Mesoporous SiO2 Nanoparticles: A Unique Platform Enabling Sensitive Detection of Rare Earth Ions with Smartphone Camera
Corresponding Author: Yugang Sun
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 55
Abstract
Fast and sensitive detection of dilute rare earth species still represents a challenge for an on-site survey of new resources and evaluation of the economic value. In this work, a robust and low-cost protocol has been developed to analyze the concentration of rare earth ions using a smartphone camera. The success of this protocol relies on mesoporous silica nanoparticles (MSNs) with large-area negatively charged surfaces, on which the rare earth cations (e.g., Eu3+) are efficiently adsorbed through electrostatic attraction to enable a “concentrating effect”. The initial adsorption rate is as fast as 4025 mg (g min)−1, and the adsorption capacity of Eu3+ ions in the MSNs is as high as 4730 mg g−1 (equivalent to ~ 41.2 M) at 70 °C. The concentrated Eu3+ ions in the MSNs can form a complex with a light sensitizer of 1,10-phenanthroline to significantly enhance the characteristic red emission of Eu3+ ions due to an “antenna effect” that relies on the efficient energy transfer from the light sensitizer to the Eu3+ ions. The positive synergy of “concentrating effect” and “antenna effect” in the MSNs enables the analysis of rare earth ions in a wide dynamic range and with a detection limit down to ~ 80 nM even using a smartphone camera. Our results highlight the promise of the protocol in fieldwork for exploring valuable rare earth resources.
Highlights:
1 A protocol for quantitative measurement of Eu3+ ions is developed using mesoporous silica nanoparticles.
2 A “concentrating effect” of mesoporous silica nanoparticles is responsible for high adsorption capacity (4730 mg g−1) of Eu3+ ions. An “antenna effect” of 1,10-phenanthroline enables enhanced photoemission of adsorbed Eu3+ ions.
3 The detection limit of Eu3+ ions is 80 nM even with smartphone camera.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gai, C. Li, P. Yang, J. Lin, Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114(4), 2343–2389 (2013). https://doi.org/10.1021/cr4001594
- K.M. Goodenough, F. Wall, D. Merriman, The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 27(2), 201–216 (2017). https://doi.org/10.1007/s11053-017-9336-5
- R. Boonsin, G. Chadeyron, J.P. Roblin, D. Boyer, R. Mahiou, Development of rare-earth-free phosphors for eco-energy lighting based LEDs. J. Mater. Chem. C 3(37), 9580–9587 (2015). https://doi.org/10.1039/C5TC01516B
- D. Haranath, S. Mishra, A.G. Joshi, S. Sahai, V. Shanker, Effective doping of rare-earth ions in silica gel: a novel approach to design active electronic devices. Nano-Micro Lett. 3(3), 141–145 (2011). https://doi.org/10.1007/bf03353664
- R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett. 4(2), 65–72 (2012). https://doi.org/10.1007/bf03353694
- Y. Pu, K. Tang, D.C. Zhu, T. Han, C. Zhao, L.L. Peng, Synthesis and luminescence properties of (Y, Gd) (P, V)O4:Eu3+, Bi3+ red nano-phosphors with enhanced photoluminescence by Bi3+, Gd3+ doping. Nano-Micro Lett. 5(2), 117–123 (2013). https://doi.org/10.1007/bf03353738
- S. Massari, M. Ruberti, Rare earth elements as critical raw materials: focus on international markets and future strategies. Resour. Policy 38(1), 36–43 (2013). https://doi.org/10.1016/j.resourpol.2012.07.001
- R. Lin, B.H. Howard, E.A. Roth, T.L. Bank, E.J. Granite, Y. Soong, Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel 200, 506–520 (2017). https://doi.org/10.1016/j.fuel.2017.03.096
- E. Roth, T. Bank, B. Howard, E. Granite, Rare earth elements in Alberta oil sand process streams. Energy Fuels 31(5), 4714–4720 (2017). https://doi.org/10.1021/acs.energyfuels.6b03184
- W.C. Wilfong, B.W. Kail, T.L. Bank, B.H. Howard, M.L. Gray, Recovering rare earth elements from aqueous solution with porous amine–epoxy networks. ACS Appl. Mater. Interfaces 9(21), 18283–18294 (2017). https://doi.org/10.1021/acsami.7b03859
- T. Dutta, K.H. Kim, M. Uchimiya, E.E. Kwon, B.H. Jeon, A. Deep, S.T. Yun, Global demand for rare earth resources and strategies for green mining. Environ. Res. 150, 182–190 (2016). https://doi.org/10.1016/j.envres.2016.05.052
- S. Maes, W.Q. Zhuang, K. Rabaey, L. Alvarez-Cohen, T. Hennebel, Concomitant leaching and electrochemical extraction of rare earth elements from Monazite. Environ. Sci. Technol. 51(3), 1654–1661 (2017). https://doi.org/10.1021/acs.est.6b03675
- C.W. Noack, D.A. Dzombak, A.K. Karamalidis, Determination of rare earth elements in hypersaline solutions using low-volume, liquid–liquid extraction. Environ. Sci. Technol. 49(16), 9423–9430 (2015). https://doi.org/10.1021/acs.est.5b00151
- J. Roosen, S. Van Roosendael, C.R. Borra, T. Van Gerven, S. Mullens, K. Binnemans, Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chem. 18(7), 2005–2013 (2016). https://doi.org/10.1039/C5GC02225H
- D. Kim, L.E. Powell, L.H. Delmau, E.S. Peterson, J. Herchenroeder, R.R. Bhave, Selective extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ. Sci. Technol. 49(16), 9452–9459 (2015). https://doi.org/10.1021/acs.est.5b01306
- V. Funari, S.N.H. Bokhari, L. Vigliotti, T. Meisel, R. Braga, The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J. Hazard. Mater. 301, 471–479 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.015
- D. Golightly, F.O. Simon, Methods for sampling and inorganic analysis of coal (US Government Printing Office, 1989), pp. 35–57
- F.G. Pinto, R.E. Junior, T.D. Saint’Pierre, Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review. Anal. Lett. 45(12), 1537–1556 (2012). https://doi.org/10.1080/00032719.2012.677778
- T.L. Bank, E.A. Roth, P. Tinker, E. Granite, Analysis of rare earth elements in geologic samples using inductively coupled plasma mass spectrometry, US DOE Topical Report-DOE/NETL-2016/1794 (No. NETL-PUB-20441). National Energy Technology Lab (NETL), Pittsburgh, PA, 2016. https://doi.org/10.2172/1415779
- L.A. Rocha, J. Freiria, J.M. Caiut, S.J.L. Ribeiro, Y. Messaddeq, M. Verelst, J. Dexpert-Ghys, Luminescence properties of Eu-complex formations into ordered mesoporous silica particles obtained by the spray pyrolysis process. Nanotechnology 26(33), 335604 (2015). https://doi.org/10.1088/0957-4484/26/33/335604
- A. Ishii, M. Hasegawa, An interfacial europium complex on SiO2 nanoparticles: reduction-induced blue emission system. Sci. Rep. 5, 11714 (2015). https://doi.org/10.1038/srep11714
- I.V. Taydakov, A.A. Akkuzina, R.I. Avetisov, A.V. Khomyakov, R.R. Saifutyarov, I.C. Avetissov, Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. J. Lumin. 177, 31–39 (2016). https://doi.org/10.1016/j.jlumin.2016.04.017
- A. Ishii, M. Hasegawa, The ethanol-induced interfacial reduction of a europium complex on SiO2 nanoparticles. Chem. Lett. 45(11), 1265–1267 (2016). https://doi.org/10.1246/cl.160698
- L. Jiang, J.W. Zheng, W.C. Chen, J.J. Ye, L.E. Mo et al., Tuning coordination environment: better photophysical performance of europium (iii) complex. J. Phys. Chem. C 121(11), 5925–5930 (2017). https://doi.org/10.1021/acs.jpcc.6b12756
- Y. Wan, S.H. Yu, Polyelectrolyte controlled large-scale synthesis of hollow silica spheres with tunable sizes and wall thicknesses. J. Phys. Chem. C 112(10), 3641–3647 (2008). https://doi.org/10.1021/jp710990b
- Y. Liu, C.Y. Song, X.S. Luo, J. Lu, X.W. Ni, Fluorescence spectrum characteristic of ethanol–water excimer and mechanism of resonance energy transfer. Chin. Phys. 16(5), 1300 (2007). https://doi.org/10.1088/1009-1963/16/5/023
- Y. Wan, D.Y. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107(7), 2821–2860 (2007). https://doi.org/10.1021/cr068020s
- S. Tosonian, C.J. Ruiz, A. Rios, E. Frias, J.F. Eichler, Synthesis, characterization, and stability of iron (III) complex ions possessing phenanthroline-based ligands. Open J. Inorg. Chem. 3(1), 7–13 (2013). https://doi.org/10.4236/ojic.2013.31002
- M.J. Lochhead, P.R. Wamsley, K.L. Bray, Luminescence spectroscopy of europium(III) nitrate, chloride, and perchlorate in mixed ethanol–water solutions. Inorg. Chem. 33(9), 2000–2003 (1994). https://doi.org/10.1021/ic00087a041
- J.C. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005). https://doi.org/10.1039/B406082M
- A.M. Nonat, A.J. Harte, K. Senechal-David, J.P. Leonard, T. Gunnlaugsson, Luminescent sensing and formation of mixed f–d metal ion complexes between a Eu(III)-cyclen-phen conjugate and Cu(II), Fe(II), and Co(II) in buffered aqueous solution. Dalton Trans. 24, 4703–4711 (2009). https://doi.org/10.1039/B901567A
- F.H. Spedding, J.E. Powell, E.J. Wheelwright, The separation of adjacent rare earths with ethylenediamine-tetraacetic acid by elution from an ion-exchange resin. J. Am. Chem. Soc. 76(2), 612–613 (1994). https://doi.org/10.1021/ja01631a091
- F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 56, 10–28 (2014). https://doi.org/10.1016/j.mineng.2013.10.021
- G.A. Martoyan, G.G. Karamyan, G.A. Vardan, New technology of extracting the amount of rare earth metals from the red mud. IOP Conf. Ser.: Mater. Sci. Eng. 112, 012033 (2016). https://doi.org/10.1088/1757-899X/112/1/012033
- T.V. Hoogerstraete, S. Wellens, K. Verachtert, K. Binnemans, Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem. 15, 919–927 (2013). https://doi.org/10.1039/C3GC40198G
References
S. Gai, C. Li, P. Yang, J. Lin, Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114(4), 2343–2389 (2013). https://doi.org/10.1021/cr4001594
K.M. Goodenough, F. Wall, D. Merriman, The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 27(2), 201–216 (2017). https://doi.org/10.1007/s11053-017-9336-5
R. Boonsin, G. Chadeyron, J.P. Roblin, D. Boyer, R. Mahiou, Development of rare-earth-free phosphors for eco-energy lighting based LEDs. J. Mater. Chem. C 3(37), 9580–9587 (2015). https://doi.org/10.1039/C5TC01516B
D. Haranath, S. Mishra, A.G. Joshi, S. Sahai, V. Shanker, Effective doping of rare-earth ions in silica gel: a novel approach to design active electronic devices. Nano-Micro Lett. 3(3), 141–145 (2011). https://doi.org/10.1007/bf03353664
R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett. 4(2), 65–72 (2012). https://doi.org/10.1007/bf03353694
Y. Pu, K. Tang, D.C. Zhu, T. Han, C. Zhao, L.L. Peng, Synthesis and luminescence properties of (Y, Gd) (P, V)O4:Eu3+, Bi3+ red nano-phosphors with enhanced photoluminescence by Bi3+, Gd3+ doping. Nano-Micro Lett. 5(2), 117–123 (2013). https://doi.org/10.1007/bf03353738
S. Massari, M. Ruberti, Rare earth elements as critical raw materials: focus on international markets and future strategies. Resour. Policy 38(1), 36–43 (2013). https://doi.org/10.1016/j.resourpol.2012.07.001
R. Lin, B.H. Howard, E.A. Roth, T.L. Bank, E.J. Granite, Y. Soong, Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel 200, 506–520 (2017). https://doi.org/10.1016/j.fuel.2017.03.096
E. Roth, T. Bank, B. Howard, E. Granite, Rare earth elements in Alberta oil sand process streams. Energy Fuels 31(5), 4714–4720 (2017). https://doi.org/10.1021/acs.energyfuels.6b03184
W.C. Wilfong, B.W. Kail, T.L. Bank, B.H. Howard, M.L. Gray, Recovering rare earth elements from aqueous solution with porous amine–epoxy networks. ACS Appl. Mater. Interfaces 9(21), 18283–18294 (2017). https://doi.org/10.1021/acsami.7b03859
T. Dutta, K.H. Kim, M. Uchimiya, E.E. Kwon, B.H. Jeon, A. Deep, S.T. Yun, Global demand for rare earth resources and strategies for green mining. Environ. Res. 150, 182–190 (2016). https://doi.org/10.1016/j.envres.2016.05.052
S. Maes, W.Q. Zhuang, K. Rabaey, L. Alvarez-Cohen, T. Hennebel, Concomitant leaching and electrochemical extraction of rare earth elements from Monazite. Environ. Sci. Technol. 51(3), 1654–1661 (2017). https://doi.org/10.1021/acs.est.6b03675
C.W. Noack, D.A. Dzombak, A.K. Karamalidis, Determination of rare earth elements in hypersaline solutions using low-volume, liquid–liquid extraction. Environ. Sci. Technol. 49(16), 9423–9430 (2015). https://doi.org/10.1021/acs.est.5b00151
J. Roosen, S. Van Roosendael, C.R. Borra, T. Van Gerven, S. Mullens, K. Binnemans, Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chem. 18(7), 2005–2013 (2016). https://doi.org/10.1039/C5GC02225H
D. Kim, L.E. Powell, L.H. Delmau, E.S. Peterson, J. Herchenroeder, R.R. Bhave, Selective extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ. Sci. Technol. 49(16), 9452–9459 (2015). https://doi.org/10.1021/acs.est.5b01306
V. Funari, S.N.H. Bokhari, L. Vigliotti, T. Meisel, R. Braga, The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J. Hazard. Mater. 301, 471–479 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.015
D. Golightly, F.O. Simon, Methods for sampling and inorganic analysis of coal (US Government Printing Office, 1989), pp. 35–57
F.G. Pinto, R.E. Junior, T.D. Saint’Pierre, Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review. Anal. Lett. 45(12), 1537–1556 (2012). https://doi.org/10.1080/00032719.2012.677778
T.L. Bank, E.A. Roth, P. Tinker, E. Granite, Analysis of rare earth elements in geologic samples using inductively coupled plasma mass spectrometry, US DOE Topical Report-DOE/NETL-2016/1794 (No. NETL-PUB-20441). National Energy Technology Lab (NETL), Pittsburgh, PA, 2016. https://doi.org/10.2172/1415779
L.A. Rocha, J. Freiria, J.M. Caiut, S.J.L. Ribeiro, Y. Messaddeq, M. Verelst, J. Dexpert-Ghys, Luminescence properties of Eu-complex formations into ordered mesoporous silica particles obtained by the spray pyrolysis process. Nanotechnology 26(33), 335604 (2015). https://doi.org/10.1088/0957-4484/26/33/335604
A. Ishii, M. Hasegawa, An interfacial europium complex on SiO2 nanoparticles: reduction-induced blue emission system. Sci. Rep. 5, 11714 (2015). https://doi.org/10.1038/srep11714
I.V. Taydakov, A.A. Akkuzina, R.I. Avetisov, A.V. Khomyakov, R.R. Saifutyarov, I.C. Avetissov, Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. J. Lumin. 177, 31–39 (2016). https://doi.org/10.1016/j.jlumin.2016.04.017
A. Ishii, M. Hasegawa, The ethanol-induced interfacial reduction of a europium complex on SiO2 nanoparticles. Chem. Lett. 45(11), 1265–1267 (2016). https://doi.org/10.1246/cl.160698
L. Jiang, J.W. Zheng, W.C. Chen, J.J. Ye, L.E. Mo et al., Tuning coordination environment: better photophysical performance of europium (iii) complex. J. Phys. Chem. C 121(11), 5925–5930 (2017). https://doi.org/10.1021/acs.jpcc.6b12756
Y. Wan, S.H. Yu, Polyelectrolyte controlled large-scale synthesis of hollow silica spheres with tunable sizes and wall thicknesses. J. Phys. Chem. C 112(10), 3641–3647 (2008). https://doi.org/10.1021/jp710990b
Y. Liu, C.Y. Song, X.S. Luo, J. Lu, X.W. Ni, Fluorescence spectrum characteristic of ethanol–water excimer and mechanism of resonance energy transfer. Chin. Phys. 16(5), 1300 (2007). https://doi.org/10.1088/1009-1963/16/5/023
Y. Wan, D.Y. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107(7), 2821–2860 (2007). https://doi.org/10.1021/cr068020s
S. Tosonian, C.J. Ruiz, A. Rios, E. Frias, J.F. Eichler, Synthesis, characterization, and stability of iron (III) complex ions possessing phenanthroline-based ligands. Open J. Inorg. Chem. 3(1), 7–13 (2013). https://doi.org/10.4236/ojic.2013.31002
M.J. Lochhead, P.R. Wamsley, K.L. Bray, Luminescence spectroscopy of europium(III) nitrate, chloride, and perchlorate in mixed ethanol–water solutions. Inorg. Chem. 33(9), 2000–2003 (1994). https://doi.org/10.1021/ic00087a041
J.C. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005). https://doi.org/10.1039/B406082M
A.M. Nonat, A.J. Harte, K. Senechal-David, J.P. Leonard, T. Gunnlaugsson, Luminescent sensing and formation of mixed f–d metal ion complexes between a Eu(III)-cyclen-phen conjugate and Cu(II), Fe(II), and Co(II) in buffered aqueous solution. Dalton Trans. 24, 4703–4711 (2009). https://doi.org/10.1039/B901567A
F.H. Spedding, J.E. Powell, E.J. Wheelwright, The separation of adjacent rare earths with ethylenediamine-tetraacetic acid by elution from an ion-exchange resin. J. Am. Chem. Soc. 76(2), 612–613 (1994). https://doi.org/10.1021/ja01631a091
F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 56, 10–28 (2014). https://doi.org/10.1016/j.mineng.2013.10.021
G.A. Martoyan, G.G. Karamyan, G.A. Vardan, New technology of extracting the amount of rare earth metals from the red mud. IOP Conf. Ser.: Mater. Sci. Eng. 112, 012033 (2016). https://doi.org/10.1088/1757-899X/112/1/012033
T.V. Hoogerstraete, S. Wellens, K. Verachtert, K. Binnemans, Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem. 15, 919–927 (2013). https://doi.org/10.1039/C3GC40198G