Advances and Challenges in Two-Dimensional Organic–Inorganic Hybrid Perovskites Toward High-Performance Light-Emitting Diodes
Corresponding Author: Ruosheng Zeng
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 163
Abstract
Two-dimensional (2D) perovskites are known as one of the most promising luminescent materials due to their structural diversity and outstanding optoelectronic properties. Compared with 3D perovskites, 2D perovskites have natural quantum well structures, large exciton binding energy (Eb) and outstanding thermal stability, which shows great potential in the next-generation displays and solid-state lighting. In this review, the fundamental structure, photophysical and electrical properties of 2D perovskite films were illustrated systematically. Based on the advantages of 2D perovskites, such as special energy funnel process, ultra-fast energy transfer, dense film and low efficiency roll-off, the remarkable achievements of 2D perovskite light-emitting diodes (PeLEDs) are summarized, and exciting challenges of 2D perovskite are also discussed. An outlook on further improving the efficiency of pure-blue PeLEDs, enhancing the operational stability of PeLEDs and reducing the toxicity to push this field forward was also provided. This review provides an overview of the recent developments of 2D perovskite materials and LED applications, and outlining challenges for achieving the high-performance devices.
Highlights:
1 The fundamental structure, photophysical and electrical properties of 2D perovskite films were illustrated systematically.
2 The advantages and challenges of 2D perovskite light-emitting diodes (PeLED) have been also discussed, which may benefit the audient to get insight into the 2D perovskite materials as well as the resultant LED devices.
3 An outlook on further improving the efficiency of pure-blue PeLEDs, enhancing the operational stability of PeLEDs and reducing the toxicity to push this field forward was also provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- K. Yang, F. Li, H. Hu, T. Guo, T.W. Kim, Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy 65, 104029 (2019). https://doi.org/10.1016/j.nanoen.2019.104029
- J.E. Jeong, J.H. Park, C.H. Jang, M.H. Song, H.Y. Woo, Multifunctional charge transporting materials for perovskite light-emitting diodes. Adv. Mater. 32(51), 2002176 (2020). https://doi.org/10.1002/adma.202002176
- T.H. Han, S. Tan, J. Xue, L. Meng, J.W. Lee et al., Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 31(47), e1803515 (2019). https://doi.org/10.1002/adma.201803515
- R. Zeng, K. Bai, Q. Wei, T. Chang, J. Yan et al., Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Res. 14(5), 1551–1558 (2021). https://doi.org/10.1007/s12274-020-3214-x
- L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11(1), 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
- W. Liu, N. Liu, S. Ji, H. Hua, Y. Ma et al., Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 12(1), 119 (2020). https://doi.org/10.1007/s40820-020-00457-7
- X. Zhou, L. Qiu, R. Fan, J. Zhang, S. Hao et al., Heterojunction incorporating perovskite and microporous metal-organic framework nanocrystals for efficient and stable solar cells. Nano-Micro Lett. 12(1), 80 (2020). https://doi.org/10.1007/s40820-020-00417-1
- M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony et al., Spray pyrolyzed TiO2 embedded multi-layer front contact design for high-efficiency perovskite solar cells. Nano-Micro Lett. 13(1), 36 (2021). https://doi.org/10.1007/s40820-020-00559-2
- S. Fu, X. Li, L. Wan, W. Zhang, W. Song et al., Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett. 12(1), 170 (2020). https://doi.org/10.1007/s40820-020-00509-y
- K. Ji, M. Anaya, A. Abfalterer, S.D. Stranks, Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. (2021). https://doi.org/10.1002/adom.202002128
- B. Ke, R. Zeng, Z. Zhao, Q. Wei, X. Xue et al., Homo- and heterovalent doping-mediated self-trapped exciton emission and energy transfer in Mn-doped Cs2Na1-xAgxBiCl6 double perovskites. J. Phys. Chem. Lett. 11(1), 340–348 (2020). https://doi.org/10.1021/acs.jpclett.9b03387
- J. Huang, T. Chang, R. Zeng, J. Yan, Q. Wei et al., Controlled structural transformation in Sb-doped indium halides A3InCl and A2InCl5∙H2O yields reversible green-to-yellow emission switch. Adv. Opt. Mater. (2021). https://doi.org/10.1002/adom.202002267
- R. Zeng, L. Zhang, Y. Xue, B. Ke, Z. Zhao et al., Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 11(6), 2053–2061 (2020). https://doi.org/10.1021/acs.jpclett.0c00330
- K. Liao, C. Li, L. Xie, Y. Yuan, S. Wang et al., Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance. Nano-Micro Lett. 12(1), 1–22 (2020). https://doi.org/10.1007/s40820-020-00494-2
- X. Wang, L. Wang, T. Shan, S. Leng, H. Zhong et al., Low-temperature aging provides 22% efficient bromine-free and passivation layer-free planar perovskite solar cells. Nano-Micro Lett. 12(1), 84 (2020). https://doi.org/10.1007/s40820-020-00418-0
- P. Fu, S. Hu, J. Tang, Z. Xiao, Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Front. Optoelect. (2021). https://doi.org/10.1007/s12200-021-1227-z
- C. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei et al., High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12(1), 2207 (2021). https://doi.org/10.1038/s41467-021-22529-x
- D. Wang, D. Wu, D. Dong, W. Chen, J. Hao et al., Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 8(22), 11565–11570 (2016). https://doi.org/10.1039/c6nr01915c
- H. Shi, X. Zhang, X. Sun, X. Zhang, Phonon mode transformation in size-evolved solution-processed inorganic lead halide perovskite. Nanoscale 10(21), 9892–9898 (2018). https://doi.org/10.1039/c7nr09101j
- T.L. Leung, H.W. Tam, F. Liu, J. Lin, A.M.C. Ng et al., Mixed spacer cation stabilization of blue-emitting n = 2 Ruddlesden-Popper organic-inorganic halide perovskite films. Adv. Opt. Mater. 8(4), 1901679 (2020). https://doi.org/10.1002/adom.201901679
- H.L. Wells, On the caesium- and the potassium-lead halides. Am. J. Sci. s3–45(266), 121–134 (1893). https://doi.org/10.2475/ajs.s3-45.266.121
- D. Weber, CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B 33(12), 1443–1445 (1978). https://doi.org/10.1515/znb-1978-1214
- D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Conducting tin halides with a layered organic-based perovskite structure. Nature 369(6480), 467–469 (1994). https://doi.org/10.1038/369467a0
- D.B. Mitzi, S. Wang, C.A. Feild, C.A. Chess, A.M. Guloy, Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 267(5203), 1473–1476 (1995). https://doi.org/10.1126/science.267.5203.1473
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- Z. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
- L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
- C. Lan, Z. Zhou, R. Wei, J.C. Ho, Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy 11, 61–82 (2019). https://doi.org/10.1016/j.mtener.2018.10.008
- Z. Wang, F. Wang, B. Zhao, S. Qu, T. Hayat et al., Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy. J. Phys. Chem. Lett. 11(3), 1120–1127 (2020). https://doi.org/10.1021/acs.jpclett.9b03565
- S. Yuan, Z.K. Wang, L.X. Xiao, C.F. Zhang, S.Y. Yang et al., Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 31(44), e1904319 (2019). https://doi.org/10.1002/adma.201904319
- Y. Huang, Y. Li, E.L. Lim, T. Kong, Y. Zhang et al., Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J. Am. Chem. Soc. 143(10), 3911–3917 (2021). https://doi.org/10.1021/jacs.0c13087
- P. Liu, N. Han, W. Wang, R. Ran, W. Zhou, Z. Shao, High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 33(10), e2002582 (2021). https://doi.org/10.1002/adma.202002582
- H. Kim, M. Pei, Y. Lee, A.A. Sutanto, S. Paek et al., Self-crystallized multifunctional 2D perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 30(19), 1910620 (2020). https://doi.org/10.1002/adfm.201910620
- J. Lee, Z. Dai, T. Han, C. Choi, S. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3010–3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
- J. Wang, J. Li, S. Lan, C. Fang, H. Shen et al., Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 13(5), 5473–5484 (2019). https://doi.org/10.1021/acsnano.9b00259
- F. Zhou, I. Abdelwahab, K. Leng, K.P. Loh, W. Ji, 2D perovskites with giant excitonic optical nonlinearities for high-Performance sub-bandgap photodetection. Adv. Mater. 31(48), e1904155 (2019). https://doi.org/10.1002/adma.201904155
- C. Qin, A. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang et al., Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585(7823), 53–57 (2020). https://doi.org/10.1038/s41586-020-2621-1
- H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao et al., 2D Ruddlesden-Popper perovskites microring laser array. Adv. Mater. 30(15), e1706186 (2018). https://doi.org/10.1002/adma.201706186
- S. Chou, R. Ma, Y. Li, F. Zhao, K. Tong et al., Transparent perovskite light-emitting touch-responsive device. ACS Nano 11(11), 11368–11375 (2017). https://doi.org/10.1021/acsnano.7b05935
- M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
- N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
- Y. Liu, Z. Yu, S. Chen, J.H. Park, E.D. Jung et al., Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy 80, 105511 (2021). https://doi.org/10.1016/j.nanoen.2020.105511
- B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
- F. Meng, X. Liu, Y. Chen, X. Cai, M. Li et al., Co-interlayer engineering toward efficient green quasi-two-dimensional perovskite light-emitting diodes. Adv. Funct. Mater. 30(19), 1910167 (2020). https://doi.org/10.1002/adfm.201910167
- C. Liang, D. Zhao, Y. Li, X. Li, S. Peng et al., Ruddlesden-Popper perovskite for stable solar cells. Energy Environ. Mater. 1(4), 221–231 (2018). https://doi.org/10.1002/eem2.12022
- O. Nazarenko, M.R. Kotyrba, S. Yakunin, M. Aebli, G. Raino et al., Guanidinium-formamidinium lead iodide: a layered perovskite-related compound with red luminescence at room temperature. J. Am. Chem. Soc. 140(11), 3850–3853 (2018). https://doi.org/10.1021/jacs.8b00194
- C. Ortiz Cervantes, P. Carmona Monroy, D. Solis Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
- T. Hu, M.D. Smith, E.R. Dohner, M.J. Sher, X. Wu et al., Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 7(12), 2258–2263 (2016). https://doi.org/10.1021/acs.jpclett.6b00793
- L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
- C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
- Z. Tan, J. Luo, L. Yang, X. Li, Z. Deng et al., Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv. Opt. Mater. 8(2), 1901094 (2020). https://doi.org/10.1002/adom.201901094
- Y. Shen, J. Yin, B. Cai, Z. Wang, Y. Dong et al., Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots. Nanoscale Horiz. 5(3), 580–585 (2020). https://doi.org/10.1039/C9NH00685K
- M. Shi, G. Li, W. Tian, S. Jin, X. Tao et al., Understanding the effect of crystalline structural transformation for lead-free inorganic halide perovskites. Adv. Mater. 32(31), 2002137 (2020). https://doi.org/10.1002/adma.202002137
- J. Pal, S. Manna, A. Mondal, S. Das, K.V. Adarsh, A. Nag, Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites. Angew. Chem. Int. Ed. 56(45), 14187–14191 (2017). https://doi.org/10.1002/anie.201709040
- A. Johnston, F. Dinic, P. Todorović, B. Chen, L.K. Sagar et al., Narrow emission from Rb3Sb2I9 nanoparticles. Adv. Opt. Mater. 8(1), 1901606 (2020). https://doi.org/10.1002/adom.201901606
- Y. Liu, Y. Zhang, Z. Yang, J. Cui, H. Wu et al., Large lead-free perovskite single crystal for high-performance coplanar x-ray imaging applications. Adv. Opt. Mater. 8(19), 2000814 (2020). https://doi.org/10.1002/adom.202000814
- G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8(1), 14558 (2017). https://doi.org/10.1038/ncomms14558
- J. Liu, J. Leng, K. Wu, J. Zhang, S. Jin, Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139(4), 1432–1435 (2017). https://doi.org/10.1021/jacs.6b12581
- C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6(1), 38–45 (2021). https://doi.org/10.1038/s41560-020-00721-5
- A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley, E.H. Sargent, Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140(8), 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
- J.T. Lin, D.G. Chen, C.H. Wu, C.S. Hsu, C.Y. Chien et al., A universal approach for controllable synthesis of n-specific layered 2D perovskite nanoplates. Angew. Chem. Int. Ed. 60(14), 7866–7872 (2021). https://doi.org/10.1002/anie.202016140
- W. Li, C. Fang, H. Wang, S. Wang, J. Li et al., Surface depletion field in 2D perovskite microplates: structural phase transition, quantum confinement and Stark effect. Nano Res. 12(11), 2858–2865 (2019). https://doi.org/10.1007/s12274-019-2524-3
- Y. Gao, E. Shi, S. Deng, S.B. Shiring, J.M. Snaider et al., Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 13(3), 290 (2021). https://doi.org/10.1038/s41557-020-0521-5
- L. Cheng, T. Jiang, Y. Cao, C. Yi, N. Wang et al., Multiple-quantum-well perovskites for high-performance light-emitting diodes. Adv. Mater. 32(15), e1904163 (2020). https://doi.org/10.1002/adma.201904163
- T. Chang, Q. Wei, R. Zeng, S. Cao, J. Zhao et al., Efficient energy transfer in Te(4+)-doped Cs2ZrCl6 vacancy-ordered perovskites and ultrahigh moisture stability via A-site Rb-alloying strategy. J. Phys. Chem. Lett. 12(7), 1829–1837 (2021). https://doi.org/10.1021/acs.jpclett.1c00255
- H. Wang, X. Gong, D. Zhao, Y. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
- L.M. Herz, Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016). https://doi.org/10.1146/annurev-physchem-040215-112222
- Y.H. Kim, J.S. Kim, T.W. Lee, Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Adv. Mater. 31(47), e1804595 (2019). https://doi.org/10.1002/adma.201804595
- S.D. Stranks, R. Hoye, D. Di, R.H. Friend, F. Deschler, The physics of light emission in halide perovskite devices. Adv. Mater. 31(47), e1803336 (2019). https://doi.org/10.1002/adma.201803336
- X. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
- Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang et al., Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12(1), 336 (2021). https://doi.org/10.1038/s41467-020-20555-9
- R. Li, C. Yi, R. Ge, W. Zou, L. Cheng et al., Room-temperature electroluminescence from two-dimensional lead halide perovskites. Appl. Phys. Lett. 109(15), 151101 (2016). https://doi.org/10.1063/1.4964413
- X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini et al., Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17(6), 550–556 (2018). https://doi.org/10.1038/s41563-018-0081-x
- D. Ma, Y. Fu, L. Dang, J. Zhai, I.A. Guzei, S. Jin, Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics. Nano Res. 10(6), 2117–2129 (2017). https://doi.org/10.1007/s12274-016-1401-6
- K. Zhang, N. Zhu, M. Zhang, L. Wang, J. Xing, Opportunities and challenges in perovskite LED commercialization. J. Mater. Chem. C 9(11), 3795–3799 (2021). https://doi.org/10.1039/D1TC00232E
- Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun et al., High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33(1), e2005570 (2021). https://doi.org/10.1002/adma.202005570
- P. Pang, G. Jin, C. Liang, B. Wang, W. Xiang et al., Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 14(9), 11420–11430 (2020). https://doi.org/10.1021/acsnano.0c03765
- Y. Shang, Y. Liao, Q. Wei, Z. Wang, B. Xiang et al., Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv. 5(8), w8072 (2019). https://doi.org/10.1126/sciadv.aaw8072
- Y. Shi, W. Wu, H. Dong, G. Li, K. Xi et al., A strategy for architecture design of crystalline perovskite light-emitting diodes with high performance. Adv. Mater. 30(25), 1800251 (2018). https://doi.org/10.1002/adma.201800251
- J. Wang, N. Wang, Y. Jin, J. Si, Z. Tan et al., Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27(14), 2311–2316 (2015). https://doi.org/10.1002/adma.201405217
- Z. Chen, C. Zhang, X.F. Jiang, M. Liu, R. Xia et al., High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. (2017). https://doi.org/10.1002/adma.201603157
- Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
- Z. Li, Z. Chen, Y. Yang, Q. Xue, H.L. Yip et al., Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nat. Commun. 10(1), 1027 (2019). https://doi.org/10.1038/s41467-019-09011-5
- M. Lu, Y. Zhang, S. Wang, J. Guo, W.W. Yu et al., Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv. Funct. Mater. 29(30), 1902008 (2019). https://doi.org/10.1002/adfm.201902008
- Y. Shirasaki, G.J. Supran, W.A. Tisdale, V. Bulovic, Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Phys. Rev. Lett. 110(21), 217403 (2013). https://doi.org/10.1103/PhysRevLett.110.217403
- L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11(1), 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
- Y. Dong, Y.K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15(8), 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
- A. Fakharuddin, W. Qiu, G. Croes, A. Devižis, R. Gegevičius et al., Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv. Funct. Mater. 29(37), 1904101 (2019). https://doi.org/10.1002/adfm.201904101
- Y. Sun, Q. Su, H. Zhang, F. Wang, S. Zhang et al., Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13(10), 11433–11442 (2019). https://doi.org/10.1021/acsnano.9b04879
- W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9(1), 608 (2018). https://doi.org/10.1038/s41467-018-03049-7
- Z. Chen, Z. Li, C. Zhang, X.F. Jiang, D. Chen et al., Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30(38), e1801370 (2018). https://doi.org/10.1002/adma.201801370
- M. Lu, J. Guo, S. Sun, P. Lu, J. Wu et al., Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 20(4), 2829–2836 (2020). https://doi.org/10.1021/acs.nanolett.0c00545
- M.U. Ali, J. Miao, J. Cai, D.F. Perepichka, H. Yang et al., Boosting efficiency and curtailing the efficiency roll-off in green perovskite light-emitting diodes via incorporating ytterbium as cathode interface layer. ACS Appl. Mater. Interfaces 12(16), 18761–18768 (2020). https://doi.org/10.1021/acsami.0c00950
- Y. Wang, Y. Teng, P. Lu, X. Shen, P. Jia et al., Low roll-off perovskite quantum dot light-emitting diodes achieved by augmenting hole mobility. Adv. Funct. Mater. 30(19), 1910140 (2020). https://doi.org/10.1002/adfm.201910140
- X. Zhang, C. Sun, Y. Zhang, H. Wu, C. Ji et al., Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 7(22), 4602–4610 (2016). https://doi.org/10.1021/acs.jpclett.6b02073
- I.D. Parker, Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys. 75(3), 1656–1666 (1994). https://doi.org/10.1063/1.356350
- T. Han, M. Choi, S. Woo, S. Min, C. Lee, T. Lee, Molecularly controlled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes. Adv. Mater. 24(11), 1487–1493 (2012). https://doi.org/10.1002/adma.201104316
- J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28(34), 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
- X. Zhang, W. Yin, W. Zheng, A.L. Rogach, Perovskite quantum dots with atomic crystal shells for light-emitting diodes with low efficiency roll-off. ACS Energy Lett. 5(9), 2927–2934 (2020). https://doi.org/10.1021/acsenergylett.0c01560
- X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16(2), 1415–1420 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
- C. Zou, Y. Liu, D.S. Ginger, L.Y. Lin, Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14(5), 6076–6086 (2020). https://doi.org/10.1021/acsnano.0c01817
- L.N. Quan, Y. Zhao, F.P. García De Arquer, R. Sabatini, G. Walters et al., Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17(6), 3701–3709 (2017). https://doi.org/10.1021/acs.nanolett.7b00976
- V.V. Klimov, A.A. Mikhailovsky, D.W. Mcbranch, C.A. Leatherdale, M.G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287(5455), 1011–1013 (2000). https://doi.org/10.1126/science.287.5455.1011
- R.L. Milot, R.J. Sutton, G.E. Eperon, A.A. Haghighirad, H.J. Martinez et al., Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Lett. 16(11), 7001–7007 (2016). https://doi.org/10.1021/acs.nanolett.6b03114
- W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13(6), 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
- Y. Vaynzof, The future of perovskite photovoltaics-thermal evaporation or solution processing? Adv. Energy Mater. 10(48), 2003073 (2020). https://doi.org/10.1002/aenm.202003073
- X. Cao, L. Zhi, Y. Jia, Y. Li, K. Zhao et al., A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 11(8), 7639–7654 (2019). https://doi.org/10.1021/acsami.8b16315
- X. Shi, Y. Liu, Z. Yuan, X. Liu, Y. Miao et al., Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6(17), 1800667 (2018). https://doi.org/10.1002/adom.201800667
- M.M. Tavakoli, P. Yadav, D. Prochowicz, M. Sponseller, A. Osherov et al., Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv. Energy Mater. 9(17), 1803587 (2019). https://doi.org/10.1002/aenm.201803587
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555(7697), 497–501 (2018). https://doi.org/10.1038/nature25989
- S.D. Stranks, Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2(7), 1515–1525 (2017). https://doi.org/10.1021/acsenergylett.7b00239
- S. Lee, D.B. Kim, J.C. Yu, C.H. Jang, J.H. Park et al., Versatile defect passivation methods for metal halide perovskite materials and their application to light-emitting devices. Adv. Mater. 31(20), 1805244 (2018). https://doi.org/10.1002/adma.201805244
- F. Yuan, X. Zheng, A. Johnston, Y. Wang, C. Zhou et al., Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv. 6(42), b253 (2020). https://doi.org/10.1126/sciadv.abb0253
- T. Cheng, C. Qin, S. Watanabe, T. Matsushima, C. Adachi, Stoichiometry control for the tuning of grain passivation and domain distribution in green quasi-2D metal halide perovskite films and light-emitting diodes. Adv. Funct. Mater. 30(24), 2001816 (2020). https://doi.org/10.1002/adfm.202001816
- L. Jhuang, G. Kumar, F. Chen, Localized surface plasmon resonance of copper nanoparticles improves the performance of quasi-two-dimensional perovskite light-emitting diodes. Dyes Pigments 188, 109204 (2021). https://doi.org/10.1016/j.dyepig.2021.109204
- L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. (2021). https://doi.org/10.1038/s41377-021-00501-0
- J. Xing, Y. Zhao, M. Askerka, L.N. Quan, X. Gong et al., Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9(1), 3541 (2018). https://doi.org/10.1038/s41467-018-05909-8
- D.B. Kim, S. Lee, C.H. Jang, J.H. Park, A.Y. Lee, M.H. Song, Uniform and large-area cesium-based quasi-2D perovskite light-emitting diodes using hot-casting method. Adv. Mater. Interfaces 7(8), 1902158 (2020). https://doi.org/10.1002/admi.201902158
- Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng et al., Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10(1), 5633 (2019). https://doi.org/10.1038/s41467-019-13580-w
- L. Zhang, T. Jiang, C. Yi, J. Wu, X. Liu et al., Bright free exciton electroluminescence from Mn-doped two-dimensional layered perovskites. J. Phys. Chem. Lett. 10(11), 3171–3175 (2019). https://doi.org/10.1021/acs.jpclett.9b01326
- Z. He, Y. Liu, Z. Yang, J. Li, J. Cui et al., High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics 6(3), 587–594 (2019). https://doi.org/10.1021/acsphotonics.8b01435
- H. Tsai, C. Liu, E. Kinigstein, M. Li, S. Tretiak et al., Critical role of organic spacers for bright 2D layered perovskites light-emitting diodes. Adv. Sci. 7(7), 1903202 (2020). https://doi.org/10.1002/advs.201903202
- M. Yu, C. Yi, N. Wang, L. Zhang, R. Zou et al., Control of barrier width in perovskite multiple quantum wells for high performance green light-emitting diodes. Adv. Opt. Mater. 7(3), 1801575 (2019). https://doi.org/10.1002/adom.201801575
- K. Zheng, Y. Chen, Y. Sun, J. Chen, P. Chábera et al., Inter-phase charge and energy transfer in Ruddlesden-Popper 2D perovskites: Critical role of the spacing cations. J. Mater. Chem. A 6(15), 6244–6250 (2018). https://doi.org/10.1039/C8TA01518J
- L. Zhu, D. Liu, J. Wang, N. Wang, Large organic cations in quasi-2D perovskites for high-performance light-emitting diodes. J. Phys. Chem. Lett. 11(20), 8502–8510 (2020). https://doi.org/10.1021/acs.jpclett.0c02476
- J. Mao, H. Lin, F. Ye, M. Qin, J.M. Burkhartsmeyer et al., All-perovskite emission architecture for white light-emitting diodes. ACS Nano 12(10), 10486–10492 (2018). https://doi.org/10.1021/acsnano.8b06196
- Z. Ren, X. Xiao, R. Ma, H. Lin, K. Wang et al., Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv. Funct. Mater. 29(43), 1905339 (2019). https://doi.org/10.1002/adfm.201905339
- P. Chen, Y. Meng, M. Ahmadi, Q. Peng, C. Gao et al., Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy 50, 615–622 (2018). https://doi.org/10.1016/j.nanoen.2018.06.008
- Z. Wang, F. Wang, W. Sun, R. Ni, S. Hu et al., Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 28(47), 1804187 (2018). https://doi.org/10.1002/adfm.201804187
- P. Vashishtha, M. Ng, S.B. Shivarudraiah, J.E. Halpert, High efficiency blue and green light-emitting diodes using Ruddlesden-Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31(1), 83–89 (2019). https://doi.org/10.1021/acs.chemmater.8b02999
- S. Lee, D.B. Kim, I. Hamilton, M. Daboczi, Y.S. Nam et al., Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv. Sci. 5(11), 1801350 (2018). https://doi.org/10.1002/advs.201801350
- Q. Zhang, M.M. Tavakoli, L. Gu, D. Zhang, L. Tang et al., Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10(1), 727 (2019). https://doi.org/10.1038/s41467-019-08561-y
- L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12(1), 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
- M. You, H. Wang, F. Cao, C. Zhang, T. Zhang et al., Improving efficiency and stability in quasi-2D perovskite light-emitting diodes by a multifunctional LiF interlayer. ACS Appl. Mater. Interfaces 12(38), 43018–43023 (2020). https://doi.org/10.1021/acsami.0c11762
- N. Yantara, A. Bruno, A. Iqbal, N.F. Jamaludin, C. Soci et al., Designing efficient energy funneling kinetics in Ruddlesden-Popper perovskites for high-performance light-emitting diodes. Adv. Mater. 30(33), 1800818 (2018). https://doi.org/10.1002/adma.201800818
- X.Y. Chin, A. Perumal, A. Bruno, N. Yantara, S.A. Veldhuis et al., Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energ. Environ. Sci. 11(7), 1770–1778 (2018). https://doi.org/10.1039/C8EE00293B
- X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang et al., Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energy Lett. 4(1), 242–248 (2019). https://doi.org/10.1021/acsenergylett.8b02239
- Y.F. Ng, B. Febriansyah, N.F. Jamaludin, D. Giovanni, N. Yantara et al., Design of 2D templating molecules for mixed-dimensional perovskite light-emitting diodes. Chem. Mater. 32(19), 8097–8105 (2020). https://doi.org/10.1021/acs.chemmater.0c00513
- P. Cai, X. Wang, H.J. Seo, X. Yan, Bluish-white-light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbCl2Br2. Appl. Phys. Lett. 112(15), 153901 (2018). https://doi.org/10.1063/1.5023797
- Z. Chu, Y. Zhao, F. Ma, C.X. Zhang, H. Deng et al., Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat. Commun. 11(1), 4165 (2020). https://doi.org/10.1038/s41467-020-17943-6
- X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-02978-7
- Y. Jiang, C. Qin, M. Cui, T. He, K. Liu et al., Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10(1), 1868 (2019). https://doi.org/10.1038/s41467-019-09794-7
- J.H. Warby, B. Wenger, A.J. Ramadan, R.D.J. Oliver, H.C. Sansom et al., Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano 14(7), 8855–8865 (2020). https://doi.org/10.1021/acsnano.0c03516
- X. Yang, Z. Chu, J. Meng, Z. Yin, X. Zhang et al., Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite-based light-emitting diodes. J. Phys. Chem. Lett. 10(11), 2892–2897 (2019). https://doi.org/10.1021/acs.jpclett.9b00910
- W. Deng, X. Jin, Y. Lv, X. Zhang, X. Zhang, J. Jie, 2D Ruddlesden-Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv. Funct. Mater. 29(40), 1903861 (2019). https://doi.org/10.1002/adfm.201903861
- C. Qin, T. Matsushima, W.J. Potscavage, A.S.D. Sandanayaka, M.R. Leyden et al., Triplet management for efficient perovskite light-emitting diodes. Nat. Photonics 14(2), 70–75 (2019). https://doi.org/10.1038/s41566-019-0545-9
- B. Han, S. Yuan, T. Fang, F. Zhang, Z. Shi et al., Novel lewis base cyclam self-passivation of perovskites without an anti-solvent process for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 12(12), 14224–14232 (2020). https://doi.org/10.1021/acsami.0c02768
- Y. Wang, D. Ma, F. Yuan, K. Singh, J.M. Pina et al., Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nat. Commun. 11(1), 3674 (2020). https://doi.org/10.1038/s41467-020-17482-0
- D. Ma, P. Todorovic, S. Meshkat, M.I. Saidaminov, Y. Wang et al., Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142(11), 5126–5134 (2020). https://doi.org/10.1021/jacs.9b12323
- J. Si, Y. Liu, Z. He, H. Du, K. Du et al., Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 11(11), 11100–11107 (2017). https://doi.org/10.1021/acsnano.7b05191
- Y. Liu, J. Cui, K. Du, H. Tian, Z. He et al., Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13(11), 760–764 (2019). https://doi.org/10.1038/s41566-019-0505-4
- D. Cortecchia, W. Mróz, S. Neutzner, T. Borzda, G. Folpini et al., Defect engineering in 2D perovskite by Mn(II) doping for light-emitting applications. Chemistry 5(8), 2146–2158 (2019). https://doi.org/10.1016/j.chempr.2019.05.018
- J. Chang, S. Zhang, N. Wang, Y. Sun, Y. Wei et al., Enhanced performance of red perovskite light-emitting diodes through the dimensional tailoring of perovskite multiple quantum wells. J. Phys. Chem. Lett. 9(4), 881–886 (2018). https://doi.org/10.1021/acs.jpclett.7b03417
- T. Wu, Y. Yang, Y. Zou, Y. Wang, C. Wu et al., Nanoplatelet modulation in 2D/3D perovskite targeting efficient light-emitting diodes. Nanoscale 10(41), 19322–19329 (2018). https://doi.org/10.1039/c8nr04896g
- Y.C. Kim, H.J. An, D.H. Kim, J.M. Myoung, Y.J. Heo et al., High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents. Adv. Funct. Mater. 31(5), 2005553 (2021). https://doi.org/10.1002/adfm.202005553
- Y. Liu, L.K. Ono, G. Tong, H. Zhang, Y. Qi, Two-dimensional Dion-Jacobson structure perovskites for efficient sky-blue light-emitting diodes. ACS Energy Lett. 6(3), 908–914 (2021). https://doi.org/10.1021/acsenergylett.1c00129
- F. Wang, Z. Wang, W. Sun, Z. Wang, Y. Bai et al., High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-ligand strategy. Small 16(32), 2002940 (2020). https://doi.org/10.1002/smll.202002940
- Z. Ren, L. Li, J. Yu, R. Ma, X. Xiao et al., Simultaneous low-order phase suppression and defect passivation for efficient and stable blue light-emitting diodes. ACS Energy Lett. 5(8), 2569–2579 (2020). https://doi.org/10.1021/acsenergylett.0c01015
- S. Zeng, S. Shi, S. Wang, Y. Xiao, Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. J. Mater. Chem. C 8(4), 1319–1325 (2020). https://doi.org/10.1039/C9TC05590H
- Y. Jin, Z.K. Wang, S. Yuan, Q. Wang, C. Qin et al., Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 30(6), 1908339 (2019). https://doi.org/10.1002/adfm.201908339
- C. Wang, D. Han, J. Wang, Y. Yang, X. Liu et al., Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 11(1), 6428 (2020). https://doi.org/10.1038/s41467-020-20163-7
- F. Zhang, B. Cai, J. Song, B. Han, B. Zhang et al., Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv. Funct. Mater. 30(27), 2001732 (2020). https://doi.org/10.1002/adfm.202001732
- Z. Chu, Q. Ye, Y. Zhao, F. Ma, Z. Yin et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 33(18), e2007169 (2021). https://doi.org/10.1002/adma.202007169
- Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591(7848), 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
- F. Yuan, C. Ran, L. Zhang, H. Dong, B. Jiao et al., A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Lett. 5(4), 1062–1069 (2020). https://doi.org/10.1021/acsenergylett.9b02562
- M. Worku, Q. He, L. Xu, J. Hong, R.X. Yang et al., Phase control and in situ passivation of quasi-2D metal halide perovskites for spectrally stable blue light-emitting diodes. ACS Appl. Mater. Interfaces 12(40), 45056–45063 (2020). https://doi.org/10.1021/acsami.0c12451
- F. Zhang, X. Zhang, C. Wang, M. Sun, X. Luo et al., Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy 79, 105486 (2021). https://doi.org/10.1016/j.nanoen.2020.105486
- T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12(11), 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
- K. Lin, J. Xing, L.N. Quan, F. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- C.H.A. Li, Z. Zhou, P. Vashishtha, J.E. Halpert, The future is blue (LEDs): why chemistry is the key to perovskite displays. Chem. Mater. 31(16), 6003–6032 (2019). https://doi.org/10.1021/acs.chemmater.9b01650
- Z. Wang, T. Cheng, F. Wang, S. Dai, Z. Tan, Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures. Small 12(32), 4412–4420 (2016). https://doi.org/10.1002/smll.201601785
- X. Tang, M. van den Berg, E. Gu, A. Horneber, G.J. Matt et al., Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18(3), 2172–2178 (2018). https://doi.org/10.1021/acs.nanolett.8b00505
- A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce et al., Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15(9), 6095–6101 (2015). https://doi.org/10.1021/acs.nanolett.5b02369
- W. Van der Stam, J.J. Geuchies, T. Altantzis, K.H.W. Van Den Bos, J.D. Meeldijk et al., Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139(11), 4087–4097 (2017). https://doi.org/10.1021/jacs.6b13079
- C. Bi, S. Wang, Q. Li, S.V. Kershaw, J. Tian et al., Thermally stable Copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 10(5), 943–952 (2019). https://doi.org/10.1021/acs.jpclett.9b00290
- S. Hou, M.K. Gangishetty, Q. Quan, D.N. Congreve, Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2(11), 2421–2433 (2018). https://doi.org/10.1016/j.joule.2018.08.005
- M. Liu, G. Zhong, Y. Yin, J. Miao, K. Li et al., Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 4(11), 1700335 (2017). https://doi.org/10.1002/advs.201700335
- H. Kim, J.S. Kim, J.M. Heo, M. Pei, I.H. Park et al., Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11(1), 3378 (2020). https://doi.org/10.1038/s41467-020-17072-0
- A.A. Sutanto, R. Szostak, N. Drigo, V. Queloz, P.E. Marchezi et al., In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces. Nano Lett. 20(5), 3992–3998 (2020). https://doi.org/10.1021/acs.nanolett.0c01271
- J.C. Yu, D.W. Kim, D.B. Kim, E.D. Jung, J.H. Park et al., Improving the stability and performance of perovskite light-emitting diodes by thermal annealing treatment. Adv. Mater. 28(32), 6906–6913 (2016). https://doi.org/10.1002/adma.201601105
- A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247–251 (2016). https://doi.org/10.1038/nmat4572
- H. Liang, F. Yuan, A. Johnston, C. Gao, H. Choubisa et al., High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Adv. Sci. 7(8), 1903213 (2020). https://doi.org/10.1002/advs.201903213
- K. Wang, L. Jin, Y. Gao, A. Liang, B.P. Finkenauer et al., Lead-free organic-perovskite hybrid quantum wells for highly stable light-emitting diodes. ACS Nano 15(4), 6316–6325 (2021). https://doi.org/10.1021/acsnano.1c00872
- A. Singh, N. Chiu, K.M. Boopathi, Y. Lu, A. Mohapatra et al., Lead-free antimony-based light-emitting diodes through the vapor-anion-exchange method. ACS Appl. Mater. Interfaces 11(38), 35088–35094 (2019). https://doi.org/10.1021/acsami.9b10602
- Z. Ma, Z. Shi, D. Yang, F. Zhang, S. Li et al., Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5(2), 385–394 (2020). https://doi.org/10.1021/acsenergylett.9b02096
References
X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
K. Yang, F. Li, H. Hu, T. Guo, T.W. Kim, Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy 65, 104029 (2019). https://doi.org/10.1016/j.nanoen.2019.104029
J.E. Jeong, J.H. Park, C.H. Jang, M.H. Song, H.Y. Woo, Multifunctional charge transporting materials for perovskite light-emitting diodes. Adv. Mater. 32(51), 2002176 (2020). https://doi.org/10.1002/adma.202002176
T.H. Han, S. Tan, J. Xue, L. Meng, J.W. Lee et al., Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 31(47), e1803515 (2019). https://doi.org/10.1002/adma.201803515
R. Zeng, K. Bai, Q. Wei, T. Chang, J. Yan et al., Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Res. 14(5), 1551–1558 (2021). https://doi.org/10.1007/s12274-020-3214-x
L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11(1), 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
W. Liu, N. Liu, S. Ji, H. Hua, Y. Ma et al., Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 12(1), 119 (2020). https://doi.org/10.1007/s40820-020-00457-7
X. Zhou, L. Qiu, R. Fan, J. Zhang, S. Hao et al., Heterojunction incorporating perovskite and microporous metal-organic framework nanocrystals for efficient and stable solar cells. Nano-Micro Lett. 12(1), 80 (2020). https://doi.org/10.1007/s40820-020-00417-1
M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony et al., Spray pyrolyzed TiO2 embedded multi-layer front contact design for high-efficiency perovskite solar cells. Nano-Micro Lett. 13(1), 36 (2021). https://doi.org/10.1007/s40820-020-00559-2
S. Fu, X. Li, L. Wan, W. Zhang, W. Song et al., Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett. 12(1), 170 (2020). https://doi.org/10.1007/s40820-020-00509-y
K. Ji, M. Anaya, A. Abfalterer, S.D. Stranks, Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. (2021). https://doi.org/10.1002/adom.202002128
B. Ke, R. Zeng, Z. Zhao, Q. Wei, X. Xue et al., Homo- and heterovalent doping-mediated self-trapped exciton emission and energy transfer in Mn-doped Cs2Na1-xAgxBiCl6 double perovskites. J. Phys. Chem. Lett. 11(1), 340–348 (2020). https://doi.org/10.1021/acs.jpclett.9b03387
J. Huang, T. Chang, R. Zeng, J. Yan, Q. Wei et al., Controlled structural transformation in Sb-doped indium halides A3InCl and A2InCl5∙H2O yields reversible green-to-yellow emission switch. Adv. Opt. Mater. (2021). https://doi.org/10.1002/adom.202002267
R. Zeng, L. Zhang, Y. Xue, B. Ke, Z. Zhao et al., Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 11(6), 2053–2061 (2020). https://doi.org/10.1021/acs.jpclett.0c00330
K. Liao, C. Li, L. Xie, Y. Yuan, S. Wang et al., Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance. Nano-Micro Lett. 12(1), 1–22 (2020). https://doi.org/10.1007/s40820-020-00494-2
X. Wang, L. Wang, T. Shan, S. Leng, H. Zhong et al., Low-temperature aging provides 22% efficient bromine-free and passivation layer-free planar perovskite solar cells. Nano-Micro Lett. 12(1), 84 (2020). https://doi.org/10.1007/s40820-020-00418-0
P. Fu, S. Hu, J. Tang, Z. Xiao, Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Front. Optoelect. (2021). https://doi.org/10.1007/s12200-021-1227-z
C. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei et al., High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12(1), 2207 (2021). https://doi.org/10.1038/s41467-021-22529-x
D. Wang, D. Wu, D. Dong, W. Chen, J. Hao et al., Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 8(22), 11565–11570 (2016). https://doi.org/10.1039/c6nr01915c
H. Shi, X. Zhang, X. Sun, X. Zhang, Phonon mode transformation in size-evolved solution-processed inorganic lead halide perovskite. Nanoscale 10(21), 9892–9898 (2018). https://doi.org/10.1039/c7nr09101j
T.L. Leung, H.W. Tam, F. Liu, J. Lin, A.M.C. Ng et al., Mixed spacer cation stabilization of blue-emitting n = 2 Ruddlesden-Popper organic-inorganic halide perovskite films. Adv. Opt. Mater. 8(4), 1901679 (2020). https://doi.org/10.1002/adom.201901679
H.L. Wells, On the caesium- and the potassium-lead halides. Am. J. Sci. s3–45(266), 121–134 (1893). https://doi.org/10.2475/ajs.s3-45.266.121
D. Weber, CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B 33(12), 1443–1445 (1978). https://doi.org/10.1515/znb-1978-1214
D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Conducting tin halides with a layered organic-based perovskite structure. Nature 369(6480), 467–469 (1994). https://doi.org/10.1038/369467a0
D.B. Mitzi, S. Wang, C.A. Feild, C.A. Chess, A.M. Guloy, Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 267(5203), 1473–1476 (1995). https://doi.org/10.1126/science.267.5203.1473
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
Z. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
C. Lan, Z. Zhou, R. Wei, J.C. Ho, Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy 11, 61–82 (2019). https://doi.org/10.1016/j.mtener.2018.10.008
Z. Wang, F. Wang, B. Zhao, S. Qu, T. Hayat et al., Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy. J. Phys. Chem. Lett. 11(3), 1120–1127 (2020). https://doi.org/10.1021/acs.jpclett.9b03565
S. Yuan, Z.K. Wang, L.X. Xiao, C.F. Zhang, S.Y. Yang et al., Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 31(44), e1904319 (2019). https://doi.org/10.1002/adma.201904319
Y. Huang, Y. Li, E.L. Lim, T. Kong, Y. Zhang et al., Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J. Am. Chem. Soc. 143(10), 3911–3917 (2021). https://doi.org/10.1021/jacs.0c13087
P. Liu, N. Han, W. Wang, R. Ran, W. Zhou, Z. Shao, High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 33(10), e2002582 (2021). https://doi.org/10.1002/adma.202002582
H. Kim, M. Pei, Y. Lee, A.A. Sutanto, S. Paek et al., Self-crystallized multifunctional 2D perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 30(19), 1910620 (2020). https://doi.org/10.1002/adfm.201910620
J. Lee, Z. Dai, T. Han, C. Choi, S. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3010–3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
J. Wang, J. Li, S. Lan, C. Fang, H. Shen et al., Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 13(5), 5473–5484 (2019). https://doi.org/10.1021/acsnano.9b00259
F. Zhou, I. Abdelwahab, K. Leng, K.P. Loh, W. Ji, 2D perovskites with giant excitonic optical nonlinearities for high-Performance sub-bandgap photodetection. Adv. Mater. 31(48), e1904155 (2019). https://doi.org/10.1002/adma.201904155
C. Qin, A. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang et al., Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585(7823), 53–57 (2020). https://doi.org/10.1038/s41586-020-2621-1
H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao et al., 2D Ruddlesden-Popper perovskites microring laser array. Adv. Mater. 30(15), e1706186 (2018). https://doi.org/10.1002/adma.201706186
S. Chou, R. Ma, Y. Li, F. Zhao, K. Tong et al., Transparent perovskite light-emitting touch-responsive device. ACS Nano 11(11), 11368–11375 (2017). https://doi.org/10.1021/acsnano.7b05935
M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
Y. Liu, Z. Yu, S. Chen, J.H. Park, E.D. Jung et al., Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy 80, 105511 (2021). https://doi.org/10.1016/j.nanoen.2020.105511
B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
F. Meng, X. Liu, Y. Chen, X. Cai, M. Li et al., Co-interlayer engineering toward efficient green quasi-two-dimensional perovskite light-emitting diodes. Adv. Funct. Mater. 30(19), 1910167 (2020). https://doi.org/10.1002/adfm.201910167
C. Liang, D. Zhao, Y. Li, X. Li, S. Peng et al., Ruddlesden-Popper perovskite for stable solar cells. Energy Environ. Mater. 1(4), 221–231 (2018). https://doi.org/10.1002/eem2.12022
O. Nazarenko, M.R. Kotyrba, S. Yakunin, M. Aebli, G. Raino et al., Guanidinium-formamidinium lead iodide: a layered perovskite-related compound with red luminescence at room temperature. J. Am. Chem. Soc. 140(11), 3850–3853 (2018). https://doi.org/10.1021/jacs.8b00194
C. Ortiz Cervantes, P. Carmona Monroy, D. Solis Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
T. Hu, M.D. Smith, E.R. Dohner, M.J. Sher, X. Wu et al., Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 7(12), 2258–2263 (2016). https://doi.org/10.1021/acs.jpclett.6b00793
L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
Z. Tan, J. Luo, L. Yang, X. Li, Z. Deng et al., Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv. Opt. Mater. 8(2), 1901094 (2020). https://doi.org/10.1002/adom.201901094
Y. Shen, J. Yin, B. Cai, Z. Wang, Y. Dong et al., Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots. Nanoscale Horiz. 5(3), 580–585 (2020). https://doi.org/10.1039/C9NH00685K
M. Shi, G. Li, W. Tian, S. Jin, X. Tao et al., Understanding the effect of crystalline structural transformation for lead-free inorganic halide perovskites. Adv. Mater. 32(31), 2002137 (2020). https://doi.org/10.1002/adma.202002137
J. Pal, S. Manna, A. Mondal, S. Das, K.V. Adarsh, A. Nag, Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites. Angew. Chem. Int. Ed. 56(45), 14187–14191 (2017). https://doi.org/10.1002/anie.201709040
A. Johnston, F. Dinic, P. Todorović, B. Chen, L.K. Sagar et al., Narrow emission from Rb3Sb2I9 nanoparticles. Adv. Opt. Mater. 8(1), 1901606 (2020). https://doi.org/10.1002/adom.201901606
Y. Liu, Y. Zhang, Z. Yang, J. Cui, H. Wu et al., Large lead-free perovskite single crystal for high-performance coplanar x-ray imaging applications. Adv. Opt. Mater. 8(19), 2000814 (2020). https://doi.org/10.1002/adom.202000814
G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8(1), 14558 (2017). https://doi.org/10.1038/ncomms14558
J. Liu, J. Leng, K. Wu, J. Zhang, S. Jin, Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139(4), 1432–1435 (2017). https://doi.org/10.1021/jacs.6b12581
C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6(1), 38–45 (2021). https://doi.org/10.1038/s41560-020-00721-5
A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley, E.H. Sargent, Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140(8), 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
J.T. Lin, D.G. Chen, C.H. Wu, C.S. Hsu, C.Y. Chien et al., A universal approach for controllable synthesis of n-specific layered 2D perovskite nanoplates. Angew. Chem. Int. Ed. 60(14), 7866–7872 (2021). https://doi.org/10.1002/anie.202016140
W. Li, C. Fang, H. Wang, S. Wang, J. Li et al., Surface depletion field in 2D perovskite microplates: structural phase transition, quantum confinement and Stark effect. Nano Res. 12(11), 2858–2865 (2019). https://doi.org/10.1007/s12274-019-2524-3
Y. Gao, E. Shi, S. Deng, S.B. Shiring, J.M. Snaider et al., Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 13(3), 290 (2021). https://doi.org/10.1038/s41557-020-0521-5
L. Cheng, T. Jiang, Y. Cao, C. Yi, N. Wang et al., Multiple-quantum-well perovskites for high-performance light-emitting diodes. Adv. Mater. 32(15), e1904163 (2020). https://doi.org/10.1002/adma.201904163
T. Chang, Q. Wei, R. Zeng, S. Cao, J. Zhao et al., Efficient energy transfer in Te(4+)-doped Cs2ZrCl6 vacancy-ordered perovskites and ultrahigh moisture stability via A-site Rb-alloying strategy. J. Phys. Chem. Lett. 12(7), 1829–1837 (2021). https://doi.org/10.1021/acs.jpclett.1c00255
H. Wang, X. Gong, D. Zhao, Y. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
L.M. Herz, Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016). https://doi.org/10.1146/annurev-physchem-040215-112222
Y.H. Kim, J.S. Kim, T.W. Lee, Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Adv. Mater. 31(47), e1804595 (2019). https://doi.org/10.1002/adma.201804595
S.D. Stranks, R. Hoye, D. Di, R.H. Friend, F. Deschler, The physics of light emission in halide perovskite devices. Adv. Mater. 31(47), e1803336 (2019). https://doi.org/10.1002/adma.201803336
X. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang et al., Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12(1), 336 (2021). https://doi.org/10.1038/s41467-020-20555-9
R. Li, C. Yi, R. Ge, W. Zou, L. Cheng et al., Room-temperature electroluminescence from two-dimensional lead halide perovskites. Appl. Phys. Lett. 109(15), 151101 (2016). https://doi.org/10.1063/1.4964413
X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini et al., Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17(6), 550–556 (2018). https://doi.org/10.1038/s41563-018-0081-x
D. Ma, Y. Fu, L. Dang, J. Zhai, I.A. Guzei, S. Jin, Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics. Nano Res. 10(6), 2117–2129 (2017). https://doi.org/10.1007/s12274-016-1401-6
K. Zhang, N. Zhu, M. Zhang, L. Wang, J. Xing, Opportunities and challenges in perovskite LED commercialization. J. Mater. Chem. C 9(11), 3795–3799 (2021). https://doi.org/10.1039/D1TC00232E
Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun et al., High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33(1), e2005570 (2021). https://doi.org/10.1002/adma.202005570
P. Pang, G. Jin, C. Liang, B. Wang, W. Xiang et al., Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 14(9), 11420–11430 (2020). https://doi.org/10.1021/acsnano.0c03765
Y. Shang, Y. Liao, Q. Wei, Z. Wang, B. Xiang et al., Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv. 5(8), w8072 (2019). https://doi.org/10.1126/sciadv.aaw8072
Y. Shi, W. Wu, H. Dong, G. Li, K. Xi et al., A strategy for architecture design of crystalline perovskite light-emitting diodes with high performance. Adv. Mater. 30(25), 1800251 (2018). https://doi.org/10.1002/adma.201800251
J. Wang, N. Wang, Y. Jin, J. Si, Z. Tan et al., Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27(14), 2311–2316 (2015). https://doi.org/10.1002/adma.201405217
Z. Chen, C. Zhang, X.F. Jiang, M. Liu, R. Xia et al., High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. (2017). https://doi.org/10.1002/adma.201603157
Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
Z. Li, Z. Chen, Y. Yang, Q. Xue, H.L. Yip et al., Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nat. Commun. 10(1), 1027 (2019). https://doi.org/10.1038/s41467-019-09011-5
M. Lu, Y. Zhang, S. Wang, J. Guo, W.W. Yu et al., Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv. Funct. Mater. 29(30), 1902008 (2019). https://doi.org/10.1002/adfm.201902008
Y. Shirasaki, G.J. Supran, W.A. Tisdale, V. Bulovic, Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Phys. Rev. Lett. 110(21), 217403 (2013). https://doi.org/10.1103/PhysRevLett.110.217403
L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11(1), 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
Y. Dong, Y.K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15(8), 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
A. Fakharuddin, W. Qiu, G. Croes, A. Devižis, R. Gegevičius et al., Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv. Funct. Mater. 29(37), 1904101 (2019). https://doi.org/10.1002/adfm.201904101
Y. Sun, Q. Su, H. Zhang, F. Wang, S. Zhang et al., Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13(10), 11433–11442 (2019). https://doi.org/10.1021/acsnano.9b04879
W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9(1), 608 (2018). https://doi.org/10.1038/s41467-018-03049-7
Z. Chen, Z. Li, C. Zhang, X.F. Jiang, D. Chen et al., Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30(38), e1801370 (2018). https://doi.org/10.1002/adma.201801370
M. Lu, J. Guo, S. Sun, P. Lu, J. Wu et al., Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 20(4), 2829–2836 (2020). https://doi.org/10.1021/acs.nanolett.0c00545
M.U. Ali, J. Miao, J. Cai, D.F. Perepichka, H. Yang et al., Boosting efficiency and curtailing the efficiency roll-off in green perovskite light-emitting diodes via incorporating ytterbium as cathode interface layer. ACS Appl. Mater. Interfaces 12(16), 18761–18768 (2020). https://doi.org/10.1021/acsami.0c00950
Y. Wang, Y. Teng, P. Lu, X. Shen, P. Jia et al., Low roll-off perovskite quantum dot light-emitting diodes achieved by augmenting hole mobility. Adv. Funct. Mater. 30(19), 1910140 (2020). https://doi.org/10.1002/adfm.201910140
X. Zhang, C. Sun, Y. Zhang, H. Wu, C. Ji et al., Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 7(22), 4602–4610 (2016). https://doi.org/10.1021/acs.jpclett.6b02073
I.D. Parker, Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys. 75(3), 1656–1666 (1994). https://doi.org/10.1063/1.356350
T. Han, M. Choi, S. Woo, S. Min, C. Lee, T. Lee, Molecularly controlled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes. Adv. Mater. 24(11), 1487–1493 (2012). https://doi.org/10.1002/adma.201104316
J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28(34), 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
X. Zhang, W. Yin, W. Zheng, A.L. Rogach, Perovskite quantum dots with atomic crystal shells for light-emitting diodes with low efficiency roll-off. ACS Energy Lett. 5(9), 2927–2934 (2020). https://doi.org/10.1021/acsenergylett.0c01560
X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16(2), 1415–1420 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
C. Zou, Y. Liu, D.S. Ginger, L.Y. Lin, Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14(5), 6076–6086 (2020). https://doi.org/10.1021/acsnano.0c01817
L.N. Quan, Y. Zhao, F.P. García De Arquer, R. Sabatini, G. Walters et al., Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17(6), 3701–3709 (2017). https://doi.org/10.1021/acs.nanolett.7b00976
V.V. Klimov, A.A. Mikhailovsky, D.W. Mcbranch, C.A. Leatherdale, M.G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287(5455), 1011–1013 (2000). https://doi.org/10.1126/science.287.5455.1011
R.L. Milot, R.J. Sutton, G.E. Eperon, A.A. Haghighirad, H.J. Martinez et al., Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Lett. 16(11), 7001–7007 (2016). https://doi.org/10.1021/acs.nanolett.6b03114
W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13(6), 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
Y. Vaynzof, The future of perovskite photovoltaics-thermal evaporation or solution processing? Adv. Energy Mater. 10(48), 2003073 (2020). https://doi.org/10.1002/aenm.202003073
X. Cao, L. Zhi, Y. Jia, Y. Li, K. Zhao et al., A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 11(8), 7639–7654 (2019). https://doi.org/10.1021/acsami.8b16315
X. Shi, Y. Liu, Z. Yuan, X. Liu, Y. Miao et al., Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6(17), 1800667 (2018). https://doi.org/10.1002/adom.201800667
M.M. Tavakoli, P. Yadav, D. Prochowicz, M. Sponseller, A. Osherov et al., Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv. Energy Mater. 9(17), 1803587 (2019). https://doi.org/10.1002/aenm.201803587
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555(7697), 497–501 (2018). https://doi.org/10.1038/nature25989
S.D. Stranks, Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2(7), 1515–1525 (2017). https://doi.org/10.1021/acsenergylett.7b00239
S. Lee, D.B. Kim, J.C. Yu, C.H. Jang, J.H. Park et al., Versatile defect passivation methods for metal halide perovskite materials and their application to light-emitting devices. Adv. Mater. 31(20), 1805244 (2018). https://doi.org/10.1002/adma.201805244
F. Yuan, X. Zheng, A. Johnston, Y. Wang, C. Zhou et al., Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv. 6(42), b253 (2020). https://doi.org/10.1126/sciadv.abb0253
T. Cheng, C. Qin, S. Watanabe, T. Matsushima, C. Adachi, Stoichiometry control for the tuning of grain passivation and domain distribution in green quasi-2D metal halide perovskite films and light-emitting diodes. Adv. Funct. Mater. 30(24), 2001816 (2020). https://doi.org/10.1002/adfm.202001816
L. Jhuang, G. Kumar, F. Chen, Localized surface plasmon resonance of copper nanoparticles improves the performance of quasi-two-dimensional perovskite light-emitting diodes. Dyes Pigments 188, 109204 (2021). https://doi.org/10.1016/j.dyepig.2021.109204
L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. (2021). https://doi.org/10.1038/s41377-021-00501-0
J. Xing, Y. Zhao, M. Askerka, L.N. Quan, X. Gong et al., Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9(1), 3541 (2018). https://doi.org/10.1038/s41467-018-05909-8
D.B. Kim, S. Lee, C.H. Jang, J.H. Park, A.Y. Lee, M.H. Song, Uniform and large-area cesium-based quasi-2D perovskite light-emitting diodes using hot-casting method. Adv. Mater. Interfaces 7(8), 1902158 (2020). https://doi.org/10.1002/admi.201902158
Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng et al., Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10(1), 5633 (2019). https://doi.org/10.1038/s41467-019-13580-w
L. Zhang, T. Jiang, C. Yi, J. Wu, X. Liu et al., Bright free exciton electroluminescence from Mn-doped two-dimensional layered perovskites. J. Phys. Chem. Lett. 10(11), 3171–3175 (2019). https://doi.org/10.1021/acs.jpclett.9b01326
Z. He, Y. Liu, Z. Yang, J. Li, J. Cui et al., High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics 6(3), 587–594 (2019). https://doi.org/10.1021/acsphotonics.8b01435
H. Tsai, C. Liu, E. Kinigstein, M. Li, S. Tretiak et al., Critical role of organic spacers for bright 2D layered perovskites light-emitting diodes. Adv. Sci. 7(7), 1903202 (2020). https://doi.org/10.1002/advs.201903202
M. Yu, C. Yi, N. Wang, L. Zhang, R. Zou et al., Control of barrier width in perovskite multiple quantum wells for high performance green light-emitting diodes. Adv. Opt. Mater. 7(3), 1801575 (2019). https://doi.org/10.1002/adom.201801575
K. Zheng, Y. Chen, Y. Sun, J. Chen, P. Chábera et al., Inter-phase charge and energy transfer in Ruddlesden-Popper 2D perovskites: Critical role of the spacing cations. J. Mater. Chem. A 6(15), 6244–6250 (2018). https://doi.org/10.1039/C8TA01518J
L. Zhu, D. Liu, J. Wang, N. Wang, Large organic cations in quasi-2D perovskites for high-performance light-emitting diodes. J. Phys. Chem. Lett. 11(20), 8502–8510 (2020). https://doi.org/10.1021/acs.jpclett.0c02476
J. Mao, H. Lin, F. Ye, M. Qin, J.M. Burkhartsmeyer et al., All-perovskite emission architecture for white light-emitting diodes. ACS Nano 12(10), 10486–10492 (2018). https://doi.org/10.1021/acsnano.8b06196
Z. Ren, X. Xiao, R. Ma, H. Lin, K. Wang et al., Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv. Funct. Mater. 29(43), 1905339 (2019). https://doi.org/10.1002/adfm.201905339
P. Chen, Y. Meng, M. Ahmadi, Q. Peng, C. Gao et al., Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy 50, 615–622 (2018). https://doi.org/10.1016/j.nanoen.2018.06.008
Z. Wang, F. Wang, W. Sun, R. Ni, S. Hu et al., Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 28(47), 1804187 (2018). https://doi.org/10.1002/adfm.201804187
P. Vashishtha, M. Ng, S.B. Shivarudraiah, J.E. Halpert, High efficiency blue and green light-emitting diodes using Ruddlesden-Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31(1), 83–89 (2019). https://doi.org/10.1021/acs.chemmater.8b02999
S. Lee, D.B. Kim, I. Hamilton, M. Daboczi, Y.S. Nam et al., Control of interface defects for efficient and stable quasi-2D perovskite light-emitting diodes using nickel oxide hole injection layer. Adv. Sci. 5(11), 1801350 (2018). https://doi.org/10.1002/advs.201801350
Q. Zhang, M.M. Tavakoli, L. Gu, D. Zhang, L. Tang et al., Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10(1), 727 (2019). https://doi.org/10.1038/s41467-019-08561-y
L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12(1), 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
M. You, H. Wang, F. Cao, C. Zhang, T. Zhang et al., Improving efficiency and stability in quasi-2D perovskite light-emitting diodes by a multifunctional LiF interlayer. ACS Appl. Mater. Interfaces 12(38), 43018–43023 (2020). https://doi.org/10.1021/acsami.0c11762
N. Yantara, A. Bruno, A. Iqbal, N.F. Jamaludin, C. Soci et al., Designing efficient energy funneling kinetics in Ruddlesden-Popper perovskites for high-performance light-emitting diodes. Adv. Mater. 30(33), 1800818 (2018). https://doi.org/10.1002/adma.201800818
X.Y. Chin, A. Perumal, A. Bruno, N. Yantara, S.A. Veldhuis et al., Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energ. Environ. Sci. 11(7), 1770–1778 (2018). https://doi.org/10.1039/C8EE00293B
X. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang et al., Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energy Lett. 4(1), 242–248 (2019). https://doi.org/10.1021/acsenergylett.8b02239
Y.F. Ng, B. Febriansyah, N.F. Jamaludin, D. Giovanni, N. Yantara et al., Design of 2D templating molecules for mixed-dimensional perovskite light-emitting diodes. Chem. Mater. 32(19), 8097–8105 (2020). https://doi.org/10.1021/acs.chemmater.0c00513
P. Cai, X. Wang, H.J. Seo, X. Yan, Bluish-white-light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbCl2Br2. Appl. Phys. Lett. 112(15), 153901 (2018). https://doi.org/10.1063/1.5023797
Z. Chu, Y. Zhao, F. Ma, C.X. Zhang, H. Deng et al., Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat. Commun. 11(1), 4165 (2020). https://doi.org/10.1038/s41467-020-17943-6
X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-02978-7
Y. Jiang, C. Qin, M. Cui, T. He, K. Liu et al., Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10(1), 1868 (2019). https://doi.org/10.1038/s41467-019-09794-7
J.H. Warby, B. Wenger, A.J. Ramadan, R.D.J. Oliver, H.C. Sansom et al., Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano 14(7), 8855–8865 (2020). https://doi.org/10.1021/acsnano.0c03516
X. Yang, Z. Chu, J. Meng, Z. Yin, X. Zhang et al., Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite-based light-emitting diodes. J. Phys. Chem. Lett. 10(11), 2892–2897 (2019). https://doi.org/10.1021/acs.jpclett.9b00910
W. Deng, X. Jin, Y. Lv, X. Zhang, X. Zhang, J. Jie, 2D Ruddlesden-Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv. Funct. Mater. 29(40), 1903861 (2019). https://doi.org/10.1002/adfm.201903861
C. Qin, T. Matsushima, W.J. Potscavage, A.S.D. Sandanayaka, M.R. Leyden et al., Triplet management for efficient perovskite light-emitting diodes. Nat. Photonics 14(2), 70–75 (2019). https://doi.org/10.1038/s41566-019-0545-9
B. Han, S. Yuan, T. Fang, F. Zhang, Z. Shi et al., Novel lewis base cyclam self-passivation of perovskites without an anti-solvent process for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 12(12), 14224–14232 (2020). https://doi.org/10.1021/acsami.0c02768
Y. Wang, D. Ma, F. Yuan, K. Singh, J.M. Pina et al., Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nat. Commun. 11(1), 3674 (2020). https://doi.org/10.1038/s41467-020-17482-0
D. Ma, P. Todorovic, S. Meshkat, M.I. Saidaminov, Y. Wang et al., Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142(11), 5126–5134 (2020). https://doi.org/10.1021/jacs.9b12323
J. Si, Y. Liu, Z. He, H. Du, K. Du et al., Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 11(11), 11100–11107 (2017). https://doi.org/10.1021/acsnano.7b05191
Y. Liu, J. Cui, K. Du, H. Tian, Z. He et al., Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13(11), 760–764 (2019). https://doi.org/10.1038/s41566-019-0505-4
D. Cortecchia, W. Mróz, S. Neutzner, T. Borzda, G. Folpini et al., Defect engineering in 2D perovskite by Mn(II) doping for light-emitting applications. Chemistry 5(8), 2146–2158 (2019). https://doi.org/10.1016/j.chempr.2019.05.018
J. Chang, S. Zhang, N. Wang, Y. Sun, Y. Wei et al., Enhanced performance of red perovskite light-emitting diodes through the dimensional tailoring of perovskite multiple quantum wells. J. Phys. Chem. Lett. 9(4), 881–886 (2018). https://doi.org/10.1021/acs.jpclett.7b03417
T. Wu, Y. Yang, Y. Zou, Y. Wang, C. Wu et al., Nanoplatelet modulation in 2D/3D perovskite targeting efficient light-emitting diodes. Nanoscale 10(41), 19322–19329 (2018). https://doi.org/10.1039/c8nr04896g
Y.C. Kim, H.J. An, D.H. Kim, J.M. Myoung, Y.J. Heo et al., High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents. Adv. Funct. Mater. 31(5), 2005553 (2021). https://doi.org/10.1002/adfm.202005553
Y. Liu, L.K. Ono, G. Tong, H. Zhang, Y. Qi, Two-dimensional Dion-Jacobson structure perovskites for efficient sky-blue light-emitting diodes. ACS Energy Lett. 6(3), 908–914 (2021). https://doi.org/10.1021/acsenergylett.1c00129
F. Wang, Z. Wang, W. Sun, Z. Wang, Y. Bai et al., High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-ligand strategy. Small 16(32), 2002940 (2020). https://doi.org/10.1002/smll.202002940
Z. Ren, L. Li, J. Yu, R. Ma, X. Xiao et al., Simultaneous low-order phase suppression and defect passivation for efficient and stable blue light-emitting diodes. ACS Energy Lett. 5(8), 2569–2579 (2020). https://doi.org/10.1021/acsenergylett.0c01015
S. Zeng, S. Shi, S. Wang, Y. Xiao, Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. J. Mater. Chem. C 8(4), 1319–1325 (2020). https://doi.org/10.1039/C9TC05590H
Y. Jin, Z.K. Wang, S. Yuan, Q. Wang, C. Qin et al., Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 30(6), 1908339 (2019). https://doi.org/10.1002/adfm.201908339
C. Wang, D. Han, J. Wang, Y. Yang, X. Liu et al., Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 11(1), 6428 (2020). https://doi.org/10.1038/s41467-020-20163-7
F. Zhang, B. Cai, J. Song, B. Han, B. Zhang et al., Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv. Funct. Mater. 30(27), 2001732 (2020). https://doi.org/10.1002/adfm.202001732
Z. Chu, Q. Ye, Y. Zhao, F. Ma, Z. Yin et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 33(18), e2007169 (2021). https://doi.org/10.1002/adma.202007169
Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591(7848), 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
F. Yuan, C. Ran, L. Zhang, H. Dong, B. Jiao et al., A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Lett. 5(4), 1062–1069 (2020). https://doi.org/10.1021/acsenergylett.9b02562
M. Worku, Q. He, L. Xu, J. Hong, R.X. Yang et al., Phase control and in situ passivation of quasi-2D metal halide perovskites for spectrally stable blue light-emitting diodes. ACS Appl. Mater. Interfaces 12(40), 45056–45063 (2020). https://doi.org/10.1021/acsami.0c12451
F. Zhang, X. Zhang, C. Wang, M. Sun, X. Luo et al., Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy 79, 105486 (2021). https://doi.org/10.1016/j.nanoen.2020.105486
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12(11), 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
K. Lin, J. Xing, L.N. Quan, F. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
C.H.A. Li, Z. Zhou, P. Vashishtha, J.E. Halpert, The future is blue (LEDs): why chemistry is the key to perovskite displays. Chem. Mater. 31(16), 6003–6032 (2019). https://doi.org/10.1021/acs.chemmater.9b01650
Z. Wang, T. Cheng, F. Wang, S. Dai, Z. Tan, Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures. Small 12(32), 4412–4420 (2016). https://doi.org/10.1002/smll.201601785
X. Tang, M. van den Berg, E. Gu, A. Horneber, G.J. Matt et al., Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18(3), 2172–2178 (2018). https://doi.org/10.1021/acs.nanolett.8b00505
A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce et al., Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15(9), 6095–6101 (2015). https://doi.org/10.1021/acs.nanolett.5b02369
W. Van der Stam, J.J. Geuchies, T. Altantzis, K.H.W. Van Den Bos, J.D. Meeldijk et al., Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139(11), 4087–4097 (2017). https://doi.org/10.1021/jacs.6b13079
C. Bi, S. Wang, Q. Li, S.V. Kershaw, J. Tian et al., Thermally stable Copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 10(5), 943–952 (2019). https://doi.org/10.1021/acs.jpclett.9b00290
S. Hou, M.K. Gangishetty, Q. Quan, D.N. Congreve, Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2(11), 2421–2433 (2018). https://doi.org/10.1016/j.joule.2018.08.005
M. Liu, G. Zhong, Y. Yin, J. Miao, K. Li et al., Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 4(11), 1700335 (2017). https://doi.org/10.1002/advs.201700335
H. Kim, J.S. Kim, J.M. Heo, M. Pei, I.H. Park et al., Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11(1), 3378 (2020). https://doi.org/10.1038/s41467-020-17072-0
A.A. Sutanto, R. Szostak, N. Drigo, V. Queloz, P.E. Marchezi et al., In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces. Nano Lett. 20(5), 3992–3998 (2020). https://doi.org/10.1021/acs.nanolett.0c01271
J.C. Yu, D.W. Kim, D.B. Kim, E.D. Jung, J.H. Park et al., Improving the stability and performance of perovskite light-emitting diodes by thermal annealing treatment. Adv. Mater. 28(32), 6906–6913 (2016). https://doi.org/10.1002/adma.201601105
A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247–251 (2016). https://doi.org/10.1038/nmat4572
H. Liang, F. Yuan, A. Johnston, C. Gao, H. Choubisa et al., High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Adv. Sci. 7(8), 1903213 (2020). https://doi.org/10.1002/advs.201903213
K. Wang, L. Jin, Y. Gao, A. Liang, B.P. Finkenauer et al., Lead-free organic-perovskite hybrid quantum wells for highly stable light-emitting diodes. ACS Nano 15(4), 6316–6325 (2021). https://doi.org/10.1021/acsnano.1c00872
A. Singh, N. Chiu, K.M. Boopathi, Y. Lu, A. Mohapatra et al., Lead-free antimony-based light-emitting diodes through the vapor-anion-exchange method. ACS Appl. Mater. Interfaces 11(38), 35088–35094 (2019). https://doi.org/10.1021/acsami.9b10602
Z. Ma, Z. Shi, D. Yang, F. Zhang, S. Li et al., Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5(2), 385–394 (2020). https://doi.org/10.1021/acsenergylett.9b02096