Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries
Corresponding Author: Renjie Chen
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 203
Abstract
Metal–organic framework (MOF)-based materials with high porosity, tunable compositions, diverse structures, and versatile functionalities provide great scope for next-generation rechargeable battery applications. Herein, this review summarizes recent advances in pristine MOFs, MOF composites, MOF derivatives, and MOF composite derivatives for high-performance sodium-ion batteries, potassium-ion batteries, Zn-ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and Zn–air batteries in which the unique roles of MOFs as electrodes, separators, and even electrolyte are highlighted. Furthermore, through the discussion of MOF-based materials in each battery system, the key principles for controllable synthesis of diverse MOF-based materials and electrochemical performance improvement mechanisms are discussed in detail. Finally, the major challenges and perspectives of MOFs are also proposed for next-generation battery applications.
Highlights:
1 This review summarizes recent progresses in pristine metal–organic frameworks (MOFs), MOF composites, and their derivatives for next-generation rechargeable batteries including lithium–sulfur batteries, lithium–oxygen batteries, sodium-ion batteries, potassium-ion batteries, Zn-ion batteries, and Zn–air batteries.
2 The design strategies for MOF-based materials as the electrode, separator, and electrolyte are outlined and discussed.
3 The challenges and development strategies and of MOF-related materials for battery applications are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- M.S. Whittingham, Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114(23), 11414–11443 (2014). https://doi.org/10.1021/cr5003003
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
- C. Xia, C.Y. Kwok, L.F. Nazar, A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 361(6404), 777–781 (2018). https://doi.org/10.1126/science.aas9343
- Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang et al., Li metal deposition and stripping in a solid-state battery via coble creep. Nature 578(7794), 251–255 (2020). https://doi.org/10.1038/s41586-020-1972-y
- A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- L. Zhang, D. Liu, Z. Muhammad, F. Wan, W. Xie et al., Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31(40), 1903955 (2019). https://doi.org/10.1002/adma.201903955
- Z. Ye, Y. Jiang, T. Feng, Z. Wang, L. Li et al., Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 70, 104532 (2020). https://doi.org/10.1016/j.nanoen.2020.104532
- J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu et al., Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1(1), 34–50 (2011). https://doi.org/10.1002/aenm.201000010
- L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
- F. Wu, Y. Jiang, Z. Ye, Y. Huang, Z. Wang et al., A 3D flower-like VO2/Mxene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A 7(3), 1315–1322 (2019). https://doi.org/10.1039/c8ta11419f
- H.J. Huang, R. Xu, Y.Z. Feng, S.F. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32(8), 1904320 (2020). https://doi.org/10.1002/adma.201904320
- Y.-P. Deng, R. Liang, G. Jiang, Y. Jiang, A. Yu et al., The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 5(5), 1665–1675 (2020). https://doi.org/10.1021/acsenergylett.0c00502
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo et al., One-pot synthesis of metal organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138(3), 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
- M.H. Teplensky, M. Fantham, C. Poudel, C. Hockings, M. Lu et al., A highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem 5(11), 2926–2941 (2019). https://doi.org/10.1016/j.chempr.2019.08.015
- S. Yuan, X. Sun, J. Pang, C. Lollar, J.-S. Qin et al., PCN-250 under pressure: sequential phase transformation and the implications for MOF densification. Joule 1(4), 806–815 (2017). https://doi.org/10.1016/j.joule.2017.09.001
- Y. Liu, G. Liu, C. Zhang, W. Qiu, S. Yi et al., Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations. Adv. Sci. 5(9), 1800982 (2018). https://doi.org/10.1002/advs.201800982
- C.-C. Hou, Q. Xu, Metal-organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2018). https://doi.org/10.1002/aenm.201801307
- Z. Li, X. Ge, C. Li, S. Dong, R. Tang et al., Rational microstructure design on metal–organic framework composites for better electrochemical performances: design principle, synthetic strategy, and promotion mechanism. Small Methods 4(3), 1900756 (2020). https://doi.org/10.1002/smtd.201900756
- J. Haoqing, L. Xiao-Chen, W. Yushan, S. Yufei, G. Xuan et al., Metal–organic frameworks for high charge–discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57(15), 3916–3921 (2018). https://doi.org/10.1002/anie.201712872
- S. Kitagawa, R. Kitaura, S.-I. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004). https://doi.org/10.1002/anie.200300610
- J. Meng, X. Liu, C. Niu, Q. Pang, J. Li et al., Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem. Soc. Rev. 49, 3142–3186 (2020). https://doi.org/10.1039/c9cs00806c
- S.H. Ahn, A. Manthiram, Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc–air batteries. Small 13(40), 1702068 (2017). https://doi.org/10.1002/smll.201702068
- S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
- Y. Li, R. Cao, L. Li, X. Tang, T. Chu et al., Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn–air batteries to drive water splitting. Small 16(10), 1906735 (2020). https://doi.org/10.1002/smll.201906735
- R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic et al., Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133(40), 16154–16160 (2011). https://doi.org/10.1021/ja2062659
- J.M. Zheng, J. Tian, D.X. Wu, M. Gu, W. Xu et al., Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14(5), 2345–2352 (2014). https://doi.org/10.1021/nl404721h
- Y. Zang, F. Pei, J. Huang, Z. Fu, G. Xu et al., Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802052 (2018). https://doi.org/10.1002/aenm.201802052
- M. Tian, F. Pei, M. Yao, Z. Fu, L. Lin et al., Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Mater. 21, 14–21 (2019). https://doi.org/10.1016/j.ensm.2018.12.016
- Y. He, Z. Chang, S. Wu, Y. Qiao, S. Bai et al., Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 8(34), 1802130 (2018). https://doi.org/10.1002/aenm.201802130
- J. Qian, Y. Li, M. Zhang, R. Luo, F. Wang et al., Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy 60, 866–874 (2019). https://doi.org/10.1016/j.nanoen.2019.04.030
- M. Rana, H.A. Al-Fayaad, B. Luo, T. Lin, L. Ran et al., Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 75, 105009 (2020). https://doi.org/10.1016/j.nanoen.2020.105009
- H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen et al., 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 8(19), 1800013 (2018). https://doi.org/10.1002/aenm.201800013
- S.Y. Bai, X.Z. Liu, K. Zhu, S.C. Wu, H.S. Zhou, Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 6 (2016). https://doi.org/10.1038/nenergy.2016.94
- Y.Y. Mao, G.R. Li, Y. Guo, Z.P. Li, C.D. Liang et al., Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 8, 8 (2017). https://doi.org/10.1038/ncomms14628
- A.E. Baumann, J.R. Downing, D.A. Burns, M.C. Hersam, V.S. Thoi, Graphene–metal–organic framework composite sulfur electrodes for Li–S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 12(33), 37173–37181 (2020). https://doi.org/10.1021/acsami.0c09622
- C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10(1), 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
- B. Liu, M. Taheri, J.F. Torres, Z. Fusco, T. Lu et al., Janus conductive/insulating microporous ion-sieving membranes for stable Li-S batteries. ACS Nano 14(10), 13852–13864 (2020). https://doi.org/10.1021/acsnano.0c06221
- B. Liu, R. Bo, M. Taheri, I. Di Bernardo, N. Motta et al., Metal–organic frameworks/conducting polymer hydrogel integrated three-dimensional free-standing monoliths as ultrahigh loading Li–S battery electrodes. Nano Lett. 19(7), 4391–4399 (2019). https://doi.org/10.1021/acs.nanolett.9b01033
- P. Chiochan, X. Yu, M. Sawangphruk, A. Manthiram, A metal organic framework derived solid electrolyte for lithium–sulfur batteries. Adv. Energy Mater. 10(27), 2001285 (2020). https://doi.org/10.1002/aenm.202001285
- B. Liu, V.S. Thoi, Improving charge transfer in metal–organic frameworks through open site functionalization and porosity selection for Li–S batteries. Chem. Mater. 32(19), 8450–8459 (2020). https://doi.org/10.1021/acs.chemmater.0c02438
- A.E. Baumann, X. Han, M.M. Butala, V.S. Thoi, Lithium thiophosphate functionalized zirconium MOFs for Li-S batteries with enhanced rate capabilities. J. Am. Chem. Soc. 141(44), 17891–17899 (2019). https://doi.org/10.1021/jacs.9b09538
- Z. Chang, Y. Qiao, J. Wang, H. Deng, P. He et al., Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy. Energy Storage Mater. 25, 164–171 (2020). https://doi.org/10.1016/j.ensm.2019.10.018
- Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi et al., An anionic-mof-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries. Small Methods 4(7), 2000082 (2020). https://doi.org/10.1002/smtd.202000082
- Y. Li, S. Lin, D. Wang, T. Gao, J. Song et al., Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries. Adv. Mater. 32(8), 1906722 (2020). https://doi.org/10.1002/adma.201906722
- G.K. Gao, Y.R. Wang, S.B. Wang, R.X. Yang, Y. Chen et al., Stepped channels integrated lithium-sulfur separator via photoinduced multidimensional fabrication of metal-organic frameworks. Angew. Chem. Int. Ed. 60(18), 10147–10154 (2021). https://doi.org/10.1002/anie.202016608
- D.-D. Han, Z.-Y. Wang, G.-L. Pan, X.-P. Gao, Metal–organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium–sulfur battery. ACS Appl. Mater. Interfaces 11(20), 18427–18435 (2019). https://doi.org/10.1021/acsami.9b03682
- Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 9(6), 1998–2004 (2016). https://doi.org/10.1039/c6ee00104a
- Y. Wu, X. Zhu, P. Li, T. Zhang, M. Li et al., Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy 59, 636–643 (2019). https://doi.org/10.1016/j.nanoen.2019.03.015
- G. Chen, Y. Li, W. Zhong, F. Zheng, J. Hu et al., MOFs-derived porous Mo2C–C nano-octahedrons enable high-performance lithium–sulfur batteries. Energy Storage Mater. 25, 547–554 (2020). https://doi.org/10.1016/j.ensm.2019.09.028
- S.D. Seo, D. Park, S. Park, D.W. Kim, “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29(38), 1903712 (2019). https://doi.org/10.1002/adfm.201903712
- Y.X. Tian, H.W. Huang, G.X. Liu, R. Bi, L. Zhang, Metal-organic framework derived yolk-shell NiS2/carbon spheres for lithium-sulfur batteries with enhanced polysulfide redox kinetics. Chem. Commun. 55(22), 3243–3246 (2019). https://doi.org/10.1039/c9cc00486f
- Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu et al., Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries. Adv. Energy Mater. 10(22), 1904010 (2020). https://doi.org/10.1002/aenm.201904010
- Z. Ye, Y. Jiang, J. Qian, W. Li, T. Feng et al., Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries. Nano Energy 64, 103965 (2019). https://doi.org/10.1016/j.nanoen.2019.103965
- S.-D. Seo, C. Choi, D. Park, D.-Y. Lee, S. Park et al., Metal-organic-framework-derived 3D crumpled carbon nanosheets with self-assembled CoxSy nanocatalysts as an interlayer for lithium-sulfur batteries. Chem. Eng. J. 400, 125959 (2020). https://doi.org/10.1016/j.cej.2020.125959
- J. Cai, Y. Song, X. Chen, Z. Sun, Y. Yi et al., MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors. J. Mater. Chem. A 8(4), 1757–1766 (2020). https://doi.org/10.1039/C9TA11958B
- J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ. Sci. 11(9), 2560–2568 (2018). https://doi.org/10.1039/C8EE00893K
- X.-J. Hong, C.-L. Song, Z.-M. Wu, Z.-H. Li, Y.-P. Cai et al., Sulfophilic and lithophilic sites in bimetal nickel-zinc carbide with fast conversion of polysulfides for high-rate Li-S battery. Chem. Eng. J. 404, 126566 (2021). https://doi.org/10.1016/j.cej.2020.126566
- Y. Zhong, F. Lin, M. Wang, Y. Zhang, Q. Ma et al., Metal organic framework derivative improving lithium metal anode cycling. Adv. Funct. Mater. 30(10), 1907579 (2020). https://doi.org/10.1002/adfm.201907579
- K. Chen, Z. Sun, R. Fang, Y. Shi, H.-M. Cheng et al., Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 28(38), 1707592 (2018). https://doi.org/10.1002/adfm.201707592
- D. Fang, Y. Wang, X. Liu, J. Yu, C. Qian et al., Spider-web-inspired nanocomposite-modified separator: Structural and chemical cooperativity inhibiting the shuttle effect in Li-S batteries. ACS Nano 13(2), 1563–1573 (2019). https://doi.org/10.1021/acsnano.8b07491
- R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao et al., Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv. Energy Mater. 10(9), 1903550 (2020). https://doi.org/10.1002/aenm.201903550
- W. Cai, G. Li, D. Luo, G. Xiao, S. Zhu et al., The dual-play of 3D conductive scaffold embedded with Co, N codoped hollow polyhedra toward high-performance Li–S full cell. Adv. Energy Mater. 8(34), 1802561 (2018). https://doi.org/10.1002/aenm.201802561
- W. Li, J. Qian, T. Zhao, Y. Ye, Y. Xing et al., Boosting high-rate Li–S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure. Adv. Sci. 6(16), 1802362 (2019). https://doi.org/10.1002/advs.201802362
- Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 31(33), 1902228 (2019). https://doi.org/10.1002/adma.201902228
- L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 14(7), 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
- X. Yang, X. Gao, Q. Sun, S.P. Jand, Y. Yu et al., Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 31(25), 1901220 (2019). https://doi.org/10.1002/adma.201901220
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
- Q. Wu, Z. Yao, X. Zhou, J. Xu, F. Cao et al., Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS Nano 14(3), 3365–3377 (2020). https://doi.org/10.1021/acsnano.9b09231
- B. Fei, C. Zhang, D. Cai, J. Zheng, Q. Chen et al., Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium-sulfur batteries. ACS Nano 15(4), 6849–6860 (2021). https://doi.org/10.1021/acsnano.0c10603
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33(33), 2101204 (2021). https://doi.org/10.1002/adma.202101204
- R. Liu, Z. Liu, W. Liu, Y. Liu, X. Lin et al., TiO2 and Co nanoparticle-decorated carbon polyhedra as efficient sulfur host for high-performance lithium-sulfur batteries. Small 15(29), 1804533 (2019). https://doi.org/10.1002/smll.201804533
- S. Chen, J. Luo, N. Li, X. Han, J. Wang et al., Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 30, 187–195 (2020). https://doi.org/10.1016/j.ensm.2020.05.002
- J. Zhang, G. Li, Y. Zhang, W. Zhang, X. Wang et al., Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy 64, 103905 (2019). https://doi.org/10.1016/j.nanoen.2019.103905
- H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang et al., Synergistic mediation of polysulfide immobilization and conversion by a catalytic and dual-adsorptive system for high performance lithium-sulfur batteries. Chem. Eng. J. 406, 126802 (2021). https://doi.org/10.1016/j.cej.2020.126802
- B. Guan, Y. Zhang, L. Fan, X. Wu, M. Wang et al., Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium–sulfur battery. ACS Nano 13(6), 6742–6750 (2019). https://doi.org/10.1021/acsnano.9b01329
- H. Shi, X. Ren, J. Lu, C. Dong, J. Liu et al., Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 10(39), 2002271 (2020). https://doi.org/10.1002/aenm.202002271
- S.H. Liu, J. Li, X. Yan, Q.F. Su, Y.H. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 30(12), 9 (2018). https://doi.org/10.1002/adma.201706895
- D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu et al., Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 26(20), 3258 (2014). https://doi.org/10.1002/adma.201305492
- S.H. Kim, Y.J. Lee, D.H. Kim, Y.J. Lee, Bimetallic metal–organic frameworks as efficient cathode catalysts for Li–O2 batteries. ACS Appl. Mater. Interfaces 10(1), 660–667 (2018). https://doi.org/10.1021/acsami.7b15499
- S. Yuan, J.L. Bao, J. Wei, Y. Xia, D.G. Truhlar et al., A versatile single-ion electrolyte with a grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy Environ. Sci. 12(9), 2741–2750 (2019). https://doi.org/10.1039/c9ee01473j
- X. Zhang, P. Dong, J.-I. Lee, J.T. Gray, Y.-H. Cha et al., Enhanced cycling performance of rechargeable Li-O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts. Energy Storage Mater. 17, 167–177 (2019). https://doi.org/10.1016/j.ensm.2018.11.014
- W.H. Choi, B.C. Moon, D.G. Park, J.W. Choi, K.H. Kim et al., Autogenous production and stabilization of highly loaded sub-nanometric particles within multishell hollow metal–organic frameworks and their utilization for high performance in Li–O2 batteries. Adv. Sci. 7(9), 2000283 (2020). https://doi.org/10.1002/advs.202000283
- L. Cao, F. Lv, Y. Liu, W. Wang, Y. Huo et al., A high performance O2 selective membrane based on CAU-L-NH2@polydopamine and the pmma polymer for Li–air batteries. Chem. Commun. 51(21), 4364–4367 (2015). https://doi.org/10.1039/C4CC09281C
- Y. Qiao, Y. He, S. Wu, K. Jiang, X. Li et al., MOF-based separator in an Li-O2 battery: an effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett. 3(2), 463–468 (2018). https://doi.org/10.1021/acsenergylett.8b00014
- Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang et al., Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 26(9), 1378–1386 (2014). https://doi.org/10.1002/adma.201304218
- G. Tan, L. Chong, R. Amine, J. Lu, C. Liu et al., Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping cobalt@graphene multiple-capsule heterostructures. Nano Lett. 17(5), 2959–2966 (2017). https://doi.org/10.1021/acs.nanolett.7b00207
- J. Tang, S. Wu, T. Wang, H. Gong, H. Zhang et al., Cage-type highly graphitic porous carbon–Co3O4 polyhedron as the cathode of lithium–oxygen batteries. ACS Appl. Mater. Interfaces 8(4), 2796–2804 (2016). https://doi.org/10.1021/acsami.5b11252
- H. Gong, H. Xue, X. Lu, B. Gao, T. Wang et al., All solid-state lithium-oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes. Chem. Commun. 55(72), 10689–10692 (2019). https://doi.org/10.1039/c9cc05685h
- W. Yin, Y. Shen, F. Zou, X. Hu, B. Chi et al., Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interfaces 7(8), 4947–4954 (2015). https://doi.org/10.1021/am509143t
- Y. Dou, R. Lian, Y. Zhang, Y. Zhao, G. Chen et al., Co9S8@carbon porous nanocages derived from a metal–organic framework: a highly efficient bifunctional catalyst for aprotic Li–O2 batteries. J. Mater. Chem. A 6(18), 8595–8603 (2018). https://doi.org/10.1039/C8TA01913D
- H. Wang, F.-X. Yin, N. Liu, R.-H. Kou, X.-B. He et al., Engineering Fe-Fe3C@Fe-N-C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2O2 fuel cell and Li-O2 battery. Adv. Funct. Mater. 29(23), 1901531 (2019). https://doi.org/10.1002/adfm.201901531
- P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 11(1), 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
- P. Hien Thi Thu, Y. Kim, Y.-J. Kim, J.-W. Lee, M.-S. Park, Robust design of dual-phasic carbon cathode for lithium-oxygen batteries. Adv. Funct. Mater. 29(31), 1902915 (2019). https://doi.org/10.1002/adfm.201902915
- W.M. Zhang, X.Y. Yao, S.N. Zhou, X.W. Li, L. Li et al., ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 14(24), 1800423 (2018). https://doi.org/10.1002/smll.201800423
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 29(1), 1806658 (2019). https://doi.org/10.1002/adfm.201806658
- X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
- Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 48(52), 6544–6546 (2012). https://doi.org/10.1039/C2CC31777J
- L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng et al., A superior low-cost cathode for a Na-ion battery. Angew. Chem. In. Ed. 52(7), 1964–1967 (2013). https://doi.org/10.1002/anie.201206854
- Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7(5), 1643–1647 (2014). https://doi.org/10.1039/C3EE44004D
- J. Song, L. Wang, Y. Lu, J. Liu, B. Guo et al., Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137(7), 2658–2664 (2015). https://doi.org/10.1021/ja512383b
- X. Wu, W. Deng, J. Qian, Y. Cao, X. Ai et al., Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1(35), 10130–10134 (2013). https://doi.org/10.1039/C3TA12036H
- Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater. (2021). https://doi.org/10.1002/adma.202101342
- H.-W. Lee, R.Y. Wang, M. Pasta, S. Woo Lee, N. Liu et al., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5(1), 5280 (2014). https://doi.org/10.1038/ncomms6280
- Y. Yue, A.J. Binder, B. Guo, Z. Zhang, Z.A. Qiao et al., Mesoporous prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 53(12), 3134–3137 (2014). https://doi.org/10.1002/anie.201310679
- Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang et al., High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater. 30(10), 1908754 (2020). https://doi.org/10.1002/adfm.201908754
- C. Li, Q. Yang, M. Shen, J.Y. Ma, B.W. Hu, The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(ii) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Mater. 14, 82–89 (2018). https://doi.org/10.1016/j.ensm.2018.02.021
- J. Park, M. Lee, D.W. Feng, Z.H. Huang, A.C. Hinckley et al., Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140(32), 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020
- Y. Liu, X. Zhao, C. Fang, Z. Ye, Y.-B. He et al., Activating aromatic rings as Na-ion storage sites to achieve high capacity. Chem 4(10), 2463–2478 (2018). https://doi.org/10.1016/j.chempr.2018.08.015
- Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26(29), 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747
- Y. You, H.-R. Yao, S. Xin, Y.-X. Yin, T.-T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28(33), 7243–7248 (2016). https://doi.org/10.1002/adma.201600846
- J. Luo, S. Sun, J. Peng, B. Liu, Y. Huang et al., Graphene-roll-wrapped prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9(30), 25317–25322 (2017). https://doi.org/10.1021/acsami.7b06334
- Y. Huang, C. Fang, R. Zeng, Y. Liu, W. Zhang et al., In situ-formed hierarchical metal–organic flexible cathode for high-energy sodium-ion batteries. Chemsuschem 10(23), 4704–4708 (2017). https://doi.org/10.1002/cssc.201701484
- Y. Mao, Y. Chen, J. Qin, C. Shi, E. Liu et al., Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced prussian blue for high performance Na-ion battery cathode. Nano Energy 58, 192–201 (2019). https://doi.org/10.1016/j.nanoen.2019.01.048
- Y. Tang, W. Zhang, L. Xue, X. Ding, T. Wang et al., Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries. J. Mater. Chem. A 4(16), 6036–6041 (2016). https://doi.org/10.1039/C6TA00876C
- W.-J. Li, S.-L. Chou, J.-Z. Wang, J.-L. Wang, Q.-F. Gu et al., Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy 13, 200–207 (2015). https://doi.org/10.1016/j.nanoen.2015.02.019
- Q. Qu, J. Yun, Z. Wan, H. Zheng, T. Gao et al., MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3. RSC Adv. 4(110), 64692–64697 (2014). https://doi.org/10.1039/c4ra11009a
- X. Shi, Y. Chen, Y. Lai, K. Zhang, J. Li et al., Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. Carbon 123, 250–258 (2017). https://doi.org/10.1016/j.carbon.2017.07.056
- S. Liu, J. Zhou, H. Song, 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8(22), 1800569 (2018). https://doi.org/10.1002/aenm.201800569
- Y. Xie, J. Hu, Z. Han, T. Wang, J. Zheng et al., Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 30, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.05.008
- M.Q. Zhu, S.M. Li, B. Li, Y.J. Gong, Z.G. Du et al., Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 5(4), 8 (2019). https://doi.org/10.1126/sciadv.aau6264
- H. Xu, Y. Liu, T. Qiang, L. Qin, J. Chen et al., Boosting sodium storage properties of titanium dioxide by a multiscale design based on MOF-derived strategy. Energy Storage Mater. 17, 126–135 (2019). https://doi.org/10.1016/j.ensm.2018.07.023
- H.-H. Li, Z.-Y. Li, X.-L. Wu, L.-L. Zhang, C.-Y. Fan et al., Shale-like Co3O4 for high performance lithium/sodium ion batteries. J. Mater. Chem. A 4(21), 8242–8248 (2016). https://doi.org/10.1039/C6TA02417C
- Y. Cai, G. Fang, J. Zhou, S. Liu, Z. Luo et al., Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res. 11(1), 449–463 (2018). https://doi.org/10.1007/s12274-017-1653-9
- S. Fan, S. Huang, Y. Chen, Y. Shang, Y. Wang et al., Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 23, 17–24 (2019). https://doi.org/10.1016/j.ensm.2019.05.043
- X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu et al., A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 28(16), 1707573 (2018). https://doi.org/10.1002/adfm.201707573
- N. Shi, B. Xi, M. Huang, X. Ma, H. Li et al., Hierarchical octahedra constructed by Cu2S/MoS2 subsetcarbon framework with enhanced sodium storage. Small 16(23), 2000952 (2020). https://doi.org/10.1002/smll.202000952
- X. Wang, Y. Chen, Y.J. Fang, J.T. Zhang, S.Y. Gao et al., Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries. Angew. Chem. Int. Ed. 58(9), 2675–2679 (2019). https://doi.org/10.1002/anie.201812387
- Y. Zhang, Q. Su, W. Xu, G. Cao, Y. Wang et al., A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries. Adv. Sci. 6(16), 1900162 (2019). https://doi.org/10.1002/advs.201900162
- W. Zhang, W. Yan, H. Jiang, C. Wang, Y. Zhou et al., Uniform Bi–Sb alloy nanoparticles synthesized from MOFs by laser metallurgy for sodium-ion batteries. ACS Sustain. Chem. Eng. 8(1), 335–342 (2019). https://doi.org/10.1021/acssuschemeng.9b05474
- X. Hu, X. Liu, K. Chen, G. Wang, H. Wang, Core–shell mof-derived N-doped yolk–shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 7(18), 11016–11037 (2019). https://doi.org/10.1039/c9ta01999e
- G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
- G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
- X. Liu, Y. Liu, M. Feng, L.-Z. Fan, MOF-derived and nitrogen-doped ZnSe polyhedra encapsulated by reduced graphene oxide as the anode for lithium and sodium storage. J. Mater. Chem. A 6(46), 23621–23627 (2018). https://doi.org/10.1039/c8ta09247h
- W. Ren, H. Zhang, C. Guan, C. Cheng, Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 27(32), 1702116 (2017). https://doi.org/10.1002/adfm.201702116
- C. Chen, M. Wu, Z. Xu, T. Feng, J. Yang et al., Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. J Colloid Interface Sci. 538, 267–276 (2019). https://doi.org/10.1016/j.jcis.2018.11.101
- D. Cao, W. Kang, W. Wang, K. Sun, Y. Wang et al., Okra-like Fe7S8 /C@ZnS/N-C@C with core-double-shelled structures as robust and high-rate sodium anode. Small 16(35), 1907641 (2020). https://doi.org/10.1002/smll.201907641
- Y.M. Chen, X.Y. Li, K. Park, W. Lu, C. Wang et al., Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3(1), 152–163 (2017). https://doi.org/10.1016/j.chempr.2017.05.021
- N. Mubarak, M. Ihsan-Ul-Haq, H. Huang, J. Cui, S. Yao et al., Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. J. Mater. Chem. A 8(20), 10269–10282 (2020). https://doi.org/10.1039/d0ta00359j
- S. Dong, C. Li, X. Ge, Z. Li, X. Miao et al., ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
- L.T. Yu, J. Liu, X.J. Xu, L.G. Zhang, R.Z. Hu et al., Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 11(5), 5120–5129 (2017). https://doi.org/10.1021/acsnano.7b02136
- S.H. Yang, S.-K. Park, J.K. Kim, Y.C. Kang, A mof-mediated strategy for constructing human backbone-like CoMoS3@N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries. J. Mater. Chem. A 7(22), 13751–13761 (2019). https://doi.org/10.1039/C9TA03873F
- X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, A novel K-ion battery: hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A 5(9), 4325–4330 (2017). https://doi.org/10.1039/C7TA00220C
- L. Li, Z. Hu, Y. Lu, C. Wang, Q. Zhang et al., A low-strain potassium-rich prussian blue analogue cathode for high power potassium-ion batteries. Angew. Chem. Int. Ed. 60(23), 13050–13056 (2021). https://doi.org/10.1002/anie.202103475
- J.Y. Liao, Q. Hu, J.X. Mu, X.D. He, S. Wang et al., A vanadium-based metal-organic phosphate framework material K2[(VO)2(HPO4)2(C2O4)] as a cathode for potassium-ion batteries. Chem. Commun. 55(5), 659–662 (2019). https://doi.org/10.1039/c8cc08734b
- Y.L. An, H.F. Fei, Z. Zhang, L.J. Ci, S.L. Xiong et al., A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs. Chemical Commun. 53(59), 8360–8363 (2017). https://doi.org/10.1039/c7cc03606j
- C. Li, X.S. Hu, B.W. Hu, Cobalt(ii) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 253, 439–444 (2017). https://doi.org/10.1016/j.electacta.2017.09.090
- E. Nossol, V.H.R. Souza, A.J.G. Zarbin, Carbon nanotube/prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J. Colloid Interface Sci. 478, 107–116 (2016). https://doi.org/10.1016/j.jcis.2016.05.056
- J. Li, H. Zhao, J. Wang, N. Li, M. Wu et al., Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy 62, 876–882 (2019). https://doi.org/10.1016/j.nanoen.2019.06.009
- P. Xiao, S. Li, C. Yu, Y. Wang, Y. Xu, Interface engineering between the metal-organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance. ACS Nano 14(8), 10210–10218 (2020). https://doi.org/10.1021/acsnano.0c03488
- Y.P. Li, C.H. Yang, F.H. Zheng, X. Ou, Q.C. Pan et al., High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 6(37), 17959–17966 (2018). https://doi.org/10.1039/c8ta06652c
- J. Lu, C. Wang, H. Yu, S. Gong, G. Xia et al., Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 29(49), 1906126 (2019). https://doi.org/10.1002/adfm.201906126
- G.Y. Ma, C.J. Li, F. Liu, M.K. Majeed, Z.Y. Feng et al., Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 10, 241–248 (2018). https://doi.org/10.1016/j.mtener.2018.09.013
- S.L. Su, Q. Liu, J. Wang, L. Fan, R.F. Ma et al., Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 11(25), 22474–22480 (2019). https://doi.org/10.1021/acsami.9b06379
- J. Xie, X. Li, H. Lai, Z. Zhao, J. Li et al., A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew. Chem. Int. Ed. 58(41), 14740–14747 (2019). https://doi.org/10.1002/anie.201908542
- C. Atangana Etogo, H. Huang, H. Hong, G. Liu, L. Zhang, Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 24, 167–176 (2020). https://doi.org/10.1016/j.ensm.2019.08.022
- X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu et al., Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 19(8), 4965–4973 (2019). https://doi.org/10.1021/acs.nanolett.9b01127
- R. Trócoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
- M.S. Chae, J.W. Heo, H.H. Kwak, H. Lee, S.-T. Hong, Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J. Power Sources 337, 204–211 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.083
- X.-W. Lou, Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202107697
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- K.W. Nam, S.S. Park, R. dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019). https://doi.org/10.1038/s41467-019-12857-4
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12(1), 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
- B. He, Q. Zhang, P. Man, Z. Zhou, C. Li et al., Self-sacrificed synthesis of conductive vanadium-based metal-organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 64, 103935 (2019). https://doi.org/10.1016/j.nanoen.2019.103935
- Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang et al., A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
- C.C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. (2021). https://doi.org/10.1002/adma.202101698
- S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song et al., Electrochemically induced MOF-derived amorphous V2O5 for superior rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 59(49), 22002–22006 (2020). https://doi.org/10.1002/anie.202010287
- Z. Wang, J.H. Huang, Z.W. Guo, X.L. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10(16), 1904215 (2020). https://doi.org/10.1002/aenm.201904215
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
- Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2020). https://doi.org/10.1002/aenm.202001050
- J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon et al., Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous zn-based flow batteries. Energy Environ. Sci. 13, 2839–2848 (2020). https://doi.org/10.1039/d0ee00723d
- S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/c8ee02679c
- H. Pourfarzad, M. Shabani-Nooshabadi, M.R. Ganjali, Novel bi-functional electrocatalysts based on the electrochemical synthesized bimetallicmetal organic frameworks: Towards high energy advanced reversible zinc-air batteries. J. Power Sources 451, 227768 (2020). https://doi.org/10.1016/j.jpowsour.2020.227768
- G. Chen, J. Zhang, F. Wang, L. Wang, Z. Liao et al., Cobalt-based metal-organic framework nanoarrays as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Eur. J. 24(69), 18413–18418 (2018). https://doi.org/10.1002/chem.201804339
- X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding et al., Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 11(17), 15662–15669 (2019). https://doi.org/10.1021/acsami.9b02859
- Y. Jiang, Y.-P. Deng, R. Liang, J. Fu, R. Gao et al., d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 11(1), 5858 (2020). https://doi.org/10.1038/s41467-020-19709-6
- F. Yang, J. Xie, X. Liu, G. Wang, X. Lu, Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-air batteries. Small 17(3), 2007085 (2021). https://doi.org/10.1002/smll.202007085
- L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
- Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang et al., Metal–organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(15), 8472–8476 (2021). https://doi.org/10.1002/anie.202016024
- Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng et al., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
- A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 32(28), 2002170 (2020). https://doi.org/10.1002/adma.202002170
- Z. Wu, H. Wu, T. Niu, S. Wang, G. Fu et al., Sulfurated metal–organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn–air battery. ACS Sustain. Chem. Eng. 8(24), 9226–9234 (2020). https://doi.org/10.1021/acssuschemeng.0c03570
- M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
- X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Adv. Mater. 31(39), 1902339 (2019). https://doi.org/10.1002/adma.201902339
- D. Ren, J. Ying, M. Xiao, Y.P. Deng, J. Ou et al., Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc–air batteries. Adv. Funct. Mater. 30(7), 1908167 (2019). https://doi.org/10.1002/adfm.201908167
- Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 30(6), 1906081 (2020). https://doi.org/10.1002/adfm.201906081
- C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu et al., Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29(44), 1704117 (2017). https://doi.org/10.1002/adma.201704117
- Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang et al., Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 71, 104592 (2020). https://doi.org/10.1016/j.nanoen.2020.104592
- D. Ji, L. Fan, L. Li, S. Peng, D. Yu et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 31(16), 1808267 (2019). https://doi.org/10.1002/adma.201808267
- Y. Arafat, M.R. Azhar, Y. Zhong, X. Xu, M.O. Tadé et al., A porous nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc–air batteries. Nano-Micro Lett. 12, 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
- D. Chen, X. Chen, Z. Cui, G. Li, B. Han et al., Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem. Eng. J. 399, 125718 (2020). https://doi.org/10.1016/j.cej.2020.125718
- Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang et al., Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries. J. Mater. Chem. A 6(20), 9716–9722 (2018). https://doi.org/10.1039/c8ta01859f
- X. Gao, Y. Du, J. Zhou, S. Li, P. Qi et al., Large-scale production of MOF-derived coatings for functional interlayers in high-performance Li–S batteries. ACS Appl. Energy Mater. 1(12), 6986–6991 (2018). https://doi.org/10.1021/acsaem.8b01401
- G.K. Gao, Y.R. Wang, H.J. Zhu, Y. Chen, R.X. Yang et al., Rapid production of metal–organic frameworks based separators in industrial-level efficiency. Adv. Sci. 7(24), 2002190 (2020). https://doi.org/10.1002/advs.202002190
References
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
M.S. Whittingham, Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114(23), 11414–11443 (2014). https://doi.org/10.1021/cr5003003
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
C. Xia, C.Y. Kwok, L.F. Nazar, A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 361(6404), 777–781 (2018). https://doi.org/10.1126/science.aas9343
Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang et al., Li metal deposition and stripping in a solid-state battery via coble creep. Nature 578(7794), 251–255 (2020). https://doi.org/10.1038/s41586-020-1972-y
A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
L. Zhang, D. Liu, Z. Muhammad, F. Wan, W. Xie et al., Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31(40), 1903955 (2019). https://doi.org/10.1002/adma.201903955
Z. Ye, Y. Jiang, T. Feng, Z. Wang, L. Li et al., Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 70, 104532 (2020). https://doi.org/10.1016/j.nanoen.2020.104532
J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu et al., Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1(1), 34–50 (2011). https://doi.org/10.1002/aenm.201000010
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
F. Wu, Y. Jiang, Z. Ye, Y. Huang, Z. Wang et al., A 3D flower-like VO2/Mxene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A 7(3), 1315–1322 (2019). https://doi.org/10.1039/c8ta11419f
H.J. Huang, R. Xu, Y.Z. Feng, S.F. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32(8), 1904320 (2020). https://doi.org/10.1002/adma.201904320
Y.-P. Deng, R. Liang, G. Jiang, Y. Jiang, A. Yu et al., The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 5(5), 1665–1675 (2020). https://doi.org/10.1021/acsenergylett.0c00502
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo et al., One-pot synthesis of metal organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138(3), 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
M.H. Teplensky, M. Fantham, C. Poudel, C. Hockings, M. Lu et al., A highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem 5(11), 2926–2941 (2019). https://doi.org/10.1016/j.chempr.2019.08.015
S. Yuan, X. Sun, J. Pang, C. Lollar, J.-S. Qin et al., PCN-250 under pressure: sequential phase transformation and the implications for MOF densification. Joule 1(4), 806–815 (2017). https://doi.org/10.1016/j.joule.2017.09.001
Y. Liu, G. Liu, C. Zhang, W. Qiu, S. Yi et al., Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations. Adv. Sci. 5(9), 1800982 (2018). https://doi.org/10.1002/advs.201800982
C.-C. Hou, Q. Xu, Metal-organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2018). https://doi.org/10.1002/aenm.201801307
Z. Li, X. Ge, C. Li, S. Dong, R. Tang et al., Rational microstructure design on metal–organic framework composites for better electrochemical performances: design principle, synthetic strategy, and promotion mechanism. Small Methods 4(3), 1900756 (2020). https://doi.org/10.1002/smtd.201900756
J. Haoqing, L. Xiao-Chen, W. Yushan, S. Yufei, G. Xuan et al., Metal–organic frameworks for high charge–discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57(15), 3916–3921 (2018). https://doi.org/10.1002/anie.201712872
S. Kitagawa, R. Kitaura, S.-I. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004). https://doi.org/10.1002/anie.200300610
J. Meng, X. Liu, C. Niu, Q. Pang, J. Li et al., Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem. Soc. Rev. 49, 3142–3186 (2020). https://doi.org/10.1039/c9cs00806c
S.H. Ahn, A. Manthiram, Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc–air batteries. Small 13(40), 1702068 (2017). https://doi.org/10.1002/smll.201702068
S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
Y. Li, R. Cao, L. Li, X. Tang, T. Chu et al., Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn–air batteries to drive water splitting. Small 16(10), 1906735 (2020). https://doi.org/10.1002/smll.201906735
R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic et al., Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133(40), 16154–16160 (2011). https://doi.org/10.1021/ja2062659
J.M. Zheng, J. Tian, D.X. Wu, M. Gu, W. Xu et al., Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14(5), 2345–2352 (2014). https://doi.org/10.1021/nl404721h
Y. Zang, F. Pei, J. Huang, Z. Fu, G. Xu et al., Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802052 (2018). https://doi.org/10.1002/aenm.201802052
M. Tian, F. Pei, M. Yao, Z. Fu, L. Lin et al., Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Mater. 21, 14–21 (2019). https://doi.org/10.1016/j.ensm.2018.12.016
Y. He, Z. Chang, S. Wu, Y. Qiao, S. Bai et al., Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 8(34), 1802130 (2018). https://doi.org/10.1002/aenm.201802130
J. Qian, Y. Li, M. Zhang, R. Luo, F. Wang et al., Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy 60, 866–874 (2019). https://doi.org/10.1016/j.nanoen.2019.04.030
M. Rana, H.A. Al-Fayaad, B. Luo, T. Lin, L. Ran et al., Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 75, 105009 (2020). https://doi.org/10.1016/j.nanoen.2020.105009
H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen et al., 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 8(19), 1800013 (2018). https://doi.org/10.1002/aenm.201800013
S.Y. Bai, X.Z. Liu, K. Zhu, S.C. Wu, H.S. Zhou, Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 6 (2016). https://doi.org/10.1038/nenergy.2016.94
Y.Y. Mao, G.R. Li, Y. Guo, Z.P. Li, C.D. Liang et al., Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 8, 8 (2017). https://doi.org/10.1038/ncomms14628
A.E. Baumann, J.R. Downing, D.A. Burns, M.C. Hersam, V.S. Thoi, Graphene–metal–organic framework composite sulfur electrodes for Li–S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 12(33), 37173–37181 (2020). https://doi.org/10.1021/acsami.0c09622
C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10(1), 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
B. Liu, M. Taheri, J.F. Torres, Z. Fusco, T. Lu et al., Janus conductive/insulating microporous ion-sieving membranes for stable Li-S batteries. ACS Nano 14(10), 13852–13864 (2020). https://doi.org/10.1021/acsnano.0c06221
B. Liu, R. Bo, M. Taheri, I. Di Bernardo, N. Motta et al., Metal–organic frameworks/conducting polymer hydrogel integrated three-dimensional free-standing monoliths as ultrahigh loading Li–S battery electrodes. Nano Lett. 19(7), 4391–4399 (2019). https://doi.org/10.1021/acs.nanolett.9b01033
P. Chiochan, X. Yu, M. Sawangphruk, A. Manthiram, A metal organic framework derived solid electrolyte for lithium–sulfur batteries. Adv. Energy Mater. 10(27), 2001285 (2020). https://doi.org/10.1002/aenm.202001285
B. Liu, V.S. Thoi, Improving charge transfer in metal–organic frameworks through open site functionalization and porosity selection for Li–S batteries. Chem. Mater. 32(19), 8450–8459 (2020). https://doi.org/10.1021/acs.chemmater.0c02438
A.E. Baumann, X. Han, M.M. Butala, V.S. Thoi, Lithium thiophosphate functionalized zirconium MOFs for Li-S batteries with enhanced rate capabilities. J. Am. Chem. Soc. 141(44), 17891–17899 (2019). https://doi.org/10.1021/jacs.9b09538
Z. Chang, Y. Qiao, J. Wang, H. Deng, P. He et al., Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy. Energy Storage Mater. 25, 164–171 (2020). https://doi.org/10.1016/j.ensm.2019.10.018
Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi et al., An anionic-mof-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries. Small Methods 4(7), 2000082 (2020). https://doi.org/10.1002/smtd.202000082
Y. Li, S. Lin, D. Wang, T. Gao, J. Song et al., Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries. Adv. Mater. 32(8), 1906722 (2020). https://doi.org/10.1002/adma.201906722
G.K. Gao, Y.R. Wang, S.B. Wang, R.X. Yang, Y. Chen et al., Stepped channels integrated lithium-sulfur separator via photoinduced multidimensional fabrication of metal-organic frameworks. Angew. Chem. Int. Ed. 60(18), 10147–10154 (2021). https://doi.org/10.1002/anie.202016608
D.-D. Han, Z.-Y. Wang, G.-L. Pan, X.-P. Gao, Metal–organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium–sulfur battery. ACS Appl. Mater. Interfaces 11(20), 18427–18435 (2019). https://doi.org/10.1021/acsami.9b03682
Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 9(6), 1998–2004 (2016). https://doi.org/10.1039/c6ee00104a
Y. Wu, X. Zhu, P. Li, T. Zhang, M. Li et al., Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy 59, 636–643 (2019). https://doi.org/10.1016/j.nanoen.2019.03.015
G. Chen, Y. Li, W. Zhong, F. Zheng, J. Hu et al., MOFs-derived porous Mo2C–C nano-octahedrons enable high-performance lithium–sulfur batteries. Energy Storage Mater. 25, 547–554 (2020). https://doi.org/10.1016/j.ensm.2019.09.028
S.D. Seo, D. Park, S. Park, D.W. Kim, “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29(38), 1903712 (2019). https://doi.org/10.1002/adfm.201903712
Y.X. Tian, H.W. Huang, G.X. Liu, R. Bi, L. Zhang, Metal-organic framework derived yolk-shell NiS2/carbon spheres for lithium-sulfur batteries with enhanced polysulfide redox kinetics. Chem. Commun. 55(22), 3243–3246 (2019). https://doi.org/10.1039/c9cc00486f
Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu et al., Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries. Adv. Energy Mater. 10(22), 1904010 (2020). https://doi.org/10.1002/aenm.201904010
Z. Ye, Y. Jiang, J. Qian, W. Li, T. Feng et al., Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries. Nano Energy 64, 103965 (2019). https://doi.org/10.1016/j.nanoen.2019.103965
S.-D. Seo, C. Choi, D. Park, D.-Y. Lee, S. Park et al., Metal-organic-framework-derived 3D crumpled carbon nanosheets with self-assembled CoxSy nanocatalysts as an interlayer for lithium-sulfur batteries. Chem. Eng. J. 400, 125959 (2020). https://doi.org/10.1016/j.cej.2020.125959
J. Cai, Y. Song, X. Chen, Z. Sun, Y. Yi et al., MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors. J. Mater. Chem. A 8(4), 1757–1766 (2020). https://doi.org/10.1039/C9TA11958B
J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ. Sci. 11(9), 2560–2568 (2018). https://doi.org/10.1039/C8EE00893K
X.-J. Hong, C.-L. Song, Z.-M. Wu, Z.-H. Li, Y.-P. Cai et al., Sulfophilic and lithophilic sites in bimetal nickel-zinc carbide with fast conversion of polysulfides for high-rate Li-S battery. Chem. Eng. J. 404, 126566 (2021). https://doi.org/10.1016/j.cej.2020.126566
Y. Zhong, F. Lin, M. Wang, Y. Zhang, Q. Ma et al., Metal organic framework derivative improving lithium metal anode cycling. Adv. Funct. Mater. 30(10), 1907579 (2020). https://doi.org/10.1002/adfm.201907579
K. Chen, Z. Sun, R. Fang, Y. Shi, H.-M. Cheng et al., Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 28(38), 1707592 (2018). https://doi.org/10.1002/adfm.201707592
D. Fang, Y. Wang, X. Liu, J. Yu, C. Qian et al., Spider-web-inspired nanocomposite-modified separator: Structural and chemical cooperativity inhibiting the shuttle effect in Li-S batteries. ACS Nano 13(2), 1563–1573 (2019). https://doi.org/10.1021/acsnano.8b07491
R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao et al., Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv. Energy Mater. 10(9), 1903550 (2020). https://doi.org/10.1002/aenm.201903550
W. Cai, G. Li, D. Luo, G. Xiao, S. Zhu et al., The dual-play of 3D conductive scaffold embedded with Co, N codoped hollow polyhedra toward high-performance Li–S full cell. Adv. Energy Mater. 8(34), 1802561 (2018). https://doi.org/10.1002/aenm.201802561
W. Li, J. Qian, T. Zhao, Y. Ye, Y. Xing et al., Boosting high-rate Li–S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure. Adv. Sci. 6(16), 1802362 (2019). https://doi.org/10.1002/advs.201802362
Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 31(33), 1902228 (2019). https://doi.org/10.1002/adma.201902228
L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 14(7), 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
X. Yang, X. Gao, Q. Sun, S.P. Jand, Y. Yu et al., Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 31(25), 1901220 (2019). https://doi.org/10.1002/adma.201901220
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
Q. Wu, Z. Yao, X. Zhou, J. Xu, F. Cao et al., Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS Nano 14(3), 3365–3377 (2020). https://doi.org/10.1021/acsnano.9b09231
B. Fei, C. Zhang, D. Cai, J. Zheng, Q. Chen et al., Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium-sulfur batteries. ACS Nano 15(4), 6849–6860 (2021). https://doi.org/10.1021/acsnano.0c10603
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33(33), 2101204 (2021). https://doi.org/10.1002/adma.202101204
R. Liu, Z. Liu, W. Liu, Y. Liu, X. Lin et al., TiO2 and Co nanoparticle-decorated carbon polyhedra as efficient sulfur host for high-performance lithium-sulfur batteries. Small 15(29), 1804533 (2019). https://doi.org/10.1002/smll.201804533
S. Chen, J. Luo, N. Li, X. Han, J. Wang et al., Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 30, 187–195 (2020). https://doi.org/10.1016/j.ensm.2020.05.002
J. Zhang, G. Li, Y. Zhang, W. Zhang, X. Wang et al., Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy 64, 103905 (2019). https://doi.org/10.1016/j.nanoen.2019.103905
H. Li, Y. Wang, H. Chen, B. Niu, W. Zhang et al., Synergistic mediation of polysulfide immobilization and conversion by a catalytic and dual-adsorptive system for high performance lithium-sulfur batteries. Chem. Eng. J. 406, 126802 (2021). https://doi.org/10.1016/j.cej.2020.126802
B. Guan, Y. Zhang, L. Fan, X. Wu, M. Wang et al., Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium–sulfur battery. ACS Nano 13(6), 6742–6750 (2019). https://doi.org/10.1021/acsnano.9b01329
H. Shi, X. Ren, J. Lu, C. Dong, J. Liu et al., Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 10(39), 2002271 (2020). https://doi.org/10.1002/aenm.202002271
S.H. Liu, J. Li, X. Yan, Q.F. Su, Y.H. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 30(12), 9 (2018). https://doi.org/10.1002/adma.201706895
D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu et al., Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 26(20), 3258 (2014). https://doi.org/10.1002/adma.201305492
S.H. Kim, Y.J. Lee, D.H. Kim, Y.J. Lee, Bimetallic metal–organic frameworks as efficient cathode catalysts for Li–O2 batteries. ACS Appl. Mater. Interfaces 10(1), 660–667 (2018). https://doi.org/10.1021/acsami.7b15499
S. Yuan, J.L. Bao, J. Wei, Y. Xia, D.G. Truhlar et al., A versatile single-ion electrolyte with a grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy Environ. Sci. 12(9), 2741–2750 (2019). https://doi.org/10.1039/c9ee01473j
X. Zhang, P. Dong, J.-I. Lee, J.T. Gray, Y.-H. Cha et al., Enhanced cycling performance of rechargeable Li-O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts. Energy Storage Mater. 17, 167–177 (2019). https://doi.org/10.1016/j.ensm.2018.11.014
W.H. Choi, B.C. Moon, D.G. Park, J.W. Choi, K.H. Kim et al., Autogenous production and stabilization of highly loaded sub-nanometric particles within multishell hollow metal–organic frameworks and their utilization for high performance in Li–O2 batteries. Adv. Sci. 7(9), 2000283 (2020). https://doi.org/10.1002/advs.202000283
L. Cao, F. Lv, Y. Liu, W. Wang, Y. Huo et al., A high performance O2 selective membrane based on CAU-L-NH2@polydopamine and the pmma polymer for Li–air batteries. Chem. Commun. 51(21), 4364–4367 (2015). https://doi.org/10.1039/C4CC09281C
Y. Qiao, Y. He, S. Wu, K. Jiang, X. Li et al., MOF-based separator in an Li-O2 battery: an effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett. 3(2), 463–468 (2018). https://doi.org/10.1021/acsenergylett.8b00014
Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang et al., Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 26(9), 1378–1386 (2014). https://doi.org/10.1002/adma.201304218
G. Tan, L. Chong, R. Amine, J. Lu, C. Liu et al., Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping cobalt@graphene multiple-capsule heterostructures. Nano Lett. 17(5), 2959–2966 (2017). https://doi.org/10.1021/acs.nanolett.7b00207
J. Tang, S. Wu, T. Wang, H. Gong, H. Zhang et al., Cage-type highly graphitic porous carbon–Co3O4 polyhedron as the cathode of lithium–oxygen batteries. ACS Appl. Mater. Interfaces 8(4), 2796–2804 (2016). https://doi.org/10.1021/acsami.5b11252
H. Gong, H. Xue, X. Lu, B. Gao, T. Wang et al., All solid-state lithium-oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes. Chem. Commun. 55(72), 10689–10692 (2019). https://doi.org/10.1039/c9cc05685h
W. Yin, Y. Shen, F. Zou, X. Hu, B. Chi et al., Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interfaces 7(8), 4947–4954 (2015). https://doi.org/10.1021/am509143t
Y. Dou, R. Lian, Y. Zhang, Y. Zhao, G. Chen et al., Co9S8@carbon porous nanocages derived from a metal–organic framework: a highly efficient bifunctional catalyst for aprotic Li–O2 batteries. J. Mater. Chem. A 6(18), 8595–8603 (2018). https://doi.org/10.1039/C8TA01913D
H. Wang, F.-X. Yin, N. Liu, R.-H. Kou, X.-B. He et al., Engineering Fe-Fe3C@Fe-N-C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2O2 fuel cell and Li-O2 battery. Adv. Funct. Mater. 29(23), 1901531 (2019). https://doi.org/10.1002/adfm.201901531
P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 11(1), 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
P. Hien Thi Thu, Y. Kim, Y.-J. Kim, J.-W. Lee, M.-S. Park, Robust design of dual-phasic carbon cathode for lithium-oxygen batteries. Adv. Funct. Mater. 29(31), 1902915 (2019). https://doi.org/10.1002/adfm.201902915
W.M. Zhang, X.Y. Yao, S.N. Zhou, X.W. Li, L. Li et al., ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 14(24), 1800423 (2018). https://doi.org/10.1002/smll.201800423
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 29(1), 1806658 (2019). https://doi.org/10.1002/adfm.201806658
X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 48(52), 6544–6546 (2012). https://doi.org/10.1039/C2CC31777J
L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng et al., A superior low-cost cathode for a Na-ion battery. Angew. Chem. In. Ed. 52(7), 1964–1967 (2013). https://doi.org/10.1002/anie.201206854
Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7(5), 1643–1647 (2014). https://doi.org/10.1039/C3EE44004D
J. Song, L. Wang, Y. Lu, J. Liu, B. Guo et al., Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137(7), 2658–2664 (2015). https://doi.org/10.1021/ja512383b
X. Wu, W. Deng, J. Qian, Y. Cao, X. Ai et al., Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1(35), 10130–10134 (2013). https://doi.org/10.1039/C3TA12036H
Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater. (2021). https://doi.org/10.1002/adma.202101342
H.-W. Lee, R.Y. Wang, M. Pasta, S. Woo Lee, N. Liu et al., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5(1), 5280 (2014). https://doi.org/10.1038/ncomms6280
Y. Yue, A.J. Binder, B. Guo, Z. Zhang, Z.A. Qiao et al., Mesoporous prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 53(12), 3134–3137 (2014). https://doi.org/10.1002/anie.201310679
Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang et al., High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater. 30(10), 1908754 (2020). https://doi.org/10.1002/adfm.201908754
C. Li, Q. Yang, M. Shen, J.Y. Ma, B.W. Hu, The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(ii) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Mater. 14, 82–89 (2018). https://doi.org/10.1016/j.ensm.2018.02.021
J. Park, M. Lee, D.W. Feng, Z.H. Huang, A.C. Hinckley et al., Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140(32), 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020
Y. Liu, X. Zhao, C. Fang, Z. Ye, Y.-B. He et al., Activating aromatic rings as Na-ion storage sites to achieve high capacity. Chem 4(10), 2463–2478 (2018). https://doi.org/10.1016/j.chempr.2018.08.015
Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26(29), 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747
Y. You, H.-R. Yao, S. Xin, Y.-X. Yin, T.-T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28(33), 7243–7248 (2016). https://doi.org/10.1002/adma.201600846
J. Luo, S. Sun, J. Peng, B. Liu, Y. Huang et al., Graphene-roll-wrapped prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9(30), 25317–25322 (2017). https://doi.org/10.1021/acsami.7b06334
Y. Huang, C. Fang, R. Zeng, Y. Liu, W. Zhang et al., In situ-formed hierarchical metal–organic flexible cathode for high-energy sodium-ion batteries. Chemsuschem 10(23), 4704–4708 (2017). https://doi.org/10.1002/cssc.201701484
Y. Mao, Y. Chen, J. Qin, C. Shi, E. Liu et al., Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced prussian blue for high performance Na-ion battery cathode. Nano Energy 58, 192–201 (2019). https://doi.org/10.1016/j.nanoen.2019.01.048
Y. Tang, W. Zhang, L. Xue, X. Ding, T. Wang et al., Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries. J. Mater. Chem. A 4(16), 6036–6041 (2016). https://doi.org/10.1039/C6TA00876C
W.-J. Li, S.-L. Chou, J.-Z. Wang, J.-L. Wang, Q.-F. Gu et al., Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy 13, 200–207 (2015). https://doi.org/10.1016/j.nanoen.2015.02.019
Q. Qu, J. Yun, Z. Wan, H. Zheng, T. Gao et al., MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3. RSC Adv. 4(110), 64692–64697 (2014). https://doi.org/10.1039/c4ra11009a
X. Shi, Y. Chen, Y. Lai, K. Zhang, J. Li et al., Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. Carbon 123, 250–258 (2017). https://doi.org/10.1016/j.carbon.2017.07.056
S. Liu, J. Zhou, H. Song, 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8(22), 1800569 (2018). https://doi.org/10.1002/aenm.201800569
Y. Xie, J. Hu, Z. Han, T. Wang, J. Zheng et al., Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 30, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.05.008
M.Q. Zhu, S.M. Li, B. Li, Y.J. Gong, Z.G. Du et al., Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 5(4), 8 (2019). https://doi.org/10.1126/sciadv.aau6264
H. Xu, Y. Liu, T. Qiang, L. Qin, J. Chen et al., Boosting sodium storage properties of titanium dioxide by a multiscale design based on MOF-derived strategy. Energy Storage Mater. 17, 126–135 (2019). https://doi.org/10.1016/j.ensm.2018.07.023
H.-H. Li, Z.-Y. Li, X.-L. Wu, L.-L. Zhang, C.-Y. Fan et al., Shale-like Co3O4 for high performance lithium/sodium ion batteries. J. Mater. Chem. A 4(21), 8242–8248 (2016). https://doi.org/10.1039/C6TA02417C
Y. Cai, G. Fang, J. Zhou, S. Liu, Z. Luo et al., Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res. 11(1), 449–463 (2018). https://doi.org/10.1007/s12274-017-1653-9
S. Fan, S. Huang, Y. Chen, Y. Shang, Y. Wang et al., Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater. 23, 17–24 (2019). https://doi.org/10.1016/j.ensm.2019.05.043
X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu et al., A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 28(16), 1707573 (2018). https://doi.org/10.1002/adfm.201707573
N. Shi, B. Xi, M. Huang, X. Ma, H. Li et al., Hierarchical octahedra constructed by Cu2S/MoS2 subsetcarbon framework with enhanced sodium storage. Small 16(23), 2000952 (2020). https://doi.org/10.1002/smll.202000952
X. Wang, Y. Chen, Y.J. Fang, J.T. Zhang, S.Y. Gao et al., Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries. Angew. Chem. Int. Ed. 58(9), 2675–2679 (2019). https://doi.org/10.1002/anie.201812387
Y. Zhang, Q. Su, W. Xu, G. Cao, Y. Wang et al., A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries. Adv. Sci. 6(16), 1900162 (2019). https://doi.org/10.1002/advs.201900162
W. Zhang, W. Yan, H. Jiang, C. Wang, Y. Zhou et al., Uniform Bi–Sb alloy nanoparticles synthesized from MOFs by laser metallurgy for sodium-ion batteries. ACS Sustain. Chem. Eng. 8(1), 335–342 (2019). https://doi.org/10.1021/acssuschemeng.9b05474
X. Hu, X. Liu, K. Chen, G. Wang, H. Wang, Core–shell mof-derived N-doped yolk–shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 7(18), 11016–11037 (2019). https://doi.org/10.1039/c9ta01999e
G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
X. Liu, Y. Liu, M. Feng, L.-Z. Fan, MOF-derived and nitrogen-doped ZnSe polyhedra encapsulated by reduced graphene oxide as the anode for lithium and sodium storage. J. Mater. Chem. A 6(46), 23621–23627 (2018). https://doi.org/10.1039/c8ta09247h
W. Ren, H. Zhang, C. Guan, C. Cheng, Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 27(32), 1702116 (2017). https://doi.org/10.1002/adfm.201702116
C. Chen, M. Wu, Z. Xu, T. Feng, J. Yang et al., Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. J Colloid Interface Sci. 538, 267–276 (2019). https://doi.org/10.1016/j.jcis.2018.11.101
D. Cao, W. Kang, W. Wang, K. Sun, Y. Wang et al., Okra-like Fe7S8 /C@ZnS/N-C@C with core-double-shelled structures as robust and high-rate sodium anode. Small 16(35), 1907641 (2020). https://doi.org/10.1002/smll.201907641
Y.M. Chen, X.Y. Li, K. Park, W. Lu, C. Wang et al., Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3(1), 152–163 (2017). https://doi.org/10.1016/j.chempr.2017.05.021
N. Mubarak, M. Ihsan-Ul-Haq, H. Huang, J. Cui, S. Yao et al., Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. J. Mater. Chem. A 8(20), 10269–10282 (2020). https://doi.org/10.1039/d0ta00359j
S. Dong, C. Li, X. Ge, Z. Li, X. Miao et al., ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
L.T. Yu, J. Liu, X.J. Xu, L.G. Zhang, R.Z. Hu et al., Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 11(5), 5120–5129 (2017). https://doi.org/10.1021/acsnano.7b02136
S.H. Yang, S.-K. Park, J.K. Kim, Y.C. Kang, A mof-mediated strategy for constructing human backbone-like CoMoS3@N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries. J. Mater. Chem. A 7(22), 13751–13761 (2019). https://doi.org/10.1039/C9TA03873F
X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, A novel K-ion battery: hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A 5(9), 4325–4330 (2017). https://doi.org/10.1039/C7TA00220C
L. Li, Z. Hu, Y. Lu, C. Wang, Q. Zhang et al., A low-strain potassium-rich prussian blue analogue cathode for high power potassium-ion batteries. Angew. Chem. Int. Ed. 60(23), 13050–13056 (2021). https://doi.org/10.1002/anie.202103475
J.Y. Liao, Q. Hu, J.X. Mu, X.D. He, S. Wang et al., A vanadium-based metal-organic phosphate framework material K2[(VO)2(HPO4)2(C2O4)] as a cathode for potassium-ion batteries. Chem. Commun. 55(5), 659–662 (2019). https://doi.org/10.1039/c8cc08734b
Y.L. An, H.F. Fei, Z. Zhang, L.J. Ci, S.L. Xiong et al., A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs. Chemical Commun. 53(59), 8360–8363 (2017). https://doi.org/10.1039/c7cc03606j
C. Li, X.S. Hu, B.W. Hu, Cobalt(ii) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 253, 439–444 (2017). https://doi.org/10.1016/j.electacta.2017.09.090
E. Nossol, V.H.R. Souza, A.J.G. Zarbin, Carbon nanotube/prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J. Colloid Interface Sci. 478, 107–116 (2016). https://doi.org/10.1016/j.jcis.2016.05.056
J. Li, H. Zhao, J. Wang, N. Li, M. Wu et al., Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy 62, 876–882 (2019). https://doi.org/10.1016/j.nanoen.2019.06.009
P. Xiao, S. Li, C. Yu, Y. Wang, Y. Xu, Interface engineering between the metal-organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance. ACS Nano 14(8), 10210–10218 (2020). https://doi.org/10.1021/acsnano.0c03488
Y.P. Li, C.H. Yang, F.H. Zheng, X. Ou, Q.C. Pan et al., High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 6(37), 17959–17966 (2018). https://doi.org/10.1039/c8ta06652c
J. Lu, C. Wang, H. Yu, S. Gong, G. Xia et al., Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 29(49), 1906126 (2019). https://doi.org/10.1002/adfm.201906126
G.Y. Ma, C.J. Li, F. Liu, M.K. Majeed, Z.Y. Feng et al., Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 10, 241–248 (2018). https://doi.org/10.1016/j.mtener.2018.09.013
S.L. Su, Q. Liu, J. Wang, L. Fan, R.F. Ma et al., Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 11(25), 22474–22480 (2019). https://doi.org/10.1021/acsami.9b06379
J. Xie, X. Li, H. Lai, Z. Zhao, J. Li et al., A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew. Chem. Int. Ed. 58(41), 14740–14747 (2019). https://doi.org/10.1002/anie.201908542
C. Atangana Etogo, H. Huang, H. Hong, G. Liu, L. Zhang, Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 24, 167–176 (2020). https://doi.org/10.1016/j.ensm.2019.08.022
X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu et al., Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 19(8), 4965–4973 (2019). https://doi.org/10.1021/acs.nanolett.9b01127
R. Trócoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
M.S. Chae, J.W. Heo, H.H. Kwak, H. Lee, S.-T. Hong, Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J. Power Sources 337, 204–211 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.083
X.-W. Lou, Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202107697
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
K.W. Nam, S.S. Park, R. dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019). https://doi.org/10.1038/s41467-019-12857-4
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12(1), 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
B. He, Q. Zhang, P. Man, Z. Zhou, C. Li et al., Self-sacrificed synthesis of conductive vanadium-based metal-organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 64, 103935 (2019). https://doi.org/10.1016/j.nanoen.2019.103935
Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang et al., A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
C.C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. (2021). https://doi.org/10.1002/adma.202101698
S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song et al., Electrochemically induced MOF-derived amorphous V2O5 for superior rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 59(49), 22002–22006 (2020). https://doi.org/10.1002/anie.202010287
Z. Wang, J.H. Huang, Z.W. Guo, X.L. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10(16), 1904215 (2020). https://doi.org/10.1002/aenm.201904215
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2020). https://doi.org/10.1002/aenm.202001050
J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon et al., Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous zn-based flow batteries. Energy Environ. Sci. 13, 2839–2848 (2020). https://doi.org/10.1039/d0ee00723d
S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/c8ee02679c
H. Pourfarzad, M. Shabani-Nooshabadi, M.R. Ganjali, Novel bi-functional electrocatalysts based on the electrochemical synthesized bimetallicmetal organic frameworks: Towards high energy advanced reversible zinc-air batteries. J. Power Sources 451, 227768 (2020). https://doi.org/10.1016/j.jpowsour.2020.227768
G. Chen, J. Zhang, F. Wang, L. Wang, Z. Liao et al., Cobalt-based metal-organic framework nanoarrays as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Eur. J. 24(69), 18413–18418 (2018). https://doi.org/10.1002/chem.201804339
X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding et al., Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 11(17), 15662–15669 (2019). https://doi.org/10.1021/acsami.9b02859
Y. Jiang, Y.-P. Deng, R. Liang, J. Fu, R. Gao et al., d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 11(1), 5858 (2020). https://doi.org/10.1038/s41467-020-19709-6
F. Yang, J. Xie, X. Liu, G. Wang, X. Lu, Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-air batteries. Small 17(3), 2007085 (2021). https://doi.org/10.1002/smll.202007085
L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang et al., Metal–organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(15), 8472–8476 (2021). https://doi.org/10.1002/anie.202016024
Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng et al., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 32(28), 2002170 (2020). https://doi.org/10.1002/adma.202002170
Z. Wu, H. Wu, T. Niu, S. Wang, G. Fu et al., Sulfurated metal–organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn–air battery. ACS Sustain. Chem. Eng. 8(24), 9226–9234 (2020). https://doi.org/10.1021/acssuschemeng.0c03570
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Adv. Mater. 31(39), 1902339 (2019). https://doi.org/10.1002/adma.201902339
D. Ren, J. Ying, M. Xiao, Y.P. Deng, J. Ou et al., Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc–air batteries. Adv. Funct. Mater. 30(7), 1908167 (2019). https://doi.org/10.1002/adfm.201908167
Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 30(6), 1906081 (2020). https://doi.org/10.1002/adfm.201906081
C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu et al., Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29(44), 1704117 (2017). https://doi.org/10.1002/adma.201704117
Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang et al., Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 71, 104592 (2020). https://doi.org/10.1016/j.nanoen.2020.104592
D. Ji, L. Fan, L. Li, S. Peng, D. Yu et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 31(16), 1808267 (2019). https://doi.org/10.1002/adma.201808267
Y. Arafat, M.R. Azhar, Y. Zhong, X. Xu, M.O. Tadé et al., A porous nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc–air batteries. Nano-Micro Lett. 12, 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
D. Chen, X. Chen, Z. Cui, G. Li, B. Han et al., Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem. Eng. J. 399, 125718 (2020). https://doi.org/10.1016/j.cej.2020.125718
Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang et al., Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries. J. Mater. Chem. A 6(20), 9716–9722 (2018). https://doi.org/10.1039/c8ta01859f
X. Gao, Y. Du, J. Zhou, S. Li, P. Qi et al., Large-scale production of MOF-derived coatings for functional interlayers in high-performance Li–S batteries. ACS Appl. Energy Mater. 1(12), 6986–6991 (2018). https://doi.org/10.1021/acsaem.8b01401
G.K. Gao, Y.R. Wang, H.J. Zhu, Y. Chen, R.X. Yang et al., Rapid production of metal–organic frameworks based separators in industrial-level efficiency. Adv. Sci. 7(24), 2002190 (2020). https://doi.org/10.1002/advs.202002190