171y
- T. Yasu-eda, S. Kitamura, N.-O. Ikenaga, T. Miyake, T. Suzuki, Selective oxidation of alcohols with molecular oxygen over Ru/CaO–ZrO2 catalyst. J. Mol. Catal. A 323, 7–15 (2010). https://doi.org/10.1016/j.molcata.2010.03.018
- F. Li, Q. Zhang, Y. Wang, Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Appl. Catal. A 334, 217–226 (2008). https://doi.org/10.1016/j.apcata.2007.10.008
- J.A. Mueller, C.P. Goller, M.S. Sigman, Elucidating the significance of β-hydride elimination and the dynamic role of acid/base chemistry in a palladium-catalyzed aerobic oxidation of alcohols. J. Am. Chem. Soc. 126, 9724–9734 (2004). https://doi.org/10.1021/ja047794s
- J. Xu, J.-K. Shang, Y. Chen, Y. Wang, Y.-X. Li, Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen. Appl. Catal. A 542, 380–388 (2017). https://doi.org/10.1016/j.apcata.2017.05.036
- J.-B. Chang, C.-H. Liu, J. Liu, Y.-Y. Zhou, X. Gao, S.-D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7, 307–315 (2015). https://doi.org/10.1007/s40820-015-0044-6
- A.A.S. Oliveira, D.S. Costa, I.F. Teixeira, L.A. Parreira, L. Menini, E.V. Gusevskaya, F.C.C. Moura, Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catal. Today 289, 89–95 (2017). https://doi.org/10.1016/j.cattod.2016.10.028
- S. Cao, F. Tao, Y. Tang, Y. Li, J. Yu, Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016). https://doi.org/10.1039/C6CS00094K
- F. Wang, Y. Xu, K. Zhao, D. He, Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature. Nano-Micro Lett. 6, 233–241 (2014). https://doi.org/10.1007/BF03353787
- F. Li, J. Chen, Q. Zhang, Y. Wang, Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines. Green Chem. 10, 553–562 (2008). https://doi.org/10.1039/B715627H
- K. Yamaguchi, N. Mizuno, Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angew. Chem. Int. Ed. 114(23), 4720–4724 (2002). https://doi.org/10.1002/15213773(20021202)41:23%3c4538:AIDANIE4538%3e3.0.CO;2-6
- J.B. Brazier, K. Hellgardt, K.K. Hii, Catalysis in flow: O2 effect on the catalytic activity of Ru(OH)x/γ-Al2O3 during the aerobic oxidation of an alcohol. React. Chem. Eng. 2, 60–67 (2017). https://doi.org/10.1039/C6RE00208K
- K. Yamaguchi, T. Koike, M. Kotani, M. Matsushita, S. Shinachi, N. Mizuno, Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions. Chem. Eur. J. 11, 6574–6582 (2005). https://doi.org/10.1002/chem.200500539
- S. Mei, Z. Kochovski, R. Roa, S. Gu, X. Xu, H. Yu, J. Dzubiella, M. Ballauff, Y. Lu, Enhanced catalytic activity of gold@polydopamine nanoreactors with multi-compartment structure under NIR irradiation. Nano-Micro Lett. 11, 83 (2019). https://doi.org/10.1007/s40820-019-0314-9
- B.N. Ganguly, B. Maity, T.K. Maity, J. Manna, M. Roy et al., L-cysteine-conjugated ruthenium hydrous oxide nanomaterials with anticancer active application. Langmuir 34, 1447–1456 (2018). https://doi.org/10.1021/acs.langmuir.7b01408
- X. Dai, K.D. Rasamani, G. Hall, R. Makrypodi, Y. Sun, Geometric symmetry of dielectric antenna influencing light absorption in quantum-sized metal nanocrystals: a comparative study. Front. Chem. 6, 494 (2018). https://doi.org/10.3389/fchem.2018.00494
- X. Dai, K.D. Rasamani, S. Wu, Y. Sun, Enabling selective aerobic oxidation of alcohols to aldehydes by hot electrons in quantum-sized Rh nanocubes. Mater. Today Energy 10, 15–22 (2018). https://doi.org/10.1016/j.mtener.2018.08.003
- X. Dai, Q. Wei, T. Duong, Y. Sun, Selective transfer coupling of nitrobenzene to azoxybenzene on Rh nanoparticle catalyst promoted by photoexcited hot electrons. ChemNanoMat 5, 1000–1007 (2019). https://doi.org/10.1002/cnma.201900182
- N. Zhang, C. Han, Y.-J. Xu, J.J. Foley IV, D. Zhang, J. Codrington, S.K. Gray, Y. Sun, Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 10, 473–482 (2016). https://doi.org/10.1038/nphoton.2016.76
- L. Zhou, D.F. Swearer, C. Zhang, H. Robatjazi, H. Zhao et al., Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018). https://doi.org/10.1126/science.aat6967
- NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899. DOI: 10.18434/T4T88K
- D.J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47, 1072–1079 (2015). DOI: 10.1002/sia.5852
- W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong et al., Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 4, 4452 (2014). https://doi.org/10.1038/srep04452
- J. Jin, X. Yan, S. Xu, S. Liu, J. Hong, F. Huang, Y. Dai, C. Jin, J. Fan, Exploration of the interaction of RuO2–Au composite nanoparticles formed by one-step synthesis within the mesopores. Chem. Mater. 25, 3921–3927 (2013). https://doi.org/10.1021/cm4025233
- L.-J. Meng, M.P. dos Santos, A study of residual stress on rf reactively sputtered RuO2 thin films. Thin Solid Films 375, 29–32 (2000). https://doi.org/10.1016/S0040-6090(00)01174-3
- J.S. de Almeida, R. Ahuja, Electronic and optical properties of RuO2 and IrO2. Phys. Rev. B 73, 165102 (2006). https://doi.org/10.1103/PhysRevB.73.165102
- X. Deng, B.K. Min, A. Guloy, C.M. Friend, Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: implications for oxidation catalysis. J. Am. Chem. Soc. 127, 9267–9270 (2005). https://doi.org/10.1021/ja050144j
- P. Légaré, L. Hilaire, M. Sotto, G. Maire, Interaction of oxygen with Au surfaces: A LEED, AES and ELS study. Surf. Sci. 91, 175–186 (1980). https://doi.org/10.1016/0039-6028(80)90078-3
- X. Han, X. Han, L. Sun, S. Gao, L. Li, Q. Kuang, Z. Xie, C. Wang, Synthesis of trapezohedral indium oxide nanoparticles with high-index 211 facets and high gas sensing activity. Chem. Commun. 51, 9612–9615 (2015). https://doi.org/10.1039/c5cc02029h
- S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li, Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. Phys. Chem. Chem. Phys. 13, 10648–10651 (2011). https://doi.org/10.1039/C0CP02102D
- W. Qi, B. Huang, M. Wang, Structure of unsupported small palladium nanoparticles. Nanoscale Res. Lett. 4, 269 (2009). https://doi.org/10.1007/s11671-008-9236-z
- M. Ilyas, M. Sadiq, Liquid-phase aerobic oxidation of benzyl alcohol catalyzed by Pt/ZrO2. Chem. Eng. Technol. 30, 1391–1397 (2007). https://doi.org/10.1002/ceat.200700072
- V.D. Makwana, Y.-C. Son, A.R. Howell, S.L. Suib, The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study. J. Catal. 210, 46–52 (2002). https://doi.org/10.1006/jcat.2002.3680
References
T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004). https://doi.org/10.1021/cr0200116
U.R. Pillai, E. Sahle-Demessie, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives. Green Chem. 6, 161–165 (2004). https://doi.org/10.1039/B316414B
P.A. Shapley, N. Zhang, J.L. Allen, D.H. Pool, H.-C. Liang, Selective alcohol oxidation with molecular oxygen catalyzed by Os–Cr and Ru–Cr complexes. J. Am. Chem. Soc. 122, 1079–1091 (2000). https://doi.org/10.1021/ja982171y
T. Yasu-eda, S. Kitamura, N.-O. Ikenaga, T. Miyake, T. Suzuki, Selective oxidation of alcohols with molecular oxygen over Ru/CaO–ZrO2 catalyst. J. Mol. Catal. A 323, 7–15 (2010). https://doi.org/10.1016/j.molcata.2010.03.018
F. Li, Q. Zhang, Y. Wang, Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Appl. Catal. A 334, 217–226 (2008). https://doi.org/10.1016/j.apcata.2007.10.008
J.A. Mueller, C.P. Goller, M.S. Sigman, Elucidating the significance of β-hydride elimination and the dynamic role of acid/base chemistry in a palladium-catalyzed aerobic oxidation of alcohols. J. Am. Chem. Soc. 126, 9724–9734 (2004). https://doi.org/10.1021/ja047794s
J. Xu, J.-K. Shang, Y. Chen, Y. Wang, Y.-X. Li, Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen. Appl. Catal. A 542, 380–388 (2017). https://doi.org/10.1016/j.apcata.2017.05.036
J.-B. Chang, C.-H. Liu, J. Liu, Y.-Y. Zhou, X. Gao, S.-D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7, 307–315 (2015). https://doi.org/10.1007/s40820-015-0044-6
A.A.S. Oliveira, D.S. Costa, I.F. Teixeira, L.A. Parreira, L. Menini, E.V. Gusevskaya, F.C.C. Moura, Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catal. Today 289, 89–95 (2017). https://doi.org/10.1016/j.cattod.2016.10.028
S. Cao, F. Tao, Y. Tang, Y. Li, J. Yu, Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016). https://doi.org/10.1039/C6CS00094K
F. Wang, Y. Xu, K. Zhao, D. He, Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature. Nano-Micro Lett. 6, 233–241 (2014). https://doi.org/10.1007/BF03353787
F. Li, J. Chen, Q. Zhang, Y. Wang, Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines. Green Chem. 10, 553–562 (2008). https://doi.org/10.1039/B715627H
K. Yamaguchi, N. Mizuno, Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angew. Chem. Int. Ed. 114(23), 4720–4724 (2002). https://doi.org/10.1002/15213773(20021202)41:23%3c4538:AIDANIE4538%3e3.0.CO;2-6
J.B. Brazier, K. Hellgardt, K.K. Hii, Catalysis in flow: O2 effect on the catalytic activity of Ru(OH)x/γ-Al2O3 during the aerobic oxidation of an alcohol. React. Chem. Eng. 2, 60–67 (2017). https://doi.org/10.1039/C6RE00208K
K. Yamaguchi, T. Koike, M. Kotani, M. Matsushita, S. Shinachi, N. Mizuno, Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions. Chem. Eur. J. 11, 6574–6582 (2005). https://doi.org/10.1002/chem.200500539
S. Mei, Z. Kochovski, R. Roa, S. Gu, X. Xu, H. Yu, J. Dzubiella, M. Ballauff, Y. Lu, Enhanced catalytic activity of gold@polydopamine nanoreactors with multi-compartment structure under NIR irradiation. Nano-Micro Lett. 11, 83 (2019). https://doi.org/10.1007/s40820-019-0314-9
B.N. Ganguly, B. Maity, T.K. Maity, J. Manna, M. Roy et al., L-cysteine-conjugated ruthenium hydrous oxide nanomaterials with anticancer active application. Langmuir 34, 1447–1456 (2018). https://doi.org/10.1021/acs.langmuir.7b01408
X. Dai, K.D. Rasamani, G. Hall, R. Makrypodi, Y. Sun, Geometric symmetry of dielectric antenna influencing light absorption in quantum-sized metal nanocrystals: a comparative study. Front. Chem. 6, 494 (2018). https://doi.org/10.3389/fchem.2018.00494
X. Dai, K.D. Rasamani, S. Wu, Y. Sun, Enabling selective aerobic oxidation of alcohols to aldehydes by hot electrons in quantum-sized Rh nanocubes. Mater. Today Energy 10, 15–22 (2018). https://doi.org/10.1016/j.mtener.2018.08.003
X. Dai, Q. Wei, T. Duong, Y. Sun, Selective transfer coupling of nitrobenzene to azoxybenzene on Rh nanoparticle catalyst promoted by photoexcited hot electrons. ChemNanoMat 5, 1000–1007 (2019). https://doi.org/10.1002/cnma.201900182
N. Zhang, C. Han, Y.-J. Xu, J.J. Foley IV, D. Zhang, J. Codrington, S.K. Gray, Y. Sun, Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 10, 473–482 (2016). https://doi.org/10.1038/nphoton.2016.76
L. Zhou, D.F. Swearer, C. Zhang, H. Robatjazi, H. Zhao et al., Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018). https://doi.org/10.1126/science.aat6967
NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899. DOI: 10.18434/T4T88K
D.J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47, 1072–1079 (2015). DOI: 10.1002/sia.5852
W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong et al., Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 4, 4452 (2014). https://doi.org/10.1038/srep04452
J. Jin, X. Yan, S. Xu, S. Liu, J. Hong, F. Huang, Y. Dai, C. Jin, J. Fan, Exploration of the interaction of RuO2–Au composite nanoparticles formed by one-step synthesis within the mesopores. Chem. Mater. 25, 3921–3927 (2013). https://doi.org/10.1021/cm4025233
L.-J. Meng, M.P. dos Santos, A study of residual stress on rf reactively sputtered RuO2 thin films. Thin Solid Films 375, 29–32 (2000). https://doi.org/10.1016/S0040-6090(00)01174-3
J.S. de Almeida, R. Ahuja, Electronic and optical properties of RuO2 and IrO2. Phys. Rev. B 73, 165102 (2006). https://doi.org/10.1103/PhysRevB.73.165102
X. Deng, B.K. Min, A. Guloy, C.M. Friend, Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: implications for oxidation catalysis. J. Am. Chem. Soc. 127, 9267–9270 (2005). https://doi.org/10.1021/ja050144j
P. Légaré, L. Hilaire, M. Sotto, G. Maire, Interaction of oxygen with Au surfaces: A LEED, AES and ELS study. Surf. Sci. 91, 175–186 (1980). https://doi.org/10.1016/0039-6028(80)90078-3
X. Han, X. Han, L. Sun, S. Gao, L. Li, Q. Kuang, Z. Xie, C. Wang, Synthesis of trapezohedral indium oxide nanoparticles with high-index 211 facets and high gas sensing activity. Chem. Commun. 51, 9612–9615 (2015). https://doi.org/10.1039/c5cc02029h
S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li, Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. Phys. Chem. Chem. Phys. 13, 10648–10651 (2011). https://doi.org/10.1039/C0CP02102D
W. Qi, B. Huang, M. Wang, Structure of unsupported small palladium nanoparticles. Nanoscale Res. Lett. 4, 269 (2009). https://doi.org/10.1007/s11671-008-9236-z
M. Ilyas, M. Sadiq, Liquid-phase aerobic oxidation of benzyl alcohol catalyzed by Pt/ZrO2. Chem. Eng. Technol. 30, 1391–1397 (2007). https://doi.org/10.1002/ceat.200700072
V.D. Makwana, Y.-C. Son, A.R. Howell, S.L. Suib, The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study. J. Catal. 210, 46–52 (2002). https://doi.org/10.1006/jcat.2002.3680